
IBM
®

DB2 Universal Database
™

SQL Reference Volume 1

Version 8

SC09-4844-00

���

IBM
®

DB2 Universal Database
™

SQL Reference Volume 1

Version 8

SC09-4844-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993 - 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book xi
Who should use this book xi
How this book is structured xi

A brief overview of Volume 2 xii
How to read the syntax diagrams xiii
Common syntax elements xv

Function designator xv
Method designator xvii
Procedure designator xviii

Conventions used in this manual xx
Error conditions. xx
Highlighting conventions xx

Related documentation xxi

Chapter 1. Concepts 1
Relational databases. 1
Structured Query Language (SQL) 1
Authorization and privileges 2
Schemas. 4
Tables 5
Views 6
Aliases 7
Indexes 7
Keys 7
Constraints. 8

Unique constraints 9
Referential constraints 9
Table check constraints 12

Isolation levels 13
Queries 16
Table expressions 16
Application processes, concurrency, and
recovery 16
DB2 Call level interface (CLI) and open
database connectivity (ODBC) 19
Java database connectivity (JDBC) and
embedded SQL for Java (SQLJ) programs . . 19
Packages 20
Catalog views 20
Character conversion 20
Event monitors 23
Triggers 24
Table spaces and other storage structures . . 26
Data partitioning across multiple partitions 28
Distributed relational databases 29

Remote unit of work 30
Application-directed distributed unit of
work 33
Data representation considerations . . . 38

DB2 federated systems 39
Federated systems 39
Data sources 41
The federated database 43
The SQL Compiler and the query
optimizer 44
Compensation 45
Pass-through sessions 46
Wrappers and wrapper modules 48
Server definitions and server options. . . 50
User mappings and user options 51
Nicknames and data source objects . . . 52
Column options. 53
Data type mappings 54
Function mappings and function templates 56
Function mappings options 57
Index specifications 58

Chapter 2. Language elements 61
Characters 61
Tokens 63
Identifiers 65

Naming conventions and implicit object
name qualifications 65
Aliases 70
Authorization IDs and authorization
names 71
Column names 76
References to host variables 83

Data types 92
Data types 92
Numbers 94
Character strings 95
Graphic strings 97
Binary strings 98
Large objects (LOBs) 99
Datetime values 101
DATALINK values 105
XML values 107
User-defined types 108
Promotion of data types. 111

© Copyright IBM Corp. 1993 - 2002 iii

Casting between data types 113
Assignments and comparisons 117
Rules for result data types 134
Rules for string conversions 140
Partition-compatible data types 141

Constants 143
Integer constants 143
Floating-point constants. 144
Decimal constants. 144
Character string constants 144
Hexadecimal constants 145
Graphic string constants 145

Special registers 146
Special registers 146
CLIENT ACCTNG 148
CLIENT APPLNAME 149
CLIENT USERID 150
CLIENT WRKSTNNAME 151
CURRENT DATE 152
CURRENT DBPARTITIONNUM 153
CURRENT DEFAULT TRANSFORM
GROUP 154
CURRENT DEGREE 155
CURRENT EXPLAIN MODE 156
CURRENT EXPLAIN SNAPSHOT . . . 157
CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION 158
CURRENT PATH 159
CURRENT QUERY OPTIMIZATION . . 160
CURRENT REFRESH AGE. 161
CURRENT SCHEMA 162
CURRENT SERVER 163
CURRENT TIME 164
CURRENT TIMESTAMP 165
CURRENT TIMEZONE 166
USER 167

Functions 168
External, SQL, and sourced user-defined
functions. 168
Scalar, column, row, and table
user-defined functions 168
Function signatures 169
Function resolution 170
Function invocation 174
Conservative binding semantics 175

Methods 178
External and SQL user-defined methods 178
Method signatures 179
Method resolution 180
Method invocation 183

Dynamic dispatch of methods 184
Expressions 187

Expressions without operators 188
Expressions with the concatenation
operator 188
Expressions with arithmetic operators . . 191
Two-integer operands 192
Integer and decimal operands. 193
Two-decimal operands 193
Decimal arithmetic in SQL 193
Floating-point operands. 194
User-defined types as operands 194
Scalar fullselect 194
Datetime operations and durations . . . 194
Datetime arithmetic in SQL 196
Precedence of operations 200
CASE expressions. 201
CAST specifications 203
Dereference operations 206
OLAP functions 207
XML functions 214
Method invocation 218
Subtype treatment 219
Sequence reference 220

Predicates 225
Predicates 225
Search conditions 226
Basic predicate 229
Quantified predicate 230
BETWEEN predicate 233
EXISTS predicate 234
IN predicate 235
LIKE predicate 238
NULL predicate 243
TYPE predicate 244

Chapter 3. Functions 247
Functions overview 247
Aggregate functions 269
AVG 270
CORRELATION 272
COUNT 273
COUNT_BIG 275
COVARIANCE. 277
GROUPING 278
MAX 280
MIN 282
Regression functions 284
STDDEV 288
SUM 289

iv SQL Reference, Volume 1

VARIANCE 290
Scalar functions 291
ABS or ABSVAL 292
ACOS. 293
ASCII 294
ASIN 295
ATAN. 296
ATAN2 297
ATANH 298
BIGINT 299
BLOB 301
CEILING or CEIL 302
CHAR 303
CHR 309
CLOB 310
COALESCE 311
CONCAT 312
COS 313
COSH. 314
COT 315
DATE 316
DAY 318
DAYNAME 319
DAYOFWEEK 320
DAYOFWEEK_ISO 321
DAYOFYEAR 322
DAYS 323
DBCLOB. 324
DBPARTITIONNUM 325
DECIMAL 330
DECRYPT_BIN and DECRYPT_CHAR . . . 332
DEGREES 334
DEREF 335
DIFFERENCE 336
DIGITS 337
DLCOMMENT. 338
DLLINKTYPE 339
DLNEWCOPY 340
DLPREVIOUSCOPY 343
DLREPLACECONTENT 345
DLURLCOMPLETE 347
DLURLCOMPLETEONLY 348
DLURLCOMPLETEWRITE. 349
DLURLPATH 350
DLURLPATHONLY 351
DLURLPATHWRITE 352
DLURLSCHEME 353
DLURLSERVER 354
DLVALUE 355
DOUBLE. 357

ENCRYPT 359
EVENT_MON_STATE 362
EXP 363
FLOAT 364
FLOOR 365
GETHINT 366
GENERATE_UNIQUE 367
GRAPHIC 369
HASHEDVALUE 371
HEX 373
HOUR 375
IDENTITY_VAL_LOCAL 376
INSERT 382
INTEGER 384
JULIAN_DAY 386
LCASE or LOWER 387
LCASE (SYSFUN schema) 388
LEFT 389
LENGTH 390
LN. 392
LOCATE 393
LOG 394
LOG10 395
LONG_VARCHAR 396
LONG_VARGRAPHIC 397
LTRIM 398
LTRIM (SYSFUN schema) 400
MICROSECOND 401
MIDNIGHT_SECONDS 402
MINUTE. 403
MOD 404
MONTH 405
MONTHNAME 406
MQPUBLISH 407
MQREAD 410
MQREADCLOB 412
MQRECEIVE 414
MQRECEIVECLOB 416
MQSEND 418
MQSUBSCRIBE 420
MQUNSUBSCRIBE 422
MULTIPLY_ALT 424
NULLIF 426
POSSTR 427
POWER 429
QUARTER 430
RADIANS 431
RAISE_ERROR. 432
RAND 434
REAL 435

Contents v

REC2XML 436
REPEAT 441
REPLACE 442
RIGHT 443
ROUND 444
RTRIM 446
RTRIM (SYSFUN schema) 447
SECOND 448
SIGN 449
SIN 450
SINH 451
SMALLINT 452
SOUNDEX 453
SPACE 454
SQRT 455
SUBSTR 456
TABLE_NAME. 460
TABLE_SCHEMA 461
TAN 463
TANH 464
TIME 465
TIMESTAMP 466
TIMESTAMP_FORMAT 468
TIMESTAMP_ISO 470
TIMESTAMPDIFF. 471
TO_CHAR 473
TO_DATE 474
TRANSLATE 475
TRUNCATE or TRUNC 478
TYPE_ID. 480
TYPE_NAME 481
TYPE_SCHEMA 482
UCASE or UPPER 483
VALUE 484
VARCHAR 485
VARCHAR_FORMAT 487
VARGRAPHIC. 489
WEEK 491
WEEK_ISO 492
YEAR 493
Table functions. 494
MQREADALL 495
MQREADALLCLOB 497
MQRECEIVEALL 499
MQRECEIVEALLCLOB 502
SNAPSHOT_AGENT 505
SNAPSHOT_APPL 506
SNAPSHOT_APPL_INFO 510
SNAPSHOT_BP 512
SNAPSHOT_CONTAINER. 514

SNAPSHOT_DATABASE 516
SNAPSHOT_DBM 521
SNAPSHOT_DYN_SQL 523
SNAPSHOT_FCM 525
SNAPSHOT_FCMPARTITION 526
SNAPSHOT_LOCK 527
SNAPSHOT_LOCKWAIT 529
SNAPSHOT_QUIESCERS 531
SNAPSHOT_RANGES 532
SNAPSHOT_STATEMENT 533
SNAPSHOT_SUBSECT 535
SNAPSHOT_SWITCHES 537
SNAPSHOT_TABLE 538
SNAPSHOT_TBS 540
SNAPSHOT_TBS_CFG 542
SQLCACHE_SNAPSHOT 544
Procedures 545
GET_ROUTINE_SAR 546
PUT_ROUTINE_SAR 548
User-defined functions 550

Chapter 4. Queries 553
SQL queries. 553
Subselect. 554

select-clause. 555
from-clause 560
table-reference 561
joined-table 565
where-clause 568
group-by-clause 569
having-clause 576
order-by-clause 576
fetch-first-clause 579
Examples of subselects 580
Examples of joins 583
Examples of grouping sets, cube, and
rollup 586

Fullselect. 597
Examples of a fullselect 598

Select-statement 601
common-table-expression 601
update-clause 603
read-only-clause 604
optimize-for-clause 605
Examples of a select-statement 605

Appendix A. SQL limits 607

Appendix B. SQLCA (SQL
communications area) 615

vi SQL Reference, Volume 1

SQLCA field descriptions 615
Error reporting. 619
SQLCA usage in partitioned database
systems 620

Appendix C. SQLDA (SQL descriptor
area) 621
SQLDA field descriptions 621

Fields in the SQLDA header 622
Fields in an occurrence of a base SQLVAR 623
Fields in an occurrence of a secondary
SQLVAR 625

Effect of DESCRIBE on the SQLDA 627
SQLTYPE and SQLLEN 629

Unrecognized and unsupported
SQLTYPEs 631
Packed decimal numbers 631
SQLLEN field for decimal 632

Appendix D. Catalog views 633
‘Road map’ to catalog views 633
‘Road map’ to updatable catalog views . . 636
System catalog views 636
SYSIBM.SYSDUMMY1 638
SYSCAT.ATTRIBUTES 639
SYSCAT.BUFFERPOOLDBPARTITIONS . . 641
SYSCAT.BUFFERPOOLS 642
SYSCAT.CASTFUNCTIONS 643
SYSCAT.CHECKS 644
SYSCAT.COLAUTH 645
SYSCAT.COLCHECKS 646
SYSCAT.COLDIST 647
SYSCAT.COLGROUPDIST 648
SYSCAT.COLGROUPDISTCOUNTS. . . . 649
SYSCAT.COLGROUPS 650
SYSCAT.COLOPTIONS 651
SYSCAT.COLUMNS 652
SYSCAT.COLUSE 657
SYSCAT.CONSTDEP 658
SYSCAT.DATATYPES 659
SYSCAT.DBAUTH 661
SYSCAT.DBPARTITIONGROUPDEF . . . 663
SYSCAT.DBPARTITIONGROUPS 664
SYSCAT.EVENTMONITORS 665
SYSCAT.EVENTS 667
SYSCAT.EVENTTABLES 668
SYSCAT.FULLHIERARCHIES 669
SYSCAT.FUNCMAPOPTIONS 670
SYSCAT.FUNCMAPPARMOPTIONS . . . 671
SYSCAT.FUNCMAPPINGS. 672

SYSCAT.HIERARCHIES. 673
SYSCAT.INDEXAUTH 674
SYSCAT.INDEXCOLUSE 675
SYSCAT.INDEXDEP 676
SYSCAT.INDEXES 677
SYSCAT.INDEXEXPLOITRULES 682
SYSCAT.INDEXEXTENSIONDEP 683
SYSCAT.INDEXEXTENSIONMETHODS . . 684
SYSCAT.INDEXEXTENSIONPARMS . . . 685
SYSCAT.INDEXEXTENSIONS. 686
SYSCAT.INDEXOPTIONS 687
SYSCAT.KEYCOLUSE 688
SYSCAT.NAMEMAPPINGS 689
SYSCAT.PACKAGEAUTH 690
SYSCAT.PACKAGEDEP. 691
SYSCAT.PACKAGES 693
SYSCAT.PARTITIONMAPS 699
SYSCAT.PASSTHRUAUTH. 700
SYSCAT.PREDICATESPECS 701
SYSCAT.PROCOPTIONS 702
SYSCAT.PROCPARMOPTIONS 703
SYSCAT.REFERENCES 704
SYSCAT.REVTYPEMAPPINGS 705
SYSCAT.ROUTINEAUTH 707
SYSCAT.ROUTINEDEP 708
SYSCAT.ROUTINEPARMS 709
SYSCAT.ROUTINES 711
SYSCAT.SCHEMAAUTH 718
SYSCAT.SCHEMATA 719
SYSCAT.SEQUENCEAUTH 720
SYSCAT.SEQUENCES 721
SYSCAT.SERVEROPTIONS. 723
SYSCAT.SERVERS. 724
SYSCAT.STATEMENTS 725
SYSCAT.TABAUTH 726
SYSCAT.TABCONST 728
SYSCAT.TABDEP 729
SYSCAT.TABLES 730
SYSCAT.TABLESPACES 735
SYSCAT.TABOPTIONS 736
SYSCAT.TBSPACEAUTH 737
SYSCAT.TRANSFORMS. 738
SYSCAT.TRIGDEP 739
SYSCAT.TRIGGERS 740
SYSCAT.TYPEMAPPINGS 741
SYSCAT.USEROPTIONS 743
SYSCAT.VIEWS 744
SYSCAT.WRAPOPTIONS 745
SYSCAT.WRAPPERS 746
SYSSTAT.COLDIST 747

Contents vii

SYSSTAT.COLUMNS. 749
SYSSTAT.INDEXES 751
SYSSTAT.ROUTINES. 755
SYSSTAT.TABLES 757

Appendix E. Federated systems 759
Valid server types in SQL statements . . . 759

CTLIB wrapper 759
DBLIB wrapper 759
DJXMSSQL3 wrapper 759
DRDA wrapper 759
Informix wrapper 761
MSSQLODBC3 wrapper 761
NET8 wrapper 761
ODBC wrapper 761
OLE DB wrapper 761
SQLNET wrapper. 761

Column options for federated systems . . . 762
Function mapping options for federated
systems 763
Server options for federated systems . . . 764
User options for federated systems 773
Wrapper options for federated systems . . 774
Default forward data type mappings . . . 775

DB2 for z/OS and OS/390 data sources 776
DB2 for iSeries data sources 777
DB2 Server for VM and VSE data sources 779
DB2 for UNIX and Windows data sources 780
Informix data sources 781
Oracle SQLNET data sources 782
Oracle NET8 data sources 783
Microsoft SQL Server data sources . . . 785
ODBC data sources 788
Sybase data sources 789

Default reverse data type mappings. . . . 791
DB2 for z/OS and OS/390 data sources 792
DB2 for iSeries data sources 793
DB2 Server for VM and VSE data sources 795
DB2 for UNIX and Windows data sources 796
Informix data sources 797
Oracle SQLNET data sources 798
Oracle NET8 data sources 799
Microsoft SQL Server data sources . . . 801
Sybase data sources 801

Appendix F. The SAMPLE database . . . 803
Creating the SAMPLE database 803
Erasing the SAMPLE database 803
CL_SCHED table 803
DEPARTMENT table 804

EMPLOYEE table 806
EMP_ACT table 808
EMP_PHOTO table 810
EMP_RESUME table 810
IN_TRAY table 811
ORG table 811
PROJECT table 811
SALES table 812
STAFF table. 814
STAFFG table (double-byte code pages only) 815
Sample files with BLOB and CLOB data type 816

Quintana photo 816
Quintana resume 816
Nicholls photo 818
Nicholls resume 818
Adamson photo 819
Adamson resume 819
Walker photo 821
Walker resume 821

Appendix G. Reserved schema names
and reserved words 823

Appendix H. Comparison of isolation
levels 827

Appendix I. Interaction of triggers and
constraints 829

Appendix J. Explain tables 833
Explain tables 833
EXPLAIN_ARGUMENT table 834
EXPLAIN_INSTANCE table 838
EXPLAIN_OBJECT table 841
EXPLAIN_OPERATOR table 844
EXPLAIN_PREDICATE table 846
EXPLAIN_STATEMENT table 848
EXPLAIN_STREAM table 851
ADVISE_INDEX table 853
ADVISE_WORKLOAD table 856

Appendix K. Explain register values. . . 857

Appendix L. Recursion example: bill of
materials 861
Example 1: Single level explosion 861
Example 2: Summarized explosion 863
Example 3: Controlling depth 864

viii SQL Reference, Volume 1

Appendix M. Exception tables 867
Rules for creating an exception table . . . 867
Handling rows in an exception table . . . 869
Querying exception tables 870

Appendix N. SQL statements allowed in
routines 873

Appendix O. CALL invoked from a
compiled statement 877

Appendix P. Japanese and
traditional-Chinese extended UNIX code
(EUC) considerations 883
Language elements 883

Characters 883
Tokens 883
Identifiers 883
Data types 884
Constants 886
Functions 886
Expressions 887
Predicates 887

Functions 888
LENGTH 888
SUBSTR 888
TRANSLATE 888
VARGRAPHIC. 889

Statements 889
CONNECT 889
PREPARE 889

Appendix Q. Backus-Naur form (BNF)
specifications for DATALINKs 891

Appendix R. DB2 Universal Database
technical information 895
Overview of DB2 Universal Database
technical information 895

Categories of DB2 technical information 896
Printing DB2 books from PDF files 903
Ordering printed DB2 books 904
Accessing online help 904
Finding topics by accessing the DB2
Information Center from a browser 906
Finding product information by accessing
the DB2 Information Center from the
administration tools 908
Viewing technical documentation online
directly from the DB2 HTML Documentation
CD. 909
Updating the HTML documentation installed
on your machine 910
Copying files from the DB2 HTML
Documentation CD to a Web Server. . . . 912
Troubleshooting DB2 documentation search
with Netscape 4.x 912
Searching the DB2 documentation 913
Online DB2 troubleshooting information . . 914
Accessibility 915

Keyboard Input and Navigation 915
Accessible Display 916
Alternative Alert Cues 916
Compatibility with Assistive Technologies 916
Accessible Documentation 916

DB2 tutorials 916
DB2 Information Center for topics 917

Appendix S. Notices 919
Trademarks 922

Index 925

Contacting IBM 945
Product information 945

Contents ix

x SQL Reference, Volume 1

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2
Universal Database Version 8, and includes:
v Information about relational database concepts, language elements,

functions, and the forms of queries (Volume 1).
v Information about the syntax and semantics of SQL statements (Volume 2).

Who should use this book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and
database administrators, but it can also be used by those who access
databases through the command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be
writing application programs and therefore presents the full functions of the
database manager.

How this book is structured

This book contains information about the following major topics:
v Chapter 1, “Concepts” on page 1 discusses the basic concepts of relational

databases and SQL.
v Chapter 2, “Language elements” on page 61 describes the basic syntax of

SQL and the language elements that are common to many SQL statements.
v Chapter 3, “Functions” on page 247 contains syntax diagrams, semantic

descriptions, rules, and usage examples of SQL column and scalar
functions.

v Chapter 4, “Queries” on page 553 describes the various forms of a query.
v Appendix A, “SQL limits” on page 607 lists SQL limitations.
v Appendix B, “SQLCA (SQL communications area)” on page 615 describes

the SQLCA structure.
v Appendix C, “SQLDA (SQL descriptor area)” on page 621 describes the

SQLDA structure.
v Appendix D, “Catalog views” on page 633 describes the database catalog

views.
v Appendix E, “Federated systems” on page 759 describes options and type

mappings for Federated Systems.

© Copyright IBM Corp. 1993 - 2002 xi

v Appendix F, “The SAMPLE database” on page 803 describes the sample
tables used in examples.

v Appendix G, “Reserved schema names and reserved words” on page 823
contains the reserved schema names and the reserved words for the IBM
SQL and ISO/ANS SQL99 standards.

v Appendix H, “Comparison of isolation levels” on page 827 contains a
summary of the isolation levels.

v Appendix I, “Interaction of triggers and constraints” on page 829 discusses
the interaction of triggers and referential constraints.

v Appendix J, “Explain tables” on page 833 describes the Explain tables.
v Appendix K, “Explain register values” on page 857 describes the interaction

of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values with each other and with the PREP and BIND
commands.

v Appendix L, “Recursion example: bill of materials” on page 861 contains an
example of a recursive query.

v Appendix M, “Exception tables” on page 867 contains information about
user-created tables that are used with the SET INTEGRITY statement.

v Appendix N, “SQL statements allowed in routines” on page 873 lists the
SQL statements that are allowed to execute in routines with different SQL
data access contexts.

v Appendix O, “CALL invoked from a compiled statement” on page 877
describes the CALL statement that can be invoked from a compiled
statement.

v Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)
considerations” on page 883 lists considerations when using extended UNIX
code (EUC) character sets.

v Appendix Q, “Backus-Naur form (BNF) specifications for DATALINKs” on
page 891 contains the Backus-Naur form (BNF) specifications for
DATALINKs.

A brief overview of Volume 2
The second volume of the SQL Reference contains information about the
syntax and semantics of SQL statements. The specific chapters in that volume
are briefly described here:
v “SQL statements” contains syntax diagrams, semantic descriptions, rules,

and examples of all SQL statements.
v “SQL control statements” contains syntax diagrams, semantic descriptions,

rules, and examples of SQL procedure statements.

How this book is structured

xii SQL Reference, Volume 1

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

�� required_item
optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the
main path.

How to read the syntax diagrams

About this book xiii

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents
the whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

How to read the syntax diagrams

xiv SQL Reference, Volume 1

parameter-block:

parameter1
parameter2 parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in
any sequence.

�� required_item item1 * item2 * item3 * item4 ��

The above diagram shows that item2 and item3 may be specified in either
order. Both of the following are valid:

required_item item1 item2 item3 item4
required_item item1 item3 item2 item4

Common syntax elements

The following sections describe a number of syntax fragments that are used in
syntax diagrams. The fragments are referenced as follows:

�� fragment ��

Function designator
A function designator uniquely identifies a single function. Function
designators typically appear in DDL statements for functions (such as DROP
or ALTER).

Syntax:

function-designator:

�

FUNCTION function-name
()

,

(data-type)
SPECIFIC FUNCTION specific-name

Description:

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one
function instance with the name function-name in the schema. The
identified function can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the

How to read the syntax diagrams

About this book xv

QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no function by this name exists in the named
or implied schema, an error (SQLSTATE 42704) is raised. If there is more
than one instance of the function in the named or implied schema, an
error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function.
The function resolution algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE FUNCTION statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, using the name that is
specified or defaulted to at function creation time. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements, the QUALIFIER

Function designator

xvi SQL Reference, Volume 1

precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific function instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Method designator
A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

Syntax:

method-designator:

�

METHOD method-name FOR type-name
()

,

(data-type)
SPECIFIC METHOD specific-name

Description:

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name. The
identified method can have any number of parameters defined for it. If no
method by this name exists for the type, an error (SQLSTATE 42704) is
raised. If there is more than one instance of the method for the type, an
error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The number
of data types, and the logical concatenation of the data types, is used
to identify the specific method instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

Function designator

About this book xvii

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated.
The name must identify a type already described in the catalog
(SQLSTATE 42704). In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific method instance in
the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Procedure designator
A procedure designator uniquely identifies a single stored procedure.
Procedure designators typically appear in DDL statements for procedures
(such as DROP or ALTER).

Syntax:

procedure-designator:

�

PROCEDURE procedure-name
()

,

(data-type)
SPECIFIC PROCEDURE specific-name

Description:

Method designator

xviii SQL Reference, Volume 1

PROCEDURE procedure-name
Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The
identified procedure can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no procedure by this name exists in the
named or implied schema, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the procedure in the named or implied schema,
an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure. The procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE PROCEDURE statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

Procedure designator

About this book xix

If no procedure with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or
defaulted to at procedure creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific procedure instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Conventions used in this manual

This section specifies some conventions which are used consistently
throughout this manual.

Error conditions
An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses. For example:

A duplicate signature raises an SQL error (SQLSTATE 42723).

Highlighting conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:

v Names or values (variables) that must be supplied by the user.

v General emphasis.

v The introduction of a new term.

v A reference to another source of information.

Monospace Indicates one of the following:

v Files and directories.

v Information that you are instructed to type at a command prompt or
in a window.

v Examples of specific data values.

v Examples of text similar to what may be displayed by the system.

v Examples of system messages.

Procedure designator

xx SQL Reference, Volume 1

Related documentation

The following publications may prove useful in preparing applications:
v Administration Guide

– Contains information required to design, implement, and maintain a
database to be accessed either locally or in a client/server environment.

v Application Development Guide

– Discusses the application development process and how to code,
compile, and execute application programs that use embedded SQL and
APIs to access the database.

v DB2 Universal Database for iSeries SQL Reference

– This book defines Structured Query Language (SQL) as supported by
DB2 Query Manager and SQL Development Kit on iSeries (AS/400). It
contains reference information for the tasks of system administration,
database administration, application programming, and operation. This
manual includes syntax, usage notes, keywords, and examples for each
of the SQL statements used on iSeries (AS/400) systems running DB2.

v DB2 Universal Database for z/OS and OS/390 SQL Reference

– This book defines Structured Query Language (SQL) used in DB2 for
z/OS (OS/390). It provides query forms, SQL statements, SQL procedure
statements, DB2 limits, SQLCA, SQLDA, catalog tables, and SQL
reserved words for z/OS (OS/390) systems running DB2.

v DB2 Spatial Extender User’s Guide and Reference

– This book discusses how to write applications to create and use a
geographic information system (GIS). Creating and using a GIS involves
supplying a database with resources and then querying the data to
obtain information such as locations, distances, and distributions within
areas.

v IBM SQL Reference

– This book contains all the common elements of SQL that span IBM’s
database products. It provides limits and rules that assist in preparing
portable programs using IBM databases. This manual provides a list of
SQL extensions and incompatibilities among the following standards and
products: SQL92E, XPG4-SQL, IBM-SQL and the IBM relational database
products.

v American National Standard X3.135-1992, Database Language SQL

– Contains the ANSI standard definition of SQL.
v ISO/IEC 9075:1992, Database Language SQL

– Contains the 1992 ISO standard definition of SQL.
v ISO/IEC 9075-2:1999, Database Language SQL -- Part 2: Foundation

(SQL/Foundation)

– Contains a large portion of the 1999 ISO standard definition of SQL.

Related documentation

About this book xxi

v ISO/IEC 9075-4:1999, Database Language SQL -- Part 4: Persistent Stored
Modules (SQL/PSM)

– Contains the 1999 ISO standard definition for SQL procedure control
statements.

v ISO/IEC 9075-5:1999, Database Language SQL -- Part 4: Host Language Bindings
(SQL/Bindings)

– Contains the 1999 ISO standard definition for host language bindings
and dynamic SQL.

Related documentation

xxii SQL Reference, Volume 1

Chapter 1. Concepts

This chapter provides a high-level view of concepts that are important to
understand when using Structured Query Language (SQL). The reference
material contained in the rest of this manual provides a more detailed view.

Relational databases

A relational database is a database that is treated as a set of tables and
manipulated in accordance with the relational model of data. It contains a set
of objects used to store, manage, and access data. Examples of such objects are
tables, views, indexes, functions, triggers, and packages.

A partitioned relational database is a relational database whose data is
managed across multiple partitions (also called nodes). This separation of data
across partitions is transparent to users of most SQL statements. However,
some data definition language (DDL) statements take partition information
into consideration (for example, CREATE DATABASE PARTITION GROUP).
(Data definition language is the subset of SQL statements used to describe
data relationships in a database.)

A federated database is a relational database whose data is stored in multiple
data sources (such as separate relational databases). The data appears as if it
were all in a single large database and can be accessed through traditional
SQL queries. Changes to the data can be explicitly directed to the appropriate
data source.

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a
relational database. In accordance with the relational model of data, the
database is treated as a set of tables, relationships are represented by values in
tables, and data is retrieved by specifying a result table that can be derived
from one or more base tables.

SQL statements are executed by a database manager. One of the functions of
the database manager is to transform the specification of a result table into a
sequence of internal operations that optimize data retrieval. The
transformation occurs in two phases: preparation and binding.

© Copyright IBM Corp. 1993 - 2002 1

All executable SQL statements must be prepared before they can be executed.
The result of preparation is the executable or operational form of the
statement. The method of preparing an SQL statement and the persistence of
its operational form distinguish static SQL from dynamic SQL.

Authorization and privileges

An authorization allows a user or group to perform a general task, such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way.

The database manager requires that a user be specifically authorized, either
implicitly or explicitly, to use each database function needed to perform a
specific task. Explicit authorities or privileges are granted to the user
(GRANTEETYPE of U). Implicit authorities or privileges are granted to a
group to which the user belongs (GRANTEETYPE of G). Thus, to create a
table, a user must be authorized to create tables; to alter a table, a user must
be authorized to alter the table; and so on.

Persons with administrative authority have the task of controlling the
database manager and are responsible for the safety and integrity of the data.
They control who will have access to the database manager and to what
extent each user has access.

The database manager provides two administrative authorities:
v SYSADM - system administrator authority

SYSADM
(System Administrator)

DBADM
(Database Administrator)

Database Users with Privileges

SYSCTRL
(System Resource Administrator)

SYSMAINT
(System Maintenance Administrator)

Figure 1. Hierarchy of Authorities and Privileges

Structured Query Language (SQL)

2 SQL Reference, Volume 1

SYSADM authority is the highest level of authority and has control over all
the resources created and maintained by the database manager. SYSADM
authority includes all the authorities of DBADM, SYSCTRL, and
SYSMAINT, and the authority to grant or revoke DBADM authorities.

v DBADM - database administrator authority
DBADM authority is the administrative authority specific to a single
database. This authority includes privileges to create objects, issue database
commands, and access the data in any of its tables through SQL statements.
DBADM authority also includes the authority to grant or revoke CONTROL
and individual privileges.

The database manager also provides two system control authorities:
v SYSCTRL - system control authority

SYSCTRL authority is the higher level of system control authority and
applies only to operations affecting system resources. It does not allow
direct access to data. This authority includes privileges to create, update, or
drop a database; to stop an instance or a database; and to create or drop a
table space.

v SYSMAINT - system maintenance authority
SYSMAINT authority is the second level of system control authority. A user
with SYSMAINT authority can perform maintenance operations on all
databases associated with an instance. It does not allow direct access to
data. This authority includes privileges to update database configuration
files; to back up a database or a table space; to restore an existing database;
and to monitor a database.

Database authorities apply to activities that an administrator has allowed a
user to perform within a database; they do not apply to a specific instance of
a database object. For example, a user may be granted the authority to create
packages but not to create tables.

Privileges apply to activities that an administrator or an object owner has
allowed a user to perform on database objects. Users with privileges can
create objects, strictly defined by the privileges they hold. For example, a user
may have the privilege to create a view on a table but not a trigger on the
same table. Users with privileges have access to the objects they own, and can
pass privileges on their own objects to other users through the GRANT
statement.

CONTROL privilege allows a user to access a specific database object, as
required, and to grant and revoke privileges to and from other users on that
object. DBADM authority is required to grant CONTROL privilege.

Authorization and privileges

Chapter 1. Concepts 3

Individual privileges and database authorities allow a specific function but do
not include the right to grant the same privileges or authorities to other users.
The right to grant table, view, or schema privileges to others can be extended
to other users through the WITH GRANT OPTION on the GRANT statement.

Schemas

A schema is a collection of named objects. Schemas provide a logical
classification of objects in the database. A schema can contain tables, views,
nicknames, triggers, functions, packages, and other objects.

A schema is also an object in the database. It is explicitly created using the
CREATE SCHEMA statement with the current user recorded as the schema
owner. It can also be implicitly created when another object is created,
provided that the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is
created, the default schema name is used.

For example, a user with DBADM authority creates a schema called C for
user A:

CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in
schema C:

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to
the SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, all users have IMPLICIT_SCHEMA authority. This
allows any user to create objects in any schema not already in existence. An
implicitly created schema allows any user to create other objects in this
schema.The ability to create aliases, distinct types, functions, and triggers is
extended to implicitly created schemas. The default privileges on an implicitly
created schema provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created
by users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA

Authorization and privileges

4 SQL Reference, Volume 1

authority from PUBLIC increases control over the use of schema names, it can
result in authorization errors when existing applications attempt to create
objects.

Schemas also have privileges, allowing the schema owner to control which
users have the privilege to create, alter, and drop objects in the schema. A
schema owner is initially given all of these privileges on the schema, with the
ability to grant them to others. An implicitly created schema is owned by the
system, and all users are initially given the privilege to create objects in such a
schema. A user with SYSADM or DBADM authority can change the privileges
held by users on any schema. Therefore, access to create, alter, and drop
objects in any schema (even one that was implicitly created) can be controlled.

Tables

Tables are logical structures maintained by the database manager. Tables are
made up of columns and rows. The rows are not necessarily ordered within a
table (order is determined by the application program). At the intersection of
every column and row is a specific data item called a value. A column is a set
of values of the same type or one of its subtypes. A row is a sequence of
values arranged so that the nth value is a value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a query.

A summary table is a table defined by a query that is also used to determine
the data in the table. Summary tables can be used to improve the performance
of queries. If the database manager determines that a portion of a query can
be resolved using a summary table, the database manager can rewrite the
query to use the summary table. This decision is based on database
configuration settings, such as the CURRENT REFRESH AGE and the
CURRENT QUERY OPTIMIZATION special registers.

A table can define the data type of each column separately, or base the types
on the attributes of a user-defined structured type. This is called a typed table.
A user-defined structured type may be part of a type hierarchy. A subtype
inherits attributes from its supertype. Similarly, a typed table can be part of a
table hierarchy. A subtable inherits columns from its supertable. Note that the
term subtype applies to a user-defined structured type and all user-defined
structured types that are below it in the type hierarchy. A proper subtype of a
structured type T is a structured type below T in the type hierarchy. Similarly,
the term subtable applies to a typed table and all typed tables that are below it
in the table hierarchy. A proper subtable of a table T is a table below T in the
table hierarchy.

Schemas

Chapter 1. Concepts 5

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects
from the database.

Views

A view provides a different way of looking at the data in one or more tables; it
is a named specification of a result table. The specification is a SELECT
statement that is run whenever the view is referenced in an SQL statement. A
view has columns and rows just like a base table. All views can be used just
like base tables for data retrieval. Whether a view can be used in an insert,
update, or delete operation depends on its definition.

You can use views to control access to sensitive data, because views allow
multiple users to see different presentations of the same data. For example,
several users may be accessing a table of data about employees. A manager
sees data about his or her employees but not employees in another
department. A recruitment officer sees the hire dates of all employees, but not
their salaries; a financial officer sees the salaries, but not the hire dates. Each
of these users works with a view derived from the base table. Each view
appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base
table, that view column inherits any constraints that apply to the base table
column. For example, if a view includes a foreign key of its base table, insert
and update operations using that view are subject to the same referential
constraints as is the base table. Also, if the base table of a view is a parent
table, delete and update operations using that view are subject to the same
rules as are delete and update operations on the base table.

A view can derive the data type of each column from the result table, or base
the types on the attributes of a user-defined structured type. This is called a
typed view. Similar to a typed table, a typed view can be part of a view
hierarchy. A subview inherits columns from its superview. The term subview
applies to a typed view and to all typed views that are below it in the view
hierarchy. A proper subview of a view V is a view below V in the typed view
hierarchy.

A view can become inoperative (for example, if the base table is dropped); if
this occurs, the view is no longer available for SQL operations.

Tables

6 SQL Reference, Volume 1

Aliases

An alias is an alternative name for a table or a view. It can be used to
reference a table or a view if an existing table or view can be referenced. An
alias cannot be used in all contexts; for example, it cannot be used in the
check condition of a check constraint. An alias cannot reference a declared
temporary table.

Like tables or views, an alias can be created, dropped, and have comments
associated with it. However, unlike tables, aliases can refer to each other in a
process called chaining. Aliases are publicly referenced names, so no special
authority or privilege is required to use them. Access to the table or the view
referred to by an alias, however, does require the authorization associated
with these objects.

There are other types of aliases, such as database and network aliases. Aliases
can also be created for nicknames that refer to data tables or views located on
federated systems.

Indexes

An index is an ordered set of pointers to rows in a base table. Each index is
based on the values of data in one or more table columns. An index is an
object that is separate from the data in the table. When an index is created,
the database manager builds this object and maintains it automatically.

Indexes are used by the database manager to:
v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the
table on which a view is based can sometimes improve the performance of
operations on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with
identical keys.

Keys

A key is a set of columns that can be used to identify or access a particular
row or rows. The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

A key that is composed of more than one column is called a composite key. In a
table with a composite key, the order of the columns within the composite key
is not constrained by the order of the columns within the table. The value of a
composite key denotes a composite value. Thus, a rule such as “the value of

Aliases

Chapter 1. Concepts 7

the foreign key must be equal to the value of the primary key” means that
each component of the value of the foreign key must be equal to the
corresponding component of the value of the primary key.

A unique key is a key that is constrained so that no two of its values are equal.
The columns of a unique key cannot contain null values. The constraint is
enforced by the database manager during the execution of any operation that
changes data values, such as INSERT or UPDATE. The mechanism used to
enforce the constraint is called a unique index. Thus, every unique key is a key
of a unique index. Such an index is also said to have the UNIQUE attribute.

A primary key is a special case of a unique key. A table cannot have more than
one primary key.

A foreign key is a key that is specified in the definition of a referential
constraint.

A partitioning key is a key that is part of the definition of a table in a
partitioned database. The partitioning key is used to determine the partition
on which the row of data is stored. If a partitioning key is defined, unique
keys and primary keys must include the same columns as the partitioning
key, but can have additional columns. A table cannot have more than one
partitioning key.

Constraints

A constraint is a rule that the database manager enforces.

There are three types of constraints:
v A unique constraint is a rule that forbids duplicate values in one or more

columns within a table. Unique and primary keys are the supported unique
constraints. For example, a unique constraint can be defined on the supplier
identifier in the supplier table to ensure that the same supplier identifier is
not given to two suppliers.

v A referential constraint is a logical rule about values in one or more columns
in one or more tables. For example, a set of tables shares information about
a corporation’s suppliers. Occasionally, a supplier’s name changes. You can
define a referential constraint stating that the ID of the supplier in a table
must match a supplier ID in the supplier information. This constraint
prevents insert, update, or delete operations that would otherwise result in
missing supplier information.

v A table check constraint sets restrictions on data added to a specific table. For
example, a table check constraint can ensure that the salary level for an

Keys

8 SQL Reference, Volume 1

employee is at least $20,000 whenever salary data is added or updated in a
table containing personnel information.

Referential and table check constraints can be turned on or off. It is generally
a good idea, for example, to turn off the enforcement of a constraint when
large amounts of data are loaded into a database.

Unique constraints
A unique constraint is the rule that the values of a key are valid only if they
are unique within a table. Unique constraints are optional and can be defined
in the CREATE TABLE or ALTER TABLE statement using the PRIMARY KEY
clause or the UNIQUE clause. The columns specified in a unique constraint
must be defined as NOT NULL. The database manager uses a unique index to
enforce the uniqueness of the key during changes to the columns of the
unique constraint.

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than
one unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential
constraint is called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique
index is automatically created by the database manager and designated as a
primary or unique system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary
or unique system-required index.

Note that there is a distinction between defining a unique constraint and
creating a unique index. Although both enforce uniqueness, a unique index
allows nullable columns and generally cannot be used as a parent key.

Referential constraints
Referential integrity is the state of a database in which all values of all foreign
keys are valid. A foreign keyis a column or a set of columns in a table whose
values are required to match at least one primary key or unique key value of
a row in its parent table. A referential constraint is the rule that the values of
the foreign key are valid only if one of the following conditions is true:
v They appear as values of a parent key.
v Some component of the foreign key is null.

Constraints

Chapter 1. Concepts 9

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of
that table.

Referential constraints are optional and can be defined in the CREATE TABLE
statement or the ALTER TABLE statement. Referential constraints are enforced
by the database manager during the execution of INSERT, UPDATE, DELETE,
ALTER TABLE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential constraints with a delete or an update rule of RESTRICT are
enforced before all other referential constraints. Referential constraints with a
delete or an update rule of NO ACTION behave like RESTRICT in most cases.

Note that referential constraints, check constraints, and triggers can be
combined.

Referential integrity rules involve the following concepts and terminology:

Parent key
A primary key or a unique key of a referential constraint.

Parent row
A row that has at least one dependent row.

Parent table
A table that contains the parent key of a referential constraint. A table
can be a parent in an arbitrary number of referential constraints. A
table that is the parent in a referential constraint can also be the
dependent in a referential constraint.

Dependent table
A table that contains at least one referential constraint in its definition.
A table can be a dependent in an arbitrary number of referential
constraints. A table that is the dependent in a referential constraint can
also be the parent in a referential constraint.

Descendent table
A table is a descendent of table T if it is a dependent of T or a
descendent of a dependent of T.

Dependent row
A row that has at least one parent row.

Descendent row
A row is a descendent of row r if it is a dependent of r or a
descendent of a dependent of r.

Referential cycle
A set of referential constraints such that each table in the set is a
descendent of itself.

Referential constraints

10 SQL Reference, Volume 1

Self-referencing table
A table that is a parent and a dependent in the same referential
constraint. The constraint is called a self-referencing constraint.

Self-referencing row
A row that is a parent of itself.

Insert rule
The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.
This rule is implicit when a foreign key is specified.

Update rule
The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The
update rule applies when a row of the parent or a row of the dependent table
is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent

key when the update statement is completed (excluding AFTER triggers),
the update is rejected when the update rule is NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when
a foreign key is specified. NO ACTION means that a non-null update value of
a foreign key must match some value of the parent key of the parent table
when the update statement is completed.

The value of a composite foreign key is null if any component of the value is
null.

Delete rule
The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or
SET NULL. SET NULL can be specified only if some column of the foreign
key allows null values.

The delete rule of a referential constraint applies when a row of the parent
table is deleted. More precisely, the rule applies when a row of the parent
table is the object of a delete or propagated delete operation (defined below),
and that row has dependents in the dependent table of the referential
constraint. Consider an example where P is the parent table, D is the

Referential constraints

Chapter 1. Concepts 11

dependent table, and p is a parent row that is the object of a delete or
propagated delete operation. The delete rule works as follows:
v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v With CASCADE, the delete operation is propagated to the dependents of p

in table D.
v With SET NULL, each nullable column of the foreign key of each

dependent of p in table D is set to null.

Each referential constraint in which a table is a parent has its own delete rule,
and all applicable delete rules are used to determine the result of a delete
operation. Thus, a row cannot be deleted if it has dependents in a referential
constraint with a delete rule of RESTRICT or NO ACTION, or the deletion
cascades to any of its descendents that are dependents in a referential
constraint with the delete rule of RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect
rows of these tables:
v If table D is a dependent of P and the delete rule is RESTRICT or NO

ACTION, then D is involved in the operation but is not affected by the
operation.

v If D is a dependent of P and the delete rule is SET NULL, then D is
involved in the operation, and rows of D can be updated during the
operation.

v If D is a dependent of P and the delete rule is CASCADE, then D is
involved in the operation and rows of D can be deleted during the
operation.
If rows of D are deleted, then the delete operation on P is said to be
propagated to D. If D is also a parent table, then the actions described in
this list apply, in turn, to the dependents of D.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a
dependent of P, or a dependent of a table to which delete operations from P
cascade.

Table check constraints
A table check constraint is a rule that specifies the values allowed in one or
more columns of every row in a table. A constraint is optional, and can be
defined using the CREATE TABLE or the ALTER TABLE statement. Specifying
table check constraints is done through a restricted form of a search condition.
One of the restrictions is that a column name in a table check constraint on
table T must identify a column of table T.

Delete rule

12 SQL Reference, Volume 1

A table can have an arbitrary number of table check constraints. A table check
constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is
false for any row.

When one or more table check constraints is defined in the ALTER TABLE
statement for a table with existing data, the existing data is checked against
the new condition before the ALTER TABLE statement completes. The SET
INTEGRITY statement can be used to put the table in check pending state,
which allows the ALTER TABLE statement to proceed without checking the
data.

Related reference:

v “SET INTEGRITY statement” in the SQL Reference, Volume 2

v Appendix I, “Interaction of triggers and constraints” on page 829

Isolation levels

The isolation level associated with an application process defines the degree of
isolation of that application process from other concurrently executing
application processes. The isolation level of an application process therefore
specifies:
v The degree to which the rows read and updated by the application are

available to other concurrently executing application processes.
v The degree to which the update activity of other concurrently executing

application processes can affect the application.

The isolation level is specified as an attribute of a package and applies to the
application processes that use the package. The isolation level is specified in
the program preparation process. Depending on the type of lock, this limits or
prevents access to the data by concurrent application processes. (Declared
temporary tables and their rows cannot be locked because they are only
accessible to the application that declared them.)

The database manager supports three general categories of locks:

Share Limits concurrent application processes to read-only operations on the
data.

Update
Limits concurrent application processes to read-only operations on the
data, if these processes have not declared that they might update the
row. The database manager assumes that the process currently looking
at a row may update it.

Table check constraints

Chapter 1. Concepts 13

Exclusive
Prevents concurrent application processes from accessing the data in
any way. Does not apply to application processes with an isolation
level of uncommitted read, which can read but not modify the data.

Locking occurs at the base table row. The database manager, however, can
replace multiple row locks with a single table lock. This is called lock
escalation. An application process is guaranteed at least the minimum
requested lock level.

The DB2® Universal Database database manager supports four isolation
levels. Regardless of the isolation level, the database manager places exclusive
locks on every row that is inserted, updated, or deleted. Thus, all isolation
levels ensure that any row that is changed by this application process during
a unit of work is not changed by any other application processes until the
unit of work is complete. The isolation levels are:
v Repeatable Read (RR)

This level ensures that:
– Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. The rows are read in the
same unit of work as the corresponding OPEN statement. Use of the
optional WITH RELEASE clause on the CLOSE statement means that any
guarantees against non-repeatable reads and phantom reads no longer
apply to any previously accessed rows if the cursor is reopened.

– Any row changed by another application process cannot be read until it
is committed by that application process.

The Repeatable Read level does not allow phantom rows to be viewed (see
Read Stability).

In addition to any exclusive locks, an application process running at the RR
level acquires at least share locks on all the rows it references. Furthermore,
the locking is performed so that the application process is completely
isolated from the effects of concurrent application processes.

v Read Stability (RS)
Like the Repeatable Read level, the Read Stability level ensures that:
– Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. The rows are read in the
same unit of work as the corresponding OPEN statement. Use of the
optional WITH RELEASE clause on the CLOSE statement means that any
guarantees against non-repeatable reads no longer apply to any
previously accessed rows if the cursor is reopened.

– Any row changed by another application process cannot be read until it
is committed by that application process.

Isolation levels

14 SQL Reference, Volume 1

Unlike Repeatable Read, Read Stability does not completely isolate the
application process from the effects of concurrent application processes. At
the RS level, application processes that issue the same query more than
once may see additional rows caused by other application processes
appending new information to the database. These additional rows are
called phantom rows.

For example, a phantom row can occur in the following situation:
1. Application process P1 reads the set of rows n that satisfy some search

condition.
2. Application process P2 then inserts one or more rows that satisfy the

search condition and commits those new inserts.
3. P1 reads the set of rows again with the same search condition and

obtains both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at the RS
isolation level acquires at least share locks on all the qualifying rows.

v Cursor Stability (CS)
Like the Repeatable Read level, the Cursor Stability level ensures that any
row that was changed by another application process cannot be read until it
is committed by that application process.
Unlike Repeatable Read, Cursor Stability only ensures that the current row
of every updatable cursor is not changed by other application processes.
Thus, the rows that were read during a unit of work can be changed by
other application processes.
In addition to any exclusive locks, an application process running at the CS
isolation level acquires at least a share lock on the current row of every
cursor.

v Uncommitted Read (UR)
For SELECT INTO, FETCH with a read-only cursor, fullselect in an INSERT,
row fullselect in an UPDATE, or scalar fullselect (wherever it is used), the
Uncommitted Read level allows:
– Any row read during a unit of work to be changed by other application

processes.
– Any row changed by another application process to be read, even if the

change has not been committed by that application process.

For other operations, rules associated with the CS level apply.

Related reference:

v “DECLARE CURSOR statement” in the SQL Reference, Volume 2

v Appendix H, “Comparison of isolation levels” on page 827

Isolation levels

Chapter 1. Concepts 15

Queries

A query is a component of certain SQL statements; it specifies a (temporary)
result table.

Related reference:

v “SQL queries” on page 553

Table expressions

A table expression creates a temporary result table from a simple query. Clauses
further refine the result table. For example, you can use a table expression as
a query to select all of the managers from several departments, specify that
they must have over 15 years of working experience, and be located at the
New York branch office.

A common table expression is like a temporary view within a complex query. It
can be referenced in other places within the query, and can be used in place of
a view. Each use of a specific common table expression within a complex
query shares the same temporary view.

Recursive use of a common table expression within a query can be used to
support applications such as airline reservation systems, bill of materials
(BOM) generators, and network planning.

Related reference:

v Appendix L, “Recursion example: bill of materials” on page 861

Application processes, concurrency, and recovery

All SQL programs execute as part of an application process or agent. An
application process involves the execution of one or more programs, and is
the unit to which the database manager allocates resources and locks.
Different application processes may involve the execution of different
programs, or different executions of the same program.

More than one application process may request access to the same data at the
same time. Locking is the mechanism used to maintain data integrity under
such conditions, preventing, for example, two application processes from
updating the same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made
by one application process from being accidentally perceived by any other
process. The database manager releases all locks it has acquired and retained

Queries

16 SQL Reference, Volume 1

on behalf of an application process when that process ends. However, an
application process can explicitly request that locks be released sooner. This is
done using a commit operation, which releases locks acquired during the unit
of work and also commits database changes made during the unit of work.

The database manager provides a means of backing out uncommitted changes
made by an application process. This might be necessary in the event of a
failure on the part of an application process, or in the case of a deadlock, or a
lock time-out situation. An application process can explicitly request that its
database changes be backed out. This is done using a rollback operation.

A unit of work is a recoverable sequence of operations within an application
process. A unit of work is initiated when an application process is started, or
when the previous unit of work is ended by something other than the
termination of the application process. A unit of work is ended by a commit
operation, a rollback operation, or the end of an application process. A
commit or rollback operation affects only the database changes made within
the unit of work it is ending.

As long as these changes remain uncommitted, other application processes are
unable to perceive them, and they can be backed out. This is not true,
however, when the isolation level is uncommitted read (UR). Once committed,
these database changes are accessible by other application processes and can
no longer be backed out through a rollback.

Both DB2® call level interface (CLI) and embedded SQL allow for a
connection mode called concurrent transactions, which supports multiple
connections, each of which is an independent transaction. An application can
have multiple concurrent connections to the same database.

Locks acquired by the database manager on behalf of an application process
are held until the end of a unit of work. This is not true, however, when the
isolation level is cursor stability (CS, in which the lock is released as the
cursor moves from row to row) or uncommitted read (UR, in which locks are
not obtained).

An application process is never prevented from performing operations
because of its own locks. However, if an application uses concurrent
transactions, the locks from one transaction may affect the operation of a
concurrent transaction.

The initiation and the termination of a unit of work define points of
consistency within an application process. For example, a banking transaction
may involve the transfer of funds from one account to another. Such a
transaction would require that these funds be subtracted from the first
account, and then added to the second account. Following the subtraction

Application processes, concurrency, and recovery

Chapter 1. Concepts 17

step, the data is inconsistent. Only after the funds have been added to the
second account is consistency reestablished. When both steps are complete,
the commit operation can be used to end the unit of work, thereby making
the changes available to other application processes. If a failure occurs before
the unit of work ends, the database manager will roll back uncommitted
changes to restore the data consistency that it assumes existed when the unit
of work was initiated.

Related concepts:

v “Isolation levels” on page 13

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 2. Unit of Work with a COMMIT Statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 3. Unit of Work with a ROLLBACK Statement

Application processes, concurrency, and recovery

18 SQL Reference, Volume 1

DB2 Call level interface (CLI) and open database connectivity (ODBC)

The DB2® call level interface is an application programming interface that
provides functions for processing dynamic SQL statements to application
programs. CLI programs can also be compiled using an open database
connectivity Software Developer’s Kit (available from Microsoft® or other
vendors), which enables access to ODBC data sources. Unlike embedded SQL,
this interface requires no precompilation. Applications can be run against a
variety of databases without having to be compiled against each of these
databases. Applications use procedure calls at run time to connect to
databases, issue SQL statements, and retrieve data and status information.

The DB2 CLI interface provides many features not available in embedded
SQL. For example:
v CLI provides function calls that support a way of querying database

catalogs that is consistent across the DB2 family. This reduces the need to
write catalog queries that must be tailored to specific database servers.

v CLI provides the ability to scroll through a cursor:
– Forward by one or more rows
– Backward by one or more rows
– Forward from the first row by one or more rows
– Backward from the last row by one or more rows
– From a previously stored location in the cursor.

v Stored procedures called from application programs that were written using
CLI can return result sets to those programs.

Java database connectivity (JDBC) and embedded SQL for Java (SQLJ)
programs

DB2® Universal Database implements two standards-based Java™

programming APIs: Java database connectivity (JDBC) and embedded SQL for
Java (SQLJ). Both can be used to create Java applications and applets that
access DB2:
v JDBC calls are translated into DB2 CLI calls through Java native methods.

JDBC requests flow from the DB2 client through DB2 CLI to the DB2 server.
JDBC cannot use static SQL.

v SQLJ applications use JDBC as a foundation for such tasks as connecting to
databases and handling SQL errors, but can also contain embedded static
SQL statements in the SQLJ source files. An SQLJ source file must be
translated by the SQLJ translator before the resulting Java source code can
be compiled.

DB2 Call level interface (CLI) and open database connectivity (ODBC)

Chapter 1. Concepts 19

Packages

A package is an object produced during program preparation that contains all
of the sections in a single source file. A section is the compiled form of an SQL
statement. Although every section corresponds to one statement, not every
statement has a section. The sections created for static SQL are comparable to
the bound, or operational, form of SQL statements. The sections created for
dynamic SQL are comparable to placeholder control structures used at run
time.

Catalog views

The database manager maintains a set of base tables and views that contain
information about the data under its control. These base tables and views are
collectively known as the catalog. The catalog contains information about the
logical and physical structure of database objects such as tables, views,
indexes, packages, and functions. It also contains statistical information. The
database manager ensures that the descriptions in the catalog are always
accurate.

The catalog views are like any other database view. SQL statements can be
used to look at the data in the catalog views. A set of updatable catalog views
can be used to modify certain values in the catalog.

Related reference:

v “System catalog views” on page 636

Character conversion

A string is a sequence of bytes that may represent characters. All the
characters within a string have a common coding representation. In some
cases, it may be necessary to convert these characters to a different coding
representation, a process known as character conversion. Character conversion,
when required, is automatic, and when successful, it is transparent to the
application.

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, the following scenarios in which the coding
representations may be different at the sending and receiving systems:
v The values of host variables are sent from the application requester to the

application server.
v The values of result columns are sent from the application server to the

application requester.

Packages

20 SQL Reference, Volume 1

Following is a list of terms used when discussing character conversion:

character set
A defined set of characters. For example, the following character set
appears in several code pages:
v 26 non-accented letters A through Z
v 26 non-accented letters a through z
v digits 0 through 9
v . , : ; ? () ' " / − _ & + % * = < >

code page
A set of assignments of characters to code points. In the ASCII
encoding scheme for code page 850, for example, "A" is assigned code
point X'41', and "B" is assigned code point X'42'. Within a code page,
each code point has only one specific meaning. A code page is an
attribute of the database. When an application program connects to
the database, the database manager determines the code page of the
application.

code point
A unique bit pattern that represents a character.

encoding scheme
A set of rules used to represent character data, for example:
v Single-Byte ASCII
v Single-Byte EBCDIC
v Double-Byte ASCII
v Mixed single- and double-byte ASCII

The following figure shows how a typical character set might map to different
code points in two different code pages. Even with the same encoding
scheme, there are many different code pages, and the same code point can
represent a different character in different code pages. Furthermore, a byte in
a character string does not necessarily represent a character from a single-byte
character set (SBCS). Character strings are also used for mixed and bit data.
Mixed data is a mixture of single-byte, double-byte, or multi-byte characters.
Bit data (columns defined as FOR BIT DATA, or BLOBs, or binary strings) is
not associated with any character set.

Character conversion

Chapter 1. Concepts 21

The database manager determines code page attributes for all character strings
when an application is bound to a database. The possible code page attributes
are:

Database code page
The database code page is stored in the database configuration file.
The value is specified when the database is created and cannot be
altered.

Application code page
The code page under which the application runs. This is not
necessarily the same code page under which the application was
bound.

FE

Ä

Ã

Á

Å

Â

À

Ö

®

5
8

2 3 4 50

0

1

1

2

3

4

5

E

F

%

/

0

1

2

3

4

5

@

A

B

C

D

E

N

0

>.

*

P

Q

R

S

T

U

code page: pp1 (ASCII)

character set ss1
(in code page pp1)

code point: 2F

0

1

2

3

4

5

E

F

FE0 1 A B

s

t

u

v

#

$

%

*

(

S

T

U

V

Â

C D

0

1

2

3

4

5

}

{ÁÀ ¢

! :

;

A

B

C

D

E

J

K

L

M

N

code page: pp2 (EBCDIC)

character set ss1
(in code page pp2)

"

Figure 4. Mapping a Character Set in Different Code Pages

Character conversion

22 SQL Reference, Volume 1

Code Page 0
This represents a string that is derived from an expression that
contains a FOR BIT DATA value or a BLOB value.

Character string code pages have the following attributes:
v Columns can be in the database code page or code page 0 (if defined as

character FOR BIT DATA or BLOB).
v Constants and special registers (for example, USER, CURRENT SERVER)

are in the database code page. Constants are converted to the database code
page when an SQL statement is bound to the database.

v Input host variables are in the application code page. As of Version 8, string
data in input host variables is converted, if necessary, from the application
code page to the database code page before being used. The exception
occurs when a host variable is used in a context where it is to be
interpreted as bit data; for example, when the host variable is to be
assigned to a column that is defined as FOR BIT DATA.

A set of rules is used to determine code page attributes for operations that
combine string objects, such as scalar operations, set operations, or
concatenation. Code page attributes are used to determine requirements for
code page conversion of strings at run time.

Related reference:

v “Assignments and comparisons” on page 117
v “Rules for string conversions” on page 139

Event monitors

Event monitors are used to collect information about the database and any
connected applications when specified events occur. Events represent
transitions in database activity: for instance, connections, deadlocks,
statements, and transactions. You can define an event monitor by the type of
event or events you want it to monitor. For example, a deadlock event
monitor waits for a deadlock to occur; when one does, it collects information
about the applications involved and the locks in contention. Whereas the
snapshot monitor is typically used for preventative maintenance and problem
analysis, event monitors are used to alert administrators to immediate
problems or to track impending ones.

To create an event monitor, use the CREATE EVENT MONITOR SQL
statement. Event monitors collect event data only when they are active. To
activate or deactivate an event monitor, use the SET EVENT MONITOR
STATE SQL statement. The status of an event monitor (whether it is active or
inactive) can be determined by the SQL function EVENT_MON_STATE.

Character conversion

Chapter 1. Concepts 23

When the CREATE EVENT MONITOR SQL statement is executed, the
definition of the event monitor it creates is stored in the following database
system catalog tables:
v SYSCAT.EVENTMONITORS: event monitors defined for the database.
v SYSCAT.EVENTS: events monitored for the database.
v SYSCAT.EVENTTABLES: target tables for table event monitors.

Each event monitor has its own private logical view of the instance’s data in
the data elements. If a particular event monitor is deactivated and then
reactivated, its view of these counters is reset. Only the newly activated event
monitor is affected; all other event monitors will continue to use their view of
the counter values (plus any new additions).

Event monitor output can be directed to SQL tables, a file, or a named pipe.

Related concepts:

v “Database system monitor” in the System Monitor Guide and Reference

Related tasks:

v “Collecting information about database system events” in the System
Monitor Guide and Reference

v “Creating an event monitor” in the System Monitor Guide and Reference

Related reference:

v “Event monitor sample output” in the System Monitor Guide and Reference

v “Event types” in the System Monitor Guide and Reference

Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation
is executed, the trigger is said to have been activated.

Triggers are optional and are defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints,
to enforce data integrity rules. Triggers can also be used to cause updates to
other tables, automatically generate or transform values for inserted or
updated rows, or invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional
business rules, which are rules that involve different states of the data (for
example, a salary that cannot be increased by more than 10 percent).

Event monitors

24 SQL Reference, Volume 1

Using triggers places the logic that enforces business rules inside the database.
This means that applications are not responsible for enforcing these rules.
Centralized logic that is enforced on all of the tables means easier
maintenance, because changes to application programs are not required when
the logic changes.

The following are specified when creating a trigger:
v The subject table specifies the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject

table. The event can be an insert, update, or delete operation.
v The trigger activation time specifies whether the trigger should be activated

before or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected
rows. These are the rows of the subject table that are being inserted, updated,
or deleted. The trigger granularity specifies whether the actions of the trigger
are performed once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL
statements are only executed if the search condition evaluates to true. If the
trigger activation time is before the trigger event, triggered actions can include
statements that select, set transition variables, or signal SQLstates. If the
trigger activation time is after the trigger event, triggered actions can include
statements that select, insert, update, delete, or signal SQLstates.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the
subject table, qualified by a specified name that identifies whether the
reference is to the old value (before the update) or the new value (after the
update). The new value can also be changed using the SET Variable statement
in before, insert, or update triggers.

Another means of referring to the values in the set of affected rows is to use
transition tables. Transition tables also use the names of the columns in the
subject table, but specify a name to allow the complete set of affected rows to
be treated as a table. Transition tables can only be used in after triggers, and
separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or
activation time. The order in which the triggers are activated is the same as
the order in which they were created. Thus, the most recently created trigger
is the last trigger to be activated.

Triggers

Chapter 1. Concepts 25

The activation of a trigger may cause trigger cascading, which is the result of
the activation of one trigger that executes SQL statements that cause the
activation of other triggers or even the same trigger again. The triggered
actions may also cause updates resulting from the application of referential
integrity rules for deletions that can, in turn, result in the activation of
additional triggers. With trigger cascading, a chain of triggers and referential
integrity delete rules can be activated, causing significant change to the
database as a result of a single INSERT, UPDATE, or DELETE statement.

Table spaces and other storage structures

Storage structures contain database objects. The basic storage structure is the
table space; it contains tables, indexes, large objects, and data defined with a
LONG data type. There are two types of table spaces:

Database managed space (DMS)
A table space that is managed by the database manager.

System managed space (SMS)
A table space that is managed by the operating system.

All table spaces consist of containers. A container describes where objects are
stored. A subdirectory in a file system is an example of a container.

When data is read from table space containers, it is placed in an area of
memory called a buffer pool. A buffer pool is associated with a specific table
space, thereby allowing control over which data will share the same memory
areas for data buffering.

In a partitioned database, data is spread across different database partitions.
Exactly which partitions are included is determined by the database partition
group that is assigned to the table space. A database partition group is a group
of one or more partitions that are defined as part of the database. A table
space includes one or more containers for each partition in the database
partition group. A partitioning map, associated with each database partition
group, is used by the database manager to determine on which partition a
given row of data is to be stored. The partitioning map is an array of 4096
partition numbers. The partitioning map index produced by the partitioning
function for each row in a table is used as an index into the partitioning map
to determine the partition on which a row is to be stored. As an example, the
following figure shows how a row with partitioning key value (c1, c2, c3) is
mapped to partitioning map index 2 which, in turn, references partition p5.

Triggers

26 SQL Reference, Volume 1

The partitioning map can be changed, allowing the data distribution to be
changed without modifying the partitioning key or the actual data. The new
partitioning map is specified as part of the REDISTRIBUTE DATABASE
PARTITION GROUP command or the sqludrdt application programming
interface (API), which use it to redistribute the tables in the database partition
group.

The DB2® Data Links Manager product provides functionality that supports
additional storage capabilities. A normal user table can include columns
(defined with the DATALINK data type) that register links to data stored in
external files. DATALINK values point to data files that are stored on an
external file server.

Related concepts:

v “Data partitioning across multiple partitions” on page 28

Related reference:

v “CREATE BUFFERPOOL statement” in the SQL Reference, Volume 2

v “CREATE DATABASE PARTITION GROUP statement” in the SQL Reference,
Volume 2

v “CREATE TABLESPACE statement” in the SQL Reference, Volume 2

p0 p2 p5 p0 p2 p5 ... p0

0 1 3 4 52 4095...

Row

Partitioning Map

Nodegroup partitions are p0, p2, and p5

Note: Partition numbers start at 0.

(... c1, c2, c3 ...)

partitioning key

partitioning function maps (c1, c2, c3)
to partitioning map index 2

Figure 5. Data Distribution

Table spaces and other storage structures

Chapter 1. Concepts 27

Data partitioning across multiple partitions

DB2® allows great flexibility in spreading data across multiple partitions
(nodes) of a partitioned database. Users can choose how to partition their data
by declaring partitioning keys, and can determine which and how many
partitions their table data can be spread across by selecting the database
partition group and table space in which the data should be stored. In
addition, a partitioning map (which is updatable) specifies the mapping of
partitioning key values to partitions. This makes it possible for flexible
workload parallelization across a partitioned database for large tables, while
allowing smaller tables to be stored on one or a small number of partitions if
the application designer so chooses. Each local partition may have local
indexes on the data it stores to provide high performance local data access.

A partitioned database supports a partitioned storage model, in which the
partitioning key is used to partition table data across a set of database
partitions. Index data is also partitioned with its corresponding tables, and
stored locally at each partition.

Before partitions can be used to store database data, they must be defined to
the database manager. Partitions are defined in a file called db2nodes.cfg.

The partitioning key for a table in a table space on a partitioned database
partition group is specified in the CREATE TABLE statement or the ALTER
TABLE statement. If not specified, a partitioning key for a table is created by
default from the first column of the primary key. If no primary key is defined,
the default partitioning key is the first column defined in that table that has a
data type other than a long or a LOB data type. Partitioned tables must have
at least one column that is neither a long nor a LOB data type. A table in a
table space that is in a single partition database partition group will have a
partitioning key only if it is explicitly specified.

Hash partitioning is used to place a row in a partition as follows:
1. A hashing algorithm (partitioning function) is applied to all of the columns

of the partitioning key, which results in the generation of a partitioning
map index value.

2. The partition number at that index value in the partitioning map identifies
the partition in which the row is to be stored.

DB2 supports partial declustering, which means that a table can be partitioned
across a subset of partitions in the system (that is, a database partition group).
Tables do not have to be partitioned across all of the partitions in the system.

DB2 has the capability of recognizing when data being accessed for a join or a
subquery is located at the same partition in the same database partition

Data partitioning across multiple partitions

28 SQL Reference, Volume 1

group. This is known as table collocation. Rows in collocated tables with the
same partitioning key values are located on the same partition. DB2 can
choose to perform join or subquery processing at the partition in which the
data is stored. This can have significant performance advantages.

Collocated tables must:
v Be in the same database partition group, one that is not being redistributed.

(During redistribution, tables in the database partition group may be using
different partitioning maps – they are not collocated.)

v Have partitioning keys with the same number of columns.
v Have the corresponding columns of the partitioning key be partition

compatible.
v Be in a single partition database partition group defined on the same

partition.

Related reference:

v “Partition-compatible data types” on page 141

Distributed relational databases

A distributed relational database consists of a set of tables and other objects that
are spread across different but interconnected computer systems. Each
computer system has a relational database manager to manage the tables in its
environment. The database managers communicate and cooperate with each
other in a way that allows a given database manager to execute SQL
statements on another computer system.

Distributed relational databases are built on formal requester-server protocols
and functions. An application requester supports the application end of a
connection. It transforms a database request from the application into
communication protocols suitable for use in the distributed database network.
These requests are received and processed by a database server at the other end
of the connection. Working together, the application requester and the
database server handle communication and location considerations, so that the
application can operate as if it were accessing a local database.

An application process must connect to a database manager’s application
server before SQL statements that reference tables or views can be executed.
The CONNECT statement establishes a connection between an application
process and its server.

There are two types of CONNECT statements:
v CONNECT (Type 1) supports the single database per unit of work (Remote

Unit of Work) semantics.

Data partitioning across multiple partitions

Chapter 1. Concepts 29

v CONNECT (Type 2) supports the multiple databases per unit of work
(Application-Directed Distributed Unit of Work) semantics.

The DB2® call level interface (CLI) and embedded SQL support a connection
mode called concurrent transactions, which allows multiple connections, each of
which is an independent transaction. An application can have multiple
concurrent connections to the same database.

The application server can be local to or remote from the environment in
which the process is initiated. An application server is present, even if the
environment is not using distributed relational databases. This environment
includes a local directory that describes the application servers that can be
identified in a CONNECT statement.

The application server runs the bound form of a static SQL statement that
references tables or views. The bound statement is taken from a package that
the database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use
statements and clauses that are supported by the application server’s database
manager. This is true even if an application is running through the application
requester of a database manager that does not support some of those
statements and clauses.

Remote unit of work
The remote unit of work facility provides for the remote preparation and
execution of SQL statements. An application process at computer system A
can connect to an application server at computer system B and, within one or
more units of work, execute any number of static or dynamic SQL statements
that reference objects at B. After ending a unit of work at B, the application
process can connect to an application server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed, with the
following restrictions:
v All objects referenced in a single SQL statement must be managed by the

same application server.
v All of the SQL statements in a unit of work must be executed by the same

application server.

At any given time, an application process is in one of four possible connection
states:
v Connectable and connected

An application process is connected to an application server, and
CONNECT statements can be executed.
If implicit connect is available:

Distributed relational databases

30 SQL Reference, Volume 1

– The application process enters this state when a CONNECT TO
statement or a CONNECT without operands statement is successfully
executed from the connectable and unconnected state.

– The application process may enter this state from the implicitly
connectable state if any SQL statement other than CONNECT RESET,
DISCONNECT, SET CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:
– A CONNECT TO statement is successfully executed from the connectable

and unconnected state.
– A COMMIT or ROLLBACK statement is successfully issued, or a forced

rollback occurs from the unconnectable and connected state.
v Unconnectable and connected

An application process is connected to an application server, but a
CONNECT TO statement cannot be successfully executed to change
application servers. The application process enters this state from the
connectable and connected state when it executes any SQL statement other
than the following: CONNECT TO, CONNECT with no operand,
CONNECT RESET, DISCONNECT, SET CONNECTION, RELEASE,
COMMIT, or ROLLBACK.

v Connectable and unconnected
An application process is not connected to an application server.
CONNECT TO is the only SQL statement that can be executed; otherwise,
an error (SQLSTATE 08003) is raised.
Whether or not implicit connect is available, the application process enters
this state if an error occurs when a CONNECT TO statement is issued, or
an error occurs within a unit of work, causing the loss of a connection and
a rollback. An error that occurs because the application process is not in the
connectable state, or because the server name is not listed in the local
directory, does not cause a transition to this state.
If implicit connect is not available:
– The application process is initially in this state
– The CONNECT RESET and DISCONNECT statements cause a transition

to this state.
v Implicitly connectable (if implicit connect is available).

If implicit connect is available, this is the initial state of an application
process. The CONNECT RESET statement causes a transition to this state.
Issuing a COMMIT or ROLLBACK statement in the unconnectable and
connected state, followed by a DISCONNECT statement in the connectable
and connected state, also results in this state.

Availability of implicit connect is determined by installation options,
environment variables, and authentication settings.

Remote unit of work

Chapter 1. Concepts 31

It is not an error to execute consecutive CONNECT statements, because
CONNECT itself does not remove the application process from the
connectable state. It is, however, an error to execute consecutive CONNECT
RESET statements. It is also an error to execute any SQL statement other than
CONNECT TO, CONNECT RESET, CONNECT with no operand, SET
CONNECTION, RELEASE, COMMIT, or ROLLBACK, and then to execute a
CONNECT TO statement. To avoid this error, a CONNECT RESET,
DISCONNECT (preceded by a COMMIT or ROLLBACK statement),
COMMIT, or ROLLBACK statement should be executed before the CONNECT
TO statement.

Implicitly
Connectable

Connectable
and

Connected

Connectable
and

Unconnected

Unconnectable
and

Connected

Begin process

CONNECT
RESET

CONNECT
RESET

CONNECT TO,
COMMIT,

or ROLLBACK

Failure of
implicit connect

System failure
with rollback

ROLLBACK,
successful COMMIT,

or deadlock

CONNECT TO,
COMMIT, or
ROLLBACK

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

CONNECT TO with system failure

Successful C
ONNECT TO

Figure 6. Connection State Transitions If Implicit Connect Is Available

Remote unit of work

32 SQL Reference, Volume 1

Application-directed distributed unit of work
The application-directed distributed unit of work facility also provides for the
remote preparation and execution of SQL statements. An application process
at computer system A can connect to an application server at computer
system B by issuing a CONNECT or a SET CONNECTION statement. The
application process can then execute any number of static and dynamic SQL
statements that reference objects at B before ending the unit of work. All
objects referenced in a single SQL statement must be managed by the same
application server. However, unlike the remote unit of work facility, any
number of application servers can participate in the same unit of work. A
commit or a rollback operation ends the unit of work.

An application-directed distributed unit of work uses a type 2 connection. A
type 2 connection connects an application process to the identified application
server, and establishes the rules for application-directed distributed units of
work.

Connectable
and

Unconnected

Unconnectable
and

Connected

Connectable
and

Connected

Begin process
CONNECT RESET

CONNECT
RESET

CONNECT
RESET

System failure
with rollback

CONNECT TO,
COMMIT or
ROLLBACK

Successful CONNECT TO

CONNECT TO
with system failure

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

ROLLBACK,
successful COMMIT,

or deadlock

Figure 7. Connection State Transitions If Implicit Connect Is Not Available

Application-directed distributed unit of work

Chapter 1. Concepts 33

A type 2 application process:
v Is always connectable
v Is either in the connected state or in the unconnected state
v Has zero or more connections.

Each connection of an application process is uniquely identified by the
database alias of the application server for the connection.

An individual connection always has one of the following connection states:
v current and held
v current and release-pending
v dormant and held
v dormant and release-pending

A type 2 application process is initially in the unconnected state, and does not
have any connections. A connection is initially in the current and held state.

Application-directed distributed unit of work

34 SQL Reference, Volume 1

Application process connection states
The following rules apply to the execution of a CONNECT statement:
v A context cannot have more than one connection to the same application

server at the same time.
v When an application process executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of
connections for the application process.

v When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect, the specified server name must not be
an existing connection in the set of connections for the application process.
For a description of the SQLRULES option, see “Options that govern
distributed unit of work semantics” on page 37.

Current

Current

Dormant

Dormant

Held
Release-
pending

States of a Connection

States of a Connection

RELEASE

Successful CONNECT or
SET CONNECTION

specifying an
existing dormant connection

Successful CONNECT or
SET CONNECTION

specifying another connection

The current connection is intentionally ended,
or a failure occurs causing the loss

of the connection

Successful CONNECT or
SET CONNECTION

Begin
process

Figure 8. Application-Directed Distributed Unit of Work Connection State Transitions

Application process connection states

Chapter 1. Concepts 35

If an application process has a current connection, the application process is
in the connected state. The CURRENT SERVER special register contains the
name of the application server for the current connection. The application
process can execute SQL statements that refer to objects managed by that
application server.

An application process that is in the unconnected state enters the connected
state when it successfully executes a CONNECT or a SET CONNECTION
statement. If there is no connection, but SQL statements are issued, an implicit
connect is made, provided the DB2DBDFT environment variable has been set
with the name of a default database.

If an application process does not have a current connection, the application
process is in the unconnected state. The only SQL statements that can be
executed are CONNECT, DISCONNECT ALL, DISCONNECT (specifying a
database), SET CONNECTION, RELEASE, COMMIT, or ROLLBACK.

An application process in the connected state enters the unconnected state when
its current connection intentionally ends, or when an SQL statement fails,
causing a rollback operation at the application server and loss of the
connection. Connections end intentionally following the successful execution
of a DISCONNECT statement, or a COMMIT statement when the connection
is in release-pending state. (If the DISCONNECT precompiler option is set to
AUTOMATIC, all connections end. If it is set to CONDITIONAL, all
connections that do not have open WITH HOLD cursors end.)

Connection states
If an application process executes a CONNECT statement, and the server
name is known to the application requester but is not in the set of existing
connections for the application process:
v The current connection is placed into the dormant connection state, and
v The server name is added to the set of connections, and
v The new connection is placed into both the current connection state and the

held connection state.

If the server name is already in the set of existing connections for the
application process, and the application is precompiled with the
SQLRULES(STD) option, an error (SQLSTATE 08002) is raised.

Held and release-pending states. The RELEASE statement controls whether a
connection is in the held or the release-pending state. The release-pending state
means that a disconnect is to occur at the next successful commit operation.
(A rollback has no effect on connections.) The held state means that a
disconnect is not to occur at the next commit operation.

Application process connection states

36 SQL Reference, Volume 1

All connections are initially in the held state and can be moved to the
release-pending state using the RELEASE statement. Once in the
release-pending state, a connection cannot be moved back to the held state. A
connection remains in release-pending state across unit of work boundaries if
a ROLLBACK statement is issued, or if an unsuccessful commit operation
results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be
disconnected by a commit operation if the commit operation satisfies the
conditions of the DISCONNECT precompiler option.

Current® and dormant states. Regardless of whether a connection is in the
held state or the release-pending state, it can also be in the current state or the
dormant state. A connection in the current state is the connection being used
to execute SQL statements while in this state. A connection in the dormant
state is a connection that is not current.

The only SQL statements that can flow on a dormant connection are
COMMIT, ROLLBACK, DISCONNECT, or RELEASE. The SET CONNECTION
and CONNECT statements change the connection state of the specified server
to current, and any existing connections are placed or remain in dormant
state. At any point in time, only one connection can be in current state. If a
dormant connection becomes current in the same unit of work, the state of all
locks, cursors, and prepared statements is the same as the state they were in
the last time that the connection was current.

When a connection ends
When a connection ends, all resources that were acquired by the application
process through the connection, and all resources that were used to create and
maintain the connection are de-allocated. For example, if the application
process executes a RELEASE statement, any open cursors are closed when the
connection ends during the next commit operation.

A connection can also end because of a communications failure. If this
connection is in current state, the application process is placed in unconnected
state.

All connections for an application process end when the process ends.

Options that govern distributed unit of work semantics
The semantics of type 2 connection management are determined by a set of
precompiler options. These options are summarized below with default values
indicated by bold and underlined text.
v CONNECT (1 | 2). Specifies whether CONNECT statements are to be

processed as type 1 or type 2.

Connection states

Chapter 1. Concepts 37

v SQLRULES (DB2 | STD). Specifies whether type 2 CONNECTs are to be
processed according to the DB2 rules, which allow CONNECT to switch to
a dormant connection, or the SQL92 Standard rules, which do not allow
this.

v DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC). Specifies
what database connections are to be disconnected when a commit operation
occurs:
– Those that have been explicitly marked for release by the SQL RELEASE

statement (EXPLICIT)
– Those that have no open WITH HOLD cursors, and those that are

marked for release (CONDITIONAL)
– All connections (AUTOMATIC).

v SYNCPOINT (ONEPHASE | TWOPHASE | NONE). Specifies how
COMMITs or ROLLBACKs are to be coordinated among multiple database
connections:
– Updates can only occur against one database in the unit of work, and all

other databases are read-only (ONEPHASE). Any update attempts to
other databases raise an error (SQLSTATE 25000).

– A transaction manager (TM) is used at run time to coordinate two-phase
COMMITs among those databases that support this protocol
(TWOPHASE).

– Does not use a TM to perform two-phase COMMITs, and does not
enforce single updater, multiple reader (NONE). When a COMMIT or a
ROLLBACK statement is executed, individual COMMITs or ROLLBACKs
are posted to all databases. If one or more ROLLBACKs fail, an error
(SQLSTATE 58005) is raised. If one or more COMMITs fail, another error
(SQLSTATE 40003) is raised.

To override any of the above options at run time, use the SET CLIENT
command or the sqlesetc application programming interface (API). Their
current settings can be obtained using the QUERY CLIENT command or the
sqleqryc API. Note that these are not SQL statements; they are APIs defined in
the various host languages and in the command line processor (CLP).

Data representation considerations
Different systems represent data in different ways. When data is moved from
one system to another, data conversion must sometimes be performed.
Products supporting DRDA® automatically perform any necessary
conversions at the receiving system. To perform conversions of numeric data,
the system needs to know the data type and how it is represented by the
sending system. Additional information is needed to convert character strings.
String conversion depends on both the code page of the data and the
operation that is to be performed on that data. Character conversions are
performed in accordance with the IBM® Character Data Representation

Options that govern distributed unit of work semantics

38 SQL Reference, Volume 1

Architecture (CDRA). For more information about character conversion, see
the Character Data Representation Architecture: Reference & Registry
(SC09-2190-00) manual.

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

DB2 federated systems

Federated systems

A DB2® federated system is a special type of distributed database management
system (DBMS). A federated system consists of a DB2 instance that operates
as a federated server, a database that acts as the federated database, one or
more data sources, and clients (users and applications) that access the
database and data sources. With a federated system you can send distributed
requests to multiple data sources within a single SQL statement. For example,
you can join data that is located in a DB2 Universal Database™ table, an
Oracle table, and a Sybase view in a single SQL statement.

Data representation considerations

Chapter 1. Concepts 39

The power of a DB2 federated system is in its ability to:
v Join data from local tables and remote data sources, as if all the data is

local.
v Take advantage of the data source processing strengths, by sending

distributed requests to the data sources for processing.
v Compensate for SQL limitations at the data source by processing parts of a

distributed request at the federated server.

The DB2 server in a federated system is referred to as the federated server. Any
number of DB2 instances can be configured to function as federated servers.
You can use existing DB2 instances as your federated server, or you can create
new ones specifically for the federated system.

The DB2 federated instance that manages the federated system is called a
server because responds to requests from end users and client applications.
The federated server often sends parts of the requests it receives to the data
sources for processing. A pushdown operation is an operation that is processed

Figure 9. The components of a federated system and the supported data sources

DB2 federated systems

40 SQL Reference, Volume 1

remotely. The federated instance is referred to as the federated server, even
though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager
instance to which application processes connect and submit requests.
However, two main features distinguish it from other application servers:
v A federated server is configured to receive requests that might be partially

or entirely intended for data sources. The federated server distributes these
requests to the data sources.

v Like other application servers, a federated server uses DRDA®

communication protocols (such as SNA and TCP/IP) to communicate with
DB2 family instances. However, unlike other application servers, a
federated server uses other protocols to communicate with non-DB2 family
instances.

Related concepts:

v “Data sources” on page 41
v “The federated database” on page 43
v “The SQL Compiler and the query optimizer” on page 44
v “Compensation” on page 45
v “Pushdown analysis” in the Federated Systems Guide

Data sources

Typically, a federated system data source is a relational DBMS instance (such as
Oracle or Sybase) and one or more databases that are supported by the
instance. However, there are other types of data sources (such as life sciences
data sources and search algorithms) that you can include in your federated
system:
v Spreadsheets, such as Microsoft® Excel.
v Search algorithms, such as BLAST.
v Table-structured files. These type of files have a regular structure that

consists of a series of records. Each record contains the same number of
fields that are separated by an arbitrary delimiter. Two sequential delimiters
represent null values.

v Documentum document management software that includes a repository to
store document content, attributes, relationships, versions, renditions,
formats, workflow, and security.

v XML tagged files.

In DB2® Universal Database for UNIX® and Windows, the supported data
sources are:

DB2 federated systems

Chapter 1. Concepts 41

Table 1. Supported data source versions and access methods.

Data source Supported data
source versions

Access method Notes

DB2 Universal
Database™ for UNIX
and Windows®

6.1, 7.1, 7.2, 8.1 DRDA® Directly integrated
in DB2 Version 8

DB2 Universal
Database for z/OS™

and OS/390®

5 with PTF PQ07537
(or later)

DRDA Directly integrated
in DB2 Version 8

DB2 Universal
Database for
iSeries™

4.2 (or later) DRDA Directly integrated
in DB2 Version 8

DB2 Server for VM
and VSE

3.3 (or later) DRDA Directly integrated
in DB2 Version 8

Informix™ 7, 8, 9 Informix Client SDK Directly integrated
in DB2 Version 8

ODBC ODBC 3.0 driver. Requires DB2
Relational Connect

OLE DB OLE DB 2.0 (or
later)

Directly integrated
in DB2 Version 8

Oracle 7.x, 8.x, 9.x SQL*Net or Net8
client software

Requires DB2
Relational Connect

Microsoft SQL
Server

6.5, 7.0, 2000 On Windows the
Microsoft SQL
Server Client ODBC
3.0 (or higher)
driver. On UNIX the
Data Direct
Technologies
(formerly MERANT)
Connect ODBC 3.6
driver.

Requires DB2
Relational Connect

Sybase 10.0, 11.0, 11.1, 11.5,
11.9, 12.0

Sybase Open Client Requires DB2
Relational Connect

BLAST 2.1.2 BLAST daemon
(supplied with the
wrapper)

Requires DB2 Life
Sciences Data
Connect

Documentum Documentum
server: EDMS 98
(also referred to as
version 3) and 4i.

Documentum Client
API/Library

Requires DB2 Life
Sciences Data
Connect

DB2 federated systems

42 SQL Reference, Volume 1

Table 1. Supported data source versions and access methods. (continued)

Data source Supported data
source versions

Access method Notes

Microsoft Excel 97, 2000 none Requires DB2 Life
Sciences Data
Connect

table-structured files none Requires DB2 Life
Sciences Data
Connect

XML 1.0 specification none Requires DB2 Life
Sciences Data
Connect

Data sources are semi-autonomous. For example, the federated server can
send queries to Oracle data sources at the same time that Oracle applications
can access these data sources. A DB2 federated system does not monopolize
or restrict access to the other data sources, beyond integrity and locking
constraints.

The federated database

To end users and client applications, data sources appear as a single collective
database in DB2. Users and applications interface with the federated database
managed by the federated server. The federated database contains catalog
entries that identify data sources and their characteristics. The federated
server consults the information stored in the federated database system
catalog and the data source wrapper to determine the best plan for processing
SQL statements.

The federated database system catalog contains information about the objects
in the federated database and information about objects at the data sources.
The catalog in a federated database is called the global catalog because it
contains information about the entire federated system. DB2® query optimizer
uses the information in the global catalog and the data source wrapper to
plan the best way to process SQL statements. The information stored in the
global catalog includes remote and local information, such as column names,
column data types, column default values and index information.

Remote catalog information is the information or name used by the data
source. Local catalog information is the information or name used by the
federated database. For example, suppose a remote table includes a column
with the name of EMPNO. The global catalog would store the remote column
name as EMPNO. Unless you designate a different name, the local column
name will be stored as EMPNO. You can change the local column name to
Employee_Number. Users submitting queries which include this column will

DB2 federated systems

Chapter 1. Concepts 43

use Employee_Number in their queries instead of EMPNO. You use column
options to change the local name of data source column.

For relational data sources, the information stored in the global catalog
includes both remote and local information. For non-relational data sources,
the information stored in the global catalog varies from data source to data
source.

To see the data source table information that is stored in the global catalog,
query the federated SYSCAT.TABLES, SYSCAT.TABOPTIONS,
SYSCAT.COLUMNS, and SYSCAT.COLOPTIONS catalog views.

The federated system processes SQL statements as if the data sources were
ordinary relational tables or views within the federated database. This enables
the federated system to join relational data with data in non-relational
formats. This is true even when the data sources use different SQL dialects, or
do not support SQL at all.

The global catalog also includes other information about the data sources. For
example, it includes information the federated server uses to connect to the
data source and map the federated user authorizations to the data source user
authorizations.

Related concepts:

v “Federated systems” on page 39
v “The SQL Compiler and the query optimizer” on page 44
v “Tuning query processing” in the Federated Systems Guide

Related reference:

v “Views in the global catalog table containing federated information” in the
Federated Systems Guide

The SQL Compiler and the query optimizer

To obtain data from data sources, users and applications submit queries in
DB2® SQL to the federated database. When a query is submitted, the DB2
SQL Compiler consults information in the global catalog and the data source
wrapper to help it process the query. This includes information about
connecting to the data source, server attributes, mappings, index information,
and processing statistics.

As part of the SQL Compiler process, the query optimizer analyzes a query. The
Compiler develops alternative strategies, called access plans, for processing the
query. Access plans might call for the query to be:
v Processed by the data sources.

DB2 federated systems

44 SQL Reference, Volume 1

v Processed by the federated server.
v Processed partly by the data sources and partly by the federated server.

DB2 evaluates the access plans primarily on the basis of information about the
data source capabilities and the data. The wrapper and the global catalog
contain this information. DB2 decomposes the query into segments that are
called query fragments. Typically it is more efficient to pushdown a query
fragment to a data source, if the data source can process the fragment.
However, the query optimizer takes into account other factors such as:
v The amount of data that needs to be processed.
v The processing speed of the data source.
v The amount of data that the fragment will return.
v The communication bandwidth.

The query optimizer generates local and remote access plans for processing a
query fragment, based on resource cost. DB2 then chooses the plan it believes
will process the query with the least resource cost.

If any of the fragments are to be processed by data sources, DB2 submits
these fragments to the data sources. After the data sources process the
fragments, the results are retrieved and returned to DB2. If DB2 performed
any part of the processing, it combines its results with the results retrieved
from the data source. DB2 then returns all results to the client.

Related concepts:

v “Tuning query processing” in the Federated Systems Guide

v “Pushdown analysis” in the Federated Systems Guide

Related tasks:

v “Global optimization” in the Federated Systems Guide

Compensation

The DB2® federated server does not push down a query fragment if the data
source cannot process it, or if the federated server can process it faster than
the data source can process it. For example, suppose that the SQL dialect of a
data source does not support a CUBE grouping in the GROUP BY clause. A
query that contains a CUBE grouping and references a table in that data
source is submitted to the federated server. DB2 does not pushdown the
CUBE grouping to the data source, but processes the CUBE itself. The ability
by DB2 to process SQL that is not supported by a data source is called
compensation.

DB2 federated systems

Chapter 1. Concepts 45

The federated server compensates for lack of functionality at the data source
in two ways:
v It can ask the data source to use one or more operations that are equivalent

to the DB2 function stated in the query. Suppose a data source does not
support the cotangent (COT(x)) function, but supports the tangent (TAN(x))
function. DB2 can ask the data source to perform the calculation
(1/TAN(x)), which is equivalent to the cotangent (COT(x)) function.

v It can return the set of data to the federated server, and perform the
function locally.

Each type of RDBMS supports a subset of the international SQL standard. In
addition, some types of RDBMSs support SQL constructs that exceed this
standard. An SQL dialect, is the totality of SQL that a type of RDBMS
supports. If an SQL construct is found in the DB2 SQL dialect, but not in a
data source dialect, the federated server can implement this construct on
behalf of the data source.

The following examples show the ability of DB2 to compensate for differences
in SQL dialects:
v DB2 SQL includes the clause, common-table-expression. In this clause, a

name can be specified by which all FROM clauses in a fullselect can
reference a result set. The federated server will process a
common-table-expression for a data source, even though the SQL dialect
used by the data source does not include common-table-expression.

v When connecting to a data source that does not support multiple open
cursors within an application, the federated server can simulate this
function. The federated server does this by establishing separate,
simultaneous connections to the data source. Similarly, the federated server
can simulate CURSOR WITH HOLD capability for a data source that does
not provide that function.

With compensation, the federated server can support the full DB2 SQL dialect
for queries against data sources. Even data sources with weak SQL support or
no SQL support. You must use the DB2 SQL dialect with a federated system,
except in a pass-through session.

Related concepts:

v “The SQL Compiler and the query optimizer” on page 44
v “Pass-through sessions” on page 46
v “Function mappings and function templates” on page 56

Pass-through sessions

You can submit SQL statements directly to data sources by using a special
mode called pass-through. You submit SQL statements in the SQL dialect used

DB2 federated systems

46 SQL Reference, Volume 1

by the data source. Use a pass-through session when you want to perform an
operation that is not possible with the DB2® SQL/API. For example, use a
pass-through session to create a procedure, create an index, or perform
queries in the native dialect of the data source.

Note: Currently, the data sources that support pass-through, support
pass-through using SQL. In the future, it is possible that data sources will
support pass-though using a data source language other than SQL.

Similarly, you can use a pass-through session to perform actions that are not
supported by SQL, such as certain administrative tasks. However, you cannot
use a pass-through session to perform all administrative tasks. For example,
you can create or drop tables at the data source, but you cannot start or stop
the remote database.

You can use both static and dynamic SQL in a pass-through session.

The federated server provides the following SQL statements to manage
pass-through sessions:

SET PASSTHRU
Opens a pass-through session. When you issue another SET
PASSTHRU statement to start a new pass-through session, the current
pass-through session is terminated.

SET PASSTHRU RESET
Terminates the current pass-through session.

GRANT (Server Privileges)
Grants a user, group, list of authorization IDs, or PUBLIC the
authority to initiate pass-through sessions to a specific data source.

REVOKE (Server Privileges)
Revokes the authority to initiate pass-through sessions.

The following restrictions apply to pass-through sessions:
v You must use the SQL dialect or language commands of the data source —

you cannot use the DB2 SQL dialect. As a result, you do not query a
nickname, but the data source objects directly.

v When performing UPDATE or DELETE operations in a pass-through
session, you cannot use the WHERE CURRENT OF CURSOR condition.

Related concepts:

v “How client applications interact with data sources” in the Federated Systems
Guide

v “Using pass-through to query data sources directly” in the Federated Systems
Guide

DB2 federated systems

Chapter 1. Concepts 47

Related tasks:

v “Using pass-through with Oracle data sources” in the Federated Systems
Guide

v “Working with nicknames” in the Federated Systems Guide

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated server interacts with data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data
from it iteratively. Typically, the DB2® federated instance owner uses the
CREATE WRAPPER statement to register a wrapper in the federated system.

You create one wrapper for each type of data source that you want to access.
For example, suppose that you want to access three DB2 for z/OS™ database
tables, one DB2 for iSeries™ table, two Informix™ tables, and one Informix
view. You need to create only two wrappers: one for the DB2 data source
objects and one for the Informix data source objects. Once these wrappers are
registered in the federated database, you can use these wrappers to access
other objects from those data sources. For example, you can use the DRDA®

wrapper with all DB2 family data source objects—DB2 for UNIX® and
Windows, DB2 for z/OS and OS/390, DB2 for iSeries, and DB2 Server for VM
and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

There are wrappers for each supported data source. Some wrappers have
default wrapper names. When you use the default name to create the
wrapper, the federated server automatically picks up the data source library
associated with the wrapper.

Table 2. Default wrapper names for each data source.

Data source Default wrapper name(s)

DB2 Universal Database™ for UNIX and
Windows®

DRDA

DB2 Universal Database for z/OS and
OS/390®

DRDA

DB2 Universal Database for iSeries DRDA

DB2 Server for VM and VSE DRDA

Informix INFORMIX

Oracle SQLNet or Net8

DB2 federated systems

48 SQL Reference, Volume 1

Table 2. Default wrapper names for each data source. (continued)

Data source Default wrapper name(s)

Microsoft® SQL Server DJXMSSQL3, MSSQLODBC3

ODBC none

OLE DB OLEDB

Sybase CTLIB, DBLIB

BLAST none

Documentum none

Microsoft Excel none

Table-structured files none

XML none

A wrapper performs many tasks. Some of these tasks are:
v It connects to the data source. The wrapper uses the standard connection

API of the data source.
v It submits queries to the data source.

For data sources that do not support SQL, one of two actions will occur:
– For data sources that support SQL, the query is submitted in SQL.
– For data sources that do not support SQL, the query is translated into

the native query language of the source or into a series of source API
calls.

v It receives results sets from the data source. The wrapper uses the data
source standard APIs for receiving results set.

v It responds to federated server queries about the default data type
mappings for a data source. The wrapper contains the default type
mappings that are used when nicknames are created for a data source
object. Data type mappings you create override the default data type
mappings. User-defined data type mappings are stored in the global
catalog.

v It responds to federated server queries about the default function mappings
for a data source. The wrapper contains information the federated server
needs to determine if DB2 functions are mapped to functions of the data
source, and how the functions are mapped. This information is used by the
SQL Compiler to determine if the data source is able to perform the query
operations. Function mappings you create override the default function
type mappings. User-defined function mappings are stored in the global
catalog.

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper. Currently there is only one wrapper option, DB2_FENCED. The

DB2 federated systems

Chapter 1. Concepts 49

DB2_FENCED wrapper option indicates if the wrapper is fenced or trusted by
DB2. A fenced wrapper operates under some restrictions.

Related concepts:

v “Create the wrapper” in the Federated Systems Guide

v “Fast track to configuring your data sources” in the Federated Systems Guide

Related reference:

v “Wrapper options for federated systems” on page 774

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner
defines the data sources to the federated database. The instance owner
supplies a name to identify the data source, and other information that
pertains to the data source. If the data source is an RDBMS, this information
includes:
v The type and version of the RDBMS.
v The database name for the data source on the RDBMS.
v Metadata that is specific to the RDBMS

For example, a DB2® family data source can have multiple databases. The
definition must specify which database the federated server can connect to. In
contrast, an Oracle data source has one database, and the federated server can
connect to the database without knowing its name. The database name is not
included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the
federated server are collectively called a server definition. Data sources answer
requests for data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and
modify a server definition.

Some of the information within a server definition is stored as server options.
When you create server definitions, it is important to understand the options
that you can specify about the server. Some server options configure the
wrapper and some affect the way DB2 uses the wrapper. Server options are
specified as parameters in the CREATE SERVER and ALTER SERVER
statements.

Server options are set to values that persist over successive connections to the
data source. These values are stored in the global catalog. For example, the
name for the data source on the RDBMS is set in the NODE server option.

DB2 federated systems

50 SQL Reference, Volume 1

Some data sources have multiple databases on each instance. For these data
source, the name of the database which the federated server connects to is set
in the DBNAME server option.

To set a server option value temporarily, use the SET SERVER OPTION
statement, This statement overrides the value for the duration of a single
connection to the federated database. The overriding value does not get stored
in the global catalog.

Related concepts:

v “Supply the server definition” in the Federated Systems Guide

Related reference:

v “Server options for federated systems” on page 764

User mappings and user options

When a federated server needs to pushdown a request to a data source, the
server must first establish a connection to the data source. The server does
this by using a valid user ID and password to that data source. By default, the
federated server attempts to access the data source with the user ID and
password that are used to connect to DB2. If the user ID and password are
the same between the federated server and the data source, the connection is
established. If the user ID and password to access the federated server differs
from the user ID and password to access a data source, you must define an
association between the two authorizations. Once you define the association,
distributed requests can be sent to the data source. This association is called a
user mapping.

You define and modify user mappings with the CREATE USER MAPPING
and ALTER USER MAPPING statements. These statements include
parameters, called user options, which values related to authorization are
assigned to. For example, suppose that a user has the same ID, but different
passwords, for the federated database and a data source. For the user to
access the data source, it is necessary to map the passwords to one another.
You use the CREATE USER MAPPING statement and the user option
REMOTE_PASSWORD to map the passwords. Use the ALTER USER
MAPPING statement to modify an existing user mapping.

Related concepts:

v “Create the user mappings and test the connection to the data source” in
the Federated Systems Guide

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

DB2 federated systems

Chapter 1. Concepts 51

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Nicknames and data source objects

After you create the server definitions and user mappings, the federated
instance owner creates the nicknames. A nickname is an identifier that is used
to reference the object located at the data sources that you want to access. The
objects that nicknames identify are referred to as data source objects.

The following table shows the data source objects you can reference when you
create a nickname.

Table 3. Data sources and the objects that you can create a nickname for

Data source Objects you can reference

DB2® for UNIX® and Windows® nicknames, summary tables, tables, views

DB2 for z/OS™ and OS/390® tables, views

DB2 for iSeries™ tables, views

DB2 Server for VM and VSE tables, views

Informix™ tables, views, synonyms

Microsoft® SQL Server tables, views

ODBC tables, views

Oracle tables, views

Sybase tables, views

BLAST FASTA files indexed for BLAST search
algorithms

document management software objects and registered tables in a
Documentum Docbase

Microsoft Excel .xls files (only the first sheet in the
workbook is accessed)

table-structured files .txt files (text files that meet a very specific
format)

XML-tagged files sets of items in an XML document

Nicknames are not alternative names for data source objects in the same way
that aliases are alternative names. They are pointers by which the federated
server references these objects. Nicknames are typically defined with the
CREATE NICKNAME statement.

When an end user or a client application submits a distributed request to the
federated server, the request does not need to specify the data sources.
Instead, it references the data source objects by their nicknames. The

DB2 federated systems

52 SQL Reference, Volume 1

nicknames are mapped to specific objects at the data source. The mappings
eliminate the need to qualify the nicknames by data source names. The
location of the data source objects is transparent to the end user or the client
application.

Suppose if you define the nickname DEPT to represent an Informix database
table called NFX1.PERSON.DEPT. The statement SELECT * FROM DEPT is
allowed from the federated server. However, the statement SELECT * FROM
NFX1.PERSON.DEPT is not allowed from the federated server (except in a
pass-through session).

When you create a nickname for a data source object, metadata about the
object is added to the global catalog. The query optimizer uses this metadata,
and the information in the wrapper, to facilitate access to the data source
object. For example, if the nickname is for a table that has an index, the global
catalog contains information about the index. The wrapper contains the
mappings between the DB2 data types and the data source data types.

Currently, you cannot execute DB2 utility operations (LOAD, REORG,
REORGCHK, IMPORT, RUNSTATS, and so on) on nicknames.

Related concepts:

v “Create nicknames for each data source object” in the Federated Systems
Guide

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Column options

You can supply the global catalog with additional metadata information about
the nicknamed object. This metadata describes values in certain columns of
the data source object. You assign this metadata to parameters that are called
column options. The column options tell the wrapper to handle the data in a
column differently than it normally would handle it. Column options are used
to provide other information to the wrapper as well. For example for XML
data sources, a column option is used to tell the wrapper the XPath
expression to use when the wrapper parses the column out of the XML
document. The SQL Complier and query optimizer use the metadata to
develop better plans for accessing the data.

DB2® treats the object that a nickname references as if it is a table. As a result,
you can set column options for any data source object that you create a
nickname for. Some column options are designed for specific types of data
sources and can only be applied to those data sources.

DB2 federated systems

Chapter 1. Concepts 53

Suppose that a data source has a collating sequence that differs from the
federated database collating sequence. The federated server typically would
not sort any columns containing character data at the data source. It would
return the data to the federated database and perform the sort locally.
However, suppose that the column is a character data type (CHAR and
VARCHAR) and contains only numeric characters (’0’,’1’,...,’9’). You can
indicate this by assigning a value of ’Y’ to the NUMERIC_STRING column
option. This gives the DB2 query optimizer the option of performing the sort
at the data source. If the sort is performed remotely, you can avoid the
overhead of porting the data to the federated server and performing the sort
locally.

You can define column options in the CREATE NICKNAME and ALTER
NICKNAME statements.

Related tasks:

v “Working with nicknames” in the Federated Systems Guide

Related reference:

v “Column options for federated systems” on page 762

Data type mappings

The data types at the data source must map to corresponding DB2® data
types so that the federated server can retrieve data from data sources. For
most data sources, the default type mappings are in the wrappers. The default
type mappings for DB2 data sources are in the DRDA® wrapper. The default
type mappings for Informix™ are in the INFORMIX wrapper, and so forth.

For some non-relational data sources, you must specify data type information
in the CREATE NICKNAME statement.

The corresponding DB2 for UNIX® and Windows® data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object.

For example:
v The Oracle type FLOAT maps by default to the DB2 type DOUBLE.
v The Oracle type DATE maps to the DB2 type DB2 TIMESTAMP.
v The DB2 for z/OS™ type DATE maps by default to the DB2 type DATE.

When values from a data source column are returned to the federated
database, the values conform fully to the DB2 data type that the data source
column is mapped to. If this is a default mapping, the values also conform

DB2 federated systems

54 SQL Reference, Volume 1

fully to the data source type in the mapping. For example, suppose an Oracle
table with a FLOAT column is defined to the federated database. The default
mapping of Oracle FLOAT to DB2 DOUBLE automatically applies to that
column. Consequently, the values that are returned from the column will
conform fully to both FLOAT and DOUBLE.

For some wrappers, you can change the format or length of values that are
returned. You do this by changing the DB2 data type that the values must
conform to. For example, the Oracle data type DATE is used as a time stamp;
the Oracle DATE data type contains century, year, month, day, hour, minute,
and second. By default, the Oracle DATE data type maps to the DB2
TIMESTAMP data type. Suppose that several Oracle table columns have a
data type of DATE. You want queries of these columns to return only the
hour, minute, and second. You can override the default data type mapping so
that the Oracle DATE data type maps to the DB2 TIME data type. When
Oracle DATE columns are queried, only the time portion of the time stamp
values is returned to DB2.

Use the CREATE TYPE MAPPING statement to create:
v A data type mapping that overrides a default data type mapping
v A data type mapping for which there currently is no mapping. For

example, when a new built-in type is available at the data source, or when
there is a user-defined type at the data source that you want to map to.

In the CREATE TYPE MAPPING statement, you can specify if the mapping
applies each time that you access that data source, or if the mapping applies
to a specific server.

Use the ALTER TYPE MAPPING statement to change a type mapping that
you originally created with the CREATE TYPE MAPPING statement. The
ALTER TYPE MAPPING statement cannot be used to change the default type
mappings.

To modify a data type mapping for a specific column of a specific data source
object, use the column option parameters in the ALTER NICKNAME
statement. This statement enables you to specify data type mappings for
individual tables, views, or other data source objects.

If you change a type mapping, nicknames created before the type mapping
change do not reflect the new mapping.

Unsupported data types:

DB2 federated servers do not support:
v LONG VARCHAR

DB2 federated systems

Chapter 1. Concepts 55

v LONG VARGRAPHIC
v DATALINK
v User-defined data types (UDTs) created at the data source

You cannot create a user-defined mapping for these data types. However, you
create a nickname for view at the data source that is identical to the table that
contains the user-defined data types. The view must ’cast’ the user-defined
type column to the built-in, or system, type.

A nickname can be created for a remote table that contains LONG VARCHAR
columns. However, the results will be mapped to a local DB2 data type that is
not LONG VARCHAR.

Related concepts:

v “Modifying wrappers” in the Federated Systems Guide

Related tasks:

v “Modifying default data type mappings” in the Federated Systems Guide

Related reference:

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v “Default forward data type mappings” on page 775

Function mappings and function templates

For the federated server to recognize a data source function, the function must
be mapped against an existing DB2® function. DB2 supplies default mappings
between existing built-in data source functions and built-in DB2 functions. For
most data sources, the default function mappings are in the wrappers. The
default function mappings from DB2 for UNIX® and Windows® functions to
DB2 for z/OS™ functions are in the DRDA® wrapper. The default function
mappings from DB2 for UNIX and Windows functions to Sybase functions are
in the CTLIB and DBLIB wrappers, and so forth.

To use a data source function that the federated server does not recognize,
you must create a function mapping. The mapping you create is between the
data source function and a counterpart function at the federated database.
Function mappings are typically used when a new built-in function and a
new user-defined function becomes available at the data source. Function
mappings are also used when a DB2 counterpart function does not exist, you
must create one on the DB2 federated server that meets the following
requirements:
v If the data source function has input parameters:

DB2 federated systems

56 SQL Reference, Volume 1

– The DB2 counterpart function must have the same number of input
parameters that the data source function has.

– The data types of the input parameters for the DB2 counterpart function
must be compatible with the corresponding data types of the input
parameters for data source function.

v If the data source function has no input parameters:
– The DB2 counterpart function cannot have any input parameters.

Note: When you create a function mapping, it is possible that the return
values from a function evaluated at the data source will be different than the
return values from a compatible function evaluated at the DB2 federated
database. DB2 will use the function mapping, but it might result in an SQL
syntax error or unexpected results.

The DB2 counterpart function can be either a complete function or a function
template.

A function template is a DB2 function that you create to invoke a function on a
data source. The federated server recognizes a data source function when
there is a mapping between the data source function and a counterpart
function at the federated database. You can create a function template to act as
the counterpart when no counterpart exists.

However, unlike a regular function, a function template has no executable
code. After you create a function template, you must then create the function
mapping between the template and the data source function. You creat a
function template with the CREATE FUNCTION statement, using the AS
TEMPLATE parameter. You create a function mapping by using the CREATE
FUNCTION MAPPING statement. When the federated server receives queries
which specify the function template, the federated server will invoke the data
source function.

Related concepts:

v “Function mappings options” on page 57

Related reference:

v “Function mapping options for federated systems” on page 763

Function mappings options

The CREATE FUNCTION MAPPING statement includes parameters called
function mapping options. You can assign values that pertain to the mapping, or
to the data source function within the mapping. For example, you can include
estimated statistics on the overhead that will be consumed when the data

DB2 federated systems

Chapter 1. Concepts 57

source function is invoked. The query optimizer uses these estimates to decide
if the function should be invoked by the data source or by the DB2® federated
database.

Related reference:

v “Function mapping options for federated systems” on page 763

Index specifications

When you create a nickname for a data source table, information about any
indexes that the data source table has is added to the global catalog. The
query optimizer uses this information to expedite the processing of
distributed requests. The catalog information about a data source index is a
set of metadata, and is called an index specification. A federated server does not
create an index specification when you create a nickname for:
v A table that has no indexes.
v A view, which typically does not have any index information stored in the

remote catalog.
v A data source object that does not have a remote catalog from which the

federated server can obtain the index information.

Note: You cannot create an index specification for an Informix™ view.

Suppose that a nickname is created for a table that has no index, but the table
acquires an index later. Suppose that a table acquires a new index, in addition
to the ones it had when the nickname was created. Because index information
is supplied to the global catalog at the time the nickname is created, the
federated server is unaware of the new indexes. Similarly, when a nickname is
created for a view, the federated server is unaware of the underlying table
(and its indexes) from which the view was generated. In these circumstances,
you can supply the necessary index information to the global catalog. You can
create an index specification for tables that have no indexes. The index
specification tells the query optimizer which column or columns in the table
to search on to find data quickly.

In a federated system, you use the CREATE INDEX statement against a
nickname to supply index specification information to the global catalog. If a
table acquires a new index, the CREATE INDEX statement that you create will
reference the nickname for the table and contain information about the index
of the data source table. If a nickname is created for a view, the CREATE
INDEX statement that you create will reference the nickname for the view and
contain information about the index of the underlying table for the view.

Related concepts:

v “The SQL Compiler and the query optimizer” on page 44

DB2 federated systems

58 SQL Reference, Volume 1

v “Overview of the tasks to set up a federated system” in the Federated
Systems Guide

v “Modifying wrappers” in the Federated Systems Guide

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

DB2 federated systems

Chapter 1. Concepts 59

DB2 federated systems

60 SQL Reference, Volume 1

Chapter 2. Language elements

This chapter describes the language elements that are common to many SQL
statements:
v “Characters”
v “Tokens” on page 63
v “Identifiers” on page 65
v “Data types” on page 92
v “Constants” on page 143
v “Special registers” on page 146
v “Functions” on page 168
v “Methods” on page 178
v “Expressions” on page 187
v “Predicates” on page 225

Characters

The basic symbols of keywords and operators in the SQL language are
single-byte characters that are part of all IBM character sets. Characters of the
language are classified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through
z) letters plus the three characters ($, #, and @), which are included for
compatibility with host database products (for example, in code page 850, $ is
at X'24', # is at X'23', and @ is at X'40'). Letters also include the alphabetics
from the extended character sets. Extended character sets contain additional
alphabetic characters; for example, those with diacritical marks (u is an
example of a diacritical mark). The available characters depend on the code
page in use.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

blank − minus sign
" double quotation

mark
. period

% percent / slash
& ampersand : colon

© Copyright IBM Corp. 1993 - 2002 61

' apostrophe or single
quotation mark

; semicolon

(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
, comma _ underline or

underscore
| vertical bar ^ caret
! exclamation mark

All multi-byte characters are treated as letters, except for the double-byte
blank, which is a special character.

Characters

62 SQL Reference, Volume 1

Tokens

Tokens are the basic syntactical units of SQL. A token is a sequence of one or
more characters. A token cannot contain blank characters, unless it is a string
constant or a delimited identifier, which may contain blanks.

Tokens are classified as ordinary or delimiter:
v An ordinary token is a numeric constant, an ordinary identifier, a host

identifier, or a keyword.
Examples

1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams. A
question mark is also a delimiter token when it serves as a parameter
marker.
Examples

, ’string’ "fld1" = .

Spaces: A space is a sequence of one or more blank characters. Tokens other
than string constants and delimited identifiers must not include a space. Any
token may be followed by a space. Every ordinary token must be followed by
a space or a delimiter token if allowed by the syntax.

Comments: Static SQL statements may include host language comments or
SQL comments. Either type of comment may be specified wherever a space
may be specified, except within a delimiter token or between the keywords
EXEC and SQL. SQL comments are introduced by two consecutive hyphens
(--) and ended by the end of the line.

Case sensitivity: Any token may include lowercase letters, but a lowercase
letter in an ordinary token is folded to uppercase, except for host variables in
the C language, which has case-sensitive identifiers. Delimiter tokens are
never folded to uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = ’Smith’;

is equivalent, after folding, to:
SELECT * FROM EMPLOYEE WHERE LASTNAME = ’Smith’;

Multi-byte alphabetic letters are not folded to uppercase. Single-byte
characters (a to z) are folded to uppercase.

Related reference:

v “How SQL statements are invoked” in the SQL Reference, Volume 2

Tokens

Chapter 2. Language elements 63

v “PREPARE statement” in the SQL Reference, Volume 2

Tokens

64 SQL Reference, Volume 1

Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL
statement is either an SQL identifier or a host identifier.
v SQL identifiers

There are two types of SQL identifiers: ordinary and delimited.
– An ordinary identifier is a letter followed by zero or more characters, each

of which is an uppercase letter, a digit, or the underscore character. An
ordinary identifier should not be identical to a reserved word.
Examples

WKLYSAL WKLY_SAL

– A delimited identifier is a sequence of one or more characters enclosed by
double quotation marks. Two consecutive quotation marks are used to
represent one quotation mark within the delimited identifier. In this way
an identifier can include lowercase letters.
Examples

"WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversion of identifiers created on a double-byte code page, but
used by an application or database on a multi-byte code page, may require
special consideration: After conversion, such identifiers may exceed the
length limit for an identifier.

v Host identifiers
A host identifier is a name declared in the host program. The rules for
forming a host identifier are the rules of the host language. A host identifier
should not be greater than 255 characters in length and should not begin
with SQL or DB2 (in uppercase or lowercase characters).

Naming conventions and implicit object name qualifications
The rules for forming the name of an object depend on the object type.
Database object names may be made up of a single identifier, or they may be
schema-qualified objects made up of two identifiers. Schema-qualified object
names may be specified without the schema name; in such cases, the schema
name is implicit.

In dynamic SQL statements, a schema-qualified object name implicitly uses
the CURRENT SCHEMA special register value as the qualifier for unqualified
object name references. By default it is set to the current authorization ID. If
the dynamic SQL statement is contained in a package that exhibits bind,
define, or invoke behaviour, the CURRENT SCHEMA special register is not
used for qualification. In a bind behaviour package, the package default
qualifier is used as the value for implicit qualification of unqualified object
references. In a define behaviour package, the authorization ID of the routine

Identifiers

Chapter 2. Language elements 65

definer is used as the value for implicit qualification of unqualified object
references within that routine. In an invoke behaviour package, the statement
authorization ID in effect when the routine is invoked is used as the value for
implicit qualification of unqualified object references within dynamic SQL
statements within that routine. For more information, see “Dynamic SQL
characteristics at run time” on page 73.

In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified database object names. By default, this
value is set to the package authorization ID.

The following object names, when used in the context of an SQL procedure,
are permitted to use only the characters allowed in an ordinary identifier,
even if the names are delimited:
v condition-name
v label
v parameter-name
v procedure-name
v SQL-variable-name
v statement-name

The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name A schema-qualified name that designates an
alias.

attribute-name An identifier that designates an attribute of a
structured data type.

authorization-name An identifier that designates a user or a
group:
v Valid characters are A through Z, a through

z, 0 through 9, #, @, $, and _.
v The name must not begin with the

characters 'SYS', 'IBM', or 'SQL'.
v The name must not be: ADMINS, GUESTS,

LOCAL, PUBLIC, or USERS.
v A delimited authorization ID must not

contain lowercase letters.

bufferpool-name An identifier that designates a bufferpool.

column-name A qualified or unqualified name that
designates a column of a table or view. The

Naming conventions and implicit object name qualifications

66 SQL Reference, Volume 1

qualifier is a table name, a view name, a
nickname, or a correlation name.

condition-name An identifier that designates a condition in an
SQL procedure.

constraint-name An identifier that designates a referential
constraint, primary key constraint, unique
constraint, or a table check constraint.

correlation-name An identifier that designates a result table.

cursor-name An identifier that designates an SQL cursor.
For host compatibility, a hyphen character
may be used in the name.

data-source-name An identifier that designates a data source.
This identifier is the first part of a three-part
remote object name.

descriptor-name A colon followed by a host identifier that
designates an SQL descriptor area (SQLDA).
For the description of a host identifier, see
“References to host variables” on page 83.
Note that a descriptor name never includes an
indicator variable.

distinct-type-name A qualified or unqualified name that
designates a distinct type. An unqualified
distinct type name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

event-monitor-name An identifier that designates an event monitor.

function-mapping-name An identifier that designates a function
mapping.

function-name A qualified or unqualified name that
designates a function. An unqualified function
name in an SQL statement is implicitly
qualified by the database manager, depending
on context.

group-name An unqualified identifier that designates a
transform group defined for a structured type.

host-variable A sequence of tokens that designates a host
variable. A host variable includes at least one
host identifier, explained in “References to
host variables” on page 83.

Naming conventions and implicit object name qualifications

Chapter 2. Language elements 67

index-name A schema-qualified name that designates an
index or an index specification.

label An identifier that designates a label in an SQL
procedure.

method-name An identifier that designates a method. The
schema context for a method is determined by
the schema of the subject type (or a supertype
of the subject type) of the method.

nickname A schema-qualified name that designates a
federated server reference to a table or a view.

db-partition-group-name An identifier that designates a database
partition group.

package-name A schema-qualified name that designates a
package. If a package has a version ID that is
not the empty string, the package name also
includes the version ID at the end of the
name, in the form: schema-id.package-
id.version-id.

parameter-name An identifier that designates a parameter that
can be referenced in a procedure, user-defined
function, method, or index extension.

procedure-name A qualified or unqualified name that
designates a procedure. An unqualified
procedure name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

remote-authorization-name An identifier that designates a data source
user. The rules for authorization names vary
from data source to data source.

remote-function-name A name that designates a function registered
to a data source database.

remote-object-name A three-part name that designates a data
source table or view, and that identifies the
data source in which the table or view resides.
The parts of this name are data-source-name,
remote-schema-name, and remote-table-name.

remote-schema-name A name that designates the schema to which a
data source table or view belongs. This name
is the second part of a three-part remote object
name.

Naming conventions and implicit object name qualifications

68 SQL Reference, Volume 1

remote-table-name A name that designates a table or view at a
data source. This name is the third part of a
three-part remote object name.

remote-type-name A data type supported by a data source
database. Do not use the long form for built-in
types (use CHAR instead of CHARACTER, for
example).

savepoint-name An identifier that designates a savepoint.

schema-name An identifier that provides a logical grouping
for SQL objects. A schema name used as a
qualifier for the name of an object may be
implicitly determined:
v from the value of the CURRENT SCHEMA

special register
v from the value of the QUALIFIER

precompile/bind option
v on the basis of a resolution algorithm that

uses the CURRENT PATH special register
v on the basis of the schema name for another

object in the same SQL statement.

To avoid complications, it is recommended
that the name SESSION not be used as a
schema, except as the schema for declared
global temporary tables (which must use the
schema name SESSION).

server-name An identifier that designates an application
server. In a federated system, the server name
also designates the local name of a data
source.

specific-name A qualified or unqualified name that
designates a specific name. An unqualified
specific name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

SQL-variable-name The name of a local variable in an SQL
procedure statement. SQL variable names can
be used in other SQL statements where a host
variable name is allowed. The name can be
qualified by the label of the compound
statement that declared the SQL variable.

Naming conventions and implicit object name qualifications

Chapter 2. Language elements 69

statement-name An identifier that designates a prepared SQL
statement.

supertype-name A qualified or unqualified name that
designates the supertype of a type. An
unqualified supertype name in an SQL
statement is implicitly qualified by the
database manager, depending on context.

table-name A schema-qualified name that designates a
table.

tablespace-name An identifier that designates a table space.

trigger-name A schema-qualified name that designates a
trigger.

type-mapping-name An identifier that designates a data type
mapping.

type-name A qualified or unqualified name that
designates a type. An unqualified type name
in an SQL statement is implicitly qualified by
the database manager, depending on context.

typed-table-name A schema-qualified name that designates a
typed table.

typed-view-name A schema-qualified name that designates a
typed view.

view-name A schema-qualified name that designates a
view.

wrapper-name An identifier that designates a wrapper.

Aliases
A table alias can be thought of as an alternative name for a table or a view. A
table or view, therefore, can be referred to in an SQL statement by its name or
by a table alias.

An alias can be used wherever a table or a view name can be used. An alias
can be created even if the object does not exist (although it must exist by the
time a statement referring to it is compiled). It can refer to another alias if no
circular or repetitive references are made along the chain of aliases. An alias
can only refer to a table, view, or alias within the same database. An alias
name cannot be used where a new table or view name is expected, such as in
the CREATE TABLE or CREATE VIEW statements; for example, if the alias
name PERSONNEL has been created, subsequent statements such as CREATE
TABLE PERSONNEL... will return an error.

Naming conventions and implicit object name qualifications

70 SQL Reference, Volume 1

The option of referring to a table or a view by an alias is not explicitly shown
in the syntax diagrams, or mentioned in the descriptions of SQL statements.

A new unqualified alias cannot have the same fully-qualified name as an
existing table, view, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which must be defined by the time that the SQL
statement is compiled, is replaced at statement compilation time by the
qualified base table or view name. For example, if PBIRD.SALES is an alias
for DSPN014.DIST4_SALES_148, then at compilation time:

SELECT * FROM PBIRD.SALES

effectively becomes
SELECT * FROM DSPN014.DIST4_SALES_148

In a federated system, the aforementioned uses and restrictions apply, not
only to table aliases, but also to aliases for nicknames. Thus, a nickname’s
alias can be used instead of the nickname in an SQL statement; an alias can be
created for a nickname that does not yet exist, provided that the nickname is
created before statements that reference the alias are compiled; an alias for a
nickname can refer to another alias for that nickname; and so on.

For syntax toleration of applications running under other relational database
management systems, SYNONYM can be used in place of ALIAS in the
CREATE ALIAS and DROP ALIAS statements.

Authorization IDs and authorization names
An authorization ID is a character string that is obtained by the database
manager when a connection is established between the database manager and
either an application process or a program preparation process. It designates a
set of privileges. It may also designate a user or a group of users, but this
property is not controlled by the database manager.

Authorization IDs are used by the database manager to provide:
v Authorization checking of SQL statements
v A default value for the QUALIFIER precompile/bind option and the

CURRENT SCHEMA special register. The authorization ID is also included
in the default CURRENT PATH special register and the FUNCPATH
precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID
that applies to a static SQL statement is the authorization ID that is used
during program binding. The authorization ID that applies to a dynamic SQL

Aliases

Chapter 2. Language elements 71

statement is based on the DYNAMICRULES option supplied at bind time, and
on the current runtime environment for the package issuing the dynamic SQL
statement:
v In a package that has bind behavior, the authorization ID used is the

authorization ID of the package owner.
v In a package that has define behavior, the authorization ID used is the

authorization ID of the corresponding routine’s definer.
v In a package that has run behavior, the authorization ID used is the current

authorization ID of the user executing the package.
v In a package that has invoke behavior, the authorization ID used is the

authorization ID currently in effect when the routine is invoked. This is
called the runtime authorization ID.

For more information, see “Dynamic SQL characteristics at run time” on
page 73.

An authorization name specified in an SQL statement should not be confused
with the authorization ID of the statement. An authorization name is an
identifier that is used within various SQL statements. An authorization name
is used in the CREATE SCHEMA statement to designate the owner of the
schema. An authorization name is used in the GRANT and REVOKE
statements to designate a target of the grant or revoke operation. Granting
privileges to X means that X (or a member of the group X) will subsequently
be the authorization ID of statements that require those privileges.

Examples:

v Assume that SMITH is the user ID and the authorization ID that the
database manager obtained when a connection was established with the
application process. The following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Therefore, in a dynamic
SQL statement, the default value of the CURRENT SCHEMA special
register is SMITH, and in static SQL, the default value of the QUALIFIER
precompile/bind option is SMITH. The authority to execute the statement is
checked against SMITH, and SMITH is the table-name implicit qualifier
based on qualification rules described in “Naming conventions and implicit
object name qualifications” on page 65.

KEENE is an authorization name specified in the statement. KEENE is
given the SELECT privilege on SMITH.TDEPT.

v Assume that SMITH has administrative authority and is the authorization
ID of the following dynamic SQL statements, with no SET SCHEMA
statement issued during the session:

DROP TABLE TDEPT

Authorization IDs and authorization names

72 SQL Reference, Volume 1

Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and
SMITH.TDEPT are different tables.

CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization name specified in the statement that creates a
schema called PAYROLL. KEENE is the owner of the schema PAYROLL and
is given CREATEIN, ALTERIN, and DROPIN privileges, with the ability to
grant them to others.

Dynamic SQL characteristics at run time
The BIND option DYNAMICRULES determines the authorization ID that is
used for checking authorization when dynamic SQL statements are processed.
In addition, the option also controls other dynamic SQL attributes, such as the
implicit qualifier that is used for unqualified object references, and whether
certain SQL statements can be invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is
called the dynamic SQL statement behavior. The four possible behaviors are
run, bind, define, and invoke. As the following table shows, the combination
of the value of the DYNAMICRULES BIND option and the runtime
environment determines which of the behaviors is used. DYNAMICRULES
RUN, which implies run behavior, is the default.

Table 4. How DYNAMICRULES and the runtime environment determine dynamic SQL
statement behavior

DYNAMICRULES value Behavior of dynamic SQL statements

Standalone program
environment

Routine environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Run behavior DB2 uses the authorization ID of the user (the
ID that initially connected to DB2) executing
the package as the value to be used for

Authorization IDs and authorization names

Chapter 2. Language elements 73

authorization checking of dynamic SQL
statements and for the initial value used for
implicit qualification of unqualified object
references within dynamic SQL statements.

Bind behavior At run time, DB2 uses all the rules that apply
to static SQL for authorization and
qualification. It takes the authorization ID of
the package owner as the value to be used for
authorization checking of dynamic SQL
statements, and the package default qualifier
for implicit qualification of unqualified object
references within dynamic SQL statements.

Define behavior Define behavior applies only if the dynamic
SQL statement is in a package that is run
within a routine context, and the package was
bound with DYNAMICRULES DEFINEBIND
or DYNAMICRULES DEFINERUN. DB2 uses
the authorization ID of the routine definer
(not the routine’s package binder) as the value
to be used for authorization checking of
dynamic SQL statements, and for implicit
qualification of unqualified object references
within dynamic SQL statements within that
routine.

Invoke behavior Invoke behavior applies only if the dynamic
SQL statement is in a package that is run
within a routine context, and the package was
bound with DYNAMICRULES INVOKEBIND
or DYNAMICRULES INVOKERUN. DB2 uses
the statement authorization ID in effect when
the routine is invoked as the value to be used
for authorization checking of dynamic SQL,
and for implicit qualification of unqualified
object references within dynamic SQL
statements within that routine. This is
summarized by the following table.

Invoking Environment ID Used

any static SQL implicit or explicit value of the OWNER of the
package the SQL invoking the routine came
from

used in definition of view or trigger definer of the view or trigger

Dynamic SQL characteristics at run time

74 SQL Reference, Volume 1

Invoking Environment ID Used

dynamic SQL from a bind behavior package implicit or explicit value of the OWNER of the
package the SQL invoking the routine came
from

dynamic SQL from a run behavior package ID used to make the initial connection to DB2

dynamic SQL from a define behavior package definer of the routine that uses the package
that the SQL invoking the routine came from

dynamic SQL from an invoke behavior package the current authorization ID invoking the
routine

Restricted statements when run behavior does not apply

When bind, define, or invoke behavior is in effect, you cannot use the
following dynamic SQL statements: GRANT, REVOKE, ALTER, CREATE,
DROP, COMMENT, RENAME, SET INTEGRITY, SET EVENT MONITOR
STATE; or queries that reference a nickname.

Considerations regarding the DYNAMICRULES option

The CURRENT SCHEMA special register cannot be used to qualify
unqualified object references within dynamic SQL statements executed from
bind, define or invoke behavior packages. This is true even after you issue the
SET CURRENT SCHEMA statement to change the CURRENT SCHEMA
special register; the register value is changed but not used.

In the event that multiple packages are referenced during a single connection,
all dynamic SQL statements prepared by those packages will exhibit the
behavior specified by the DYNAMICRULES option for that specific package
and the environment in which they are used.

It is important to keep in mind that when a package exhibits bind behavior,
the binder of the package should not have any authorities granted that the
user of the package should not receive, because a dynamic statement will be
using the authorization ID of the package owner. Similarly, when a package
exhibits define behavior, the definer of the routine should not have any
authorities granted that the user of the package should not receive.

Authorization IDs and statement preparation
If the VALIDATE BIND option is specified at bind time, the privileges
required to manipulate tables and views must also exist at bind time. If these
privileges or the referenced objects do not exist, and the SQLERROR
NOPACKAGE option is in effect, the bind operation will be unsuccessful. If
the SQLERROR CONTINUE option is specified, the bind operation will be
successful, and any statements in error will be flagged. Any attempt to
execute such a statement will result in an error.

Dynamic SQL characteristics at run time

Chapter 2. Language elements 75

If a package is bound with the VALIDATE RUN option, all normal bind
processing is completed, but the privileges required to use the tables and
views that are referenced in the application need not exist yet. If a required
privilege does not exist at bind time, an incremental bind operation is
performed whenever the statement is first executed in an application, and all
privileges required for the statement must exist. If a required privilege does
not exist, execution of the statement is unsuccessful.

Authorization checking at run time is performed using the authorization ID of
the package owner.

Column names
The meaning of a column name depends on its context. A column name can be
used to:
v Declare the name of a column, as in a CREATE TABLE statement.
v Identify a column, as in a CREATE INDEX statement.
v Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column
in the group or intermediate result table to which the function is applied.
For example, MAX(SALARY) applies the function MAX to all values of
the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all
values in the intermediate result table to which the clause is applied. For
example, ORDER BY DEPT orders an intermediate result table by the
values of the column DEPT.

– In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied.
For example, when the search condition CODE = 20 is applied to some
row, the value specified by the column name CODE is the value of the
column CODE in that row.

v Temporarily rename a column, as in the correlation-clause of a table-reference
in a FROM clause.

Qualified column names
A qualifier for a column name may be a table, view, nickname, alias, or
correlation name.

Whether a column name may be qualified depends on its context:
v Depending on the form of the COMMENT ON statement, a single column

name may need to be qualified. Multiple column names must be
unqualified.

v Where the column name specifies values of the column, it may be qualified
at the user’s option.

Authorization IDs and statement preparation

76 SQL Reference, Volume 1

v In the assignment-clause of an UPDATE statement, it may be qualified at
the user’s option.

v In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described
under “Column name qualifiers to avoid ambiguity” on page 79 and “Column
name qualifiers in correlated references” on page 81.

Correlation names
A correlation name can be defined in the FROM clause of a query and in the
first clause of an UPDATE or DELETE statement. For example, the clause
FROM X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to
qualify a reference to a column of that instance of X.MYTABLE in that
SELECT statement.

A correlation name is associated with a table, view, nickname, alias, nested
table expression or table function only within the context in which it is
defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to
establish a correlated reference. It can also be used merely as a shorter name
for a table, view, nickname, or alias. In the case of a nested table expression or
table function, a correlation name is required to identify the result table. In the
example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name,
any qualified reference to a column of that instance of the table, view,
nickname, or alias must use the correlation name, rather than the table, view,
nickname, or alias name. For example, the reference to EMPLOYEE.PROJECT
in the following example is incorrect, because a correlation name has been
specified for EMPLOYEE:

Example

FROM EMPLOYEE E
WHERE EMPLOYEE.PROJECT=’ABC’ * incorrect*

The qualified reference to PROJECT should instead use the correlation name,
″E″, as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT=’ABC’

Qualified column names

Chapter 2. Language elements 77

Names specified in a FROM clause are either exposed or non-exposed. A table,
view, nickname, or alias name is said to be exposed in the FROM clause if a
correlation name is not specified. A correlation name is always an exposed
name. For example, in the following FROM clause, a correlation name is
specified for EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an
exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may
be the same as any other table name, view name or nickname exposed in that
FROM clause or any correlation name in the FROM clause. This may result in
ambiguous column name references which returns an error (SQLSTATE
42702).

The first two FROM clauses shown below are correct, because each one
contains no more than one reference to EMPLOYEE that is exposed:
1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the second instance of EMPLOYEE in the FROM clause. A qualified
reference to the first instance of EMPLOYEE must use the correlation
name “E1” (E1.PROJECT).

2. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the first instance of EMPLOYEE in the FROM clause. A qualified reference
to the second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).

3. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same. This is allowed, but references to specific
column names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:
SELECT *

FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *
WHERE EMPLOYEE.PROJECT = ’ABC’

Correlation names

78 SQL Reference, Volume 1

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names.
Instead, references to PROJECT must be qualified with either correlation
name (E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA
special register value in dynamic SQL or the QUALIFIER precompile/bind
option in static SQL, then the columns cannot be referenced since any such
reference would be ambiguous.

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the
result table. As with a correlation name, these listed column names become
the exposed names of the columns that must be used for references to the
columns throughout the query. If a column name list is specified, then the
column names of the underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name
DEPTNO is a non-exposed column name.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column
in some table, view, nickname, nested table expression or table function. The
tables, views, nicknames, nested table expressions and table functions that
might contain the column are called the object tables of the context. Two or
more object tables might contain columns with the same name; one reason for
qualifying a column name is to designate the table from which the column
comes. Qualifiers for column names are also useful in SQL procedures to
distinguish column names from SQL variable names used in SQL statements.

A nested table expression or table function will consider table-references that
precede it in the FROM clause as object tables. The table-references that follow
are not considered as object tables.

Table designators: A qualifier that designates a specific object table is called
a table designator. The clause that identifies the object tables also establishes the

Correlation names

Chapter 2. Language elements 79

table designators for them. For example, the object tables of an expression in a
SELECT clause are named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:
v A name that follows a table, view, nickname, alias, nested table expression

or table function is both a correlation name and a table designator. Thus,
CORZ is a table designator. CORZ is used to qualify the first column name
in the select list.

v An exposed table, view name, nickname or alias is a table designator. Thus,
OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify
the second column name in the select list.

Each table designator should be unique within a particular FROM clause to
avoid the possibility of ambiguous references to columns.

Avoiding undefined or ambiguous references: When a column name refers
to values of a column, exactly one object table must include a column with
that name. The following situations are considered errors:
v No object table contains a column with the specified name. The reference is

undefined.
v The column name is qualified by a table designator, but the table

designated does not include a column with the specified name. Again the
reference is undefined.

v The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

v The column name is qualified by a table designator, but the table
designated is not unique in the FROM clause and both occurrences of the
designated table include the column. The reference is ambiguous.

v The column name is in a nested table expression which is not preceded by
the TABLE keyword or in a table function or nested table expression that is
the right operand of a right outer join or a full outer join and the column
name does not refer to a column of a table-reference within the nested table
expression’s fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely
defined table designator. If the column is contained in several object tables
with different names, the table names can be used as designators. Ambiguous
references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the
column name list following the correlation name.

Table designators

80 SQL Reference, Volume 1

When qualifying a column with the exposed table name form of a table
designator, either the qualified or unqualified form of the exposed table name
may be used. However, the qualifier used and the table used must be the
same after fully qualifying the table name, view name or nickname and the
table designator.
1. If the authorization ID of the statement is CORPDATA:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE,
but the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE.

Column name qualifiers in correlated references
A fullselect is a form of a query that may be used as a component of various
SQL statements. A fullselect used within a search condition of any statement
is called a subquery. A fullselect used to retrieve a single value as an
expression within a statement is called a scalar fullselect or scalar subquery. A
fullselect used in the FROM clause of a query is called a nested table expression.
Subqueries in search conditions, scalar subqueries and nested table
expressions are referred to as subqueries through the remainder of this topic.

A subquery may include subqueries of its own, and these may, in turn,
include subqueries. Thus an SQL statement may contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said
to be at a higher level than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A
subquery can reference not only the columns of the tables identified at its
own level in the hierarchy, but also the columns of the tables identified
previously in the hierarchy, back to the highest level of the hierarchy. A
reference to a column of a table identified at a higher level is called a
correlated reference.

For compatibility with existing standards for SQL, both qualified and
unqualified column names are allowed as correlated references. However, it is
good practice to qualify all column references used in subqueries; otherwise,
identical column names may lead to unintended results. For example, if a
table in a hierarchy is altered to contain the same column name as the
correlated reference and the statement is prepared again, the reference will
apply to the altered table.

Avoiding undefined or ambiguous references

Chapter 2. Language elements 81

When a column name in a subquery is qualified, each level of the hierarchy is
searched, starting at the same subquery as the qualified column name appears
and continuing to the higher levels of the hierarchy until a table designator
that matches the qualifier is found. Once found, it is verified that the table
contains the given column. If the table is found at a higher level than the level
containing column name, then it is a correlated reference to the level where
the table designator was found. A nested table expression must be preceded
with the optional TABLE keyword in order to search the hierarchy above the
fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at
each level of the hierarchy are searched, starting at the same subquery where
the column name appears and continuing to higher levels of the hierarchy,
until a match for the column name is found. If the column is found in a table
at a higher level than the level containing column name, then it is a correlated
reference to the level where the table containing the column was found. If the
column name is found in more than one table at a particular level, the
reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator
that contains column C. A column name, T.C (where T represents either an
implicit or an explicit qualifier), is a correlated reference if, and only if, these
conditions are met:
v T.C is used in an expression of a subquery.
v T does not designate a table used in the from clause of the subquery.
v T designates a table used at a higher level of the hierarchy that contains the

subquery.

Since the same table, view or nickname can be identified at many levels,
unique correlation names are recommended as table designators. If T is used
to designate a table at more than one level (T is the table name itself or is a
duplicate correlation name), T.C refers to the level where T is used that most
directly contains the subquery that includes T.C. If a correlation to a higher
level is needed, a unique correlation name must be used.

The correlated reference T.C identifies a value of C in a row or group of T to
which two search conditions are being applied: condition 1 in the subquery,
and condition 2 at some higher level. If condition 2 is used in a WHERE
clause, the subquery is evaluated for each row to which condition 2 is
applied. If condition 2 is used in a HAVING clause, the subquery is evaluated
for each group to which condition 2 is applied.

For example, in the following statement, the correlated reference
X.WORKDEPT (in the last line) refers to the value of WORKDEPT in table
EMPLOYEE at the level of the first FROM clause. (That clause establishes X as

Column name qualifiers in correlated references

82 SQL Reference, Volume 1

a correlation name for EMPLOYEE.) The statement lists employees who make
less than the average salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM EMPLOYEE X
WHERE SALARY < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes
rows for departments that have no employees.

DELETE FROM DEPARTMENT THIS
WHERE NOT EXISTS(SELECT *

FROM EMPLOYEE
WHERE WORKDEPT = THIS.DEPTNO)

References to host variables
A host variable is either:
v A variable in a host language such as a C variable, a C++ variable, a

COBOL data item, a FORTRAN variable, or a Java variable

or:
v A host language construct that was generated by an SQL precompiler from

a variable declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly
defined by statements in the host language or are indirectly defined using
SQL extensions.

A host variable in an SQL statement must identify a host variable described in
the program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL
DECLARE section in all host languages except REXX. No variables may be
declared outside an SQL DECLARE section with names identical to variables
declared inside an SQL DECLARE section. An SQL DECLARE section begins
with BEGIN DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a
reference to a host variable. A host-variable in the VALUES INTO clause or
the INTO clause of a FETCH or a SELECT INTO statement, identifies a host
variable to which a value from a column of a row or an expression is
assigned. In all other contexts a host-variable specifies a value to be passed to
the database manager from the application program.

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host
variables. A parameter marker is a question mark (?) representing a position

Column name qualifiers in correlated references

Chapter 2. Language elements 83

in a dynamic SQL statement where the application will provide a value; that
is, where a host variable would be found if the statement string were a static
SQL statement. The following example shows a static SQL statement using
host variables:

INSERT INTO DEPARTMENT
VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:
INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

The meta-variable host-variable in syntax diagrams can generally be expanded
to:

�� :host-identifier
INDICATOR

:host-identifier

��

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier must have a data type of small
integer.

The first host-identifier designates the main variable. Depending on the
operation, it either provides a value to the database manager or is provided a
value from the database manager. An input host variable provides a value in
the runtime application code page. An output host variable is provided a
value that, if necessary, is converted to the runtime application code page
when the data is copied to the output application variable. A given host
variable can serve as both an input and an output variable in the same
program.

The second host-identifier designates its indicator variable. The purposes of the
indicator variable are to:
v Specify the null value. A negative value of the indicator variable specifies

the null value. A value of -2 indicates a numeric conversion or arithmetic
expression error occurred in deriving the result

v Record the original length of a truncated string (if the source of the value is
not a large object type)

v Record the seconds portion of a time if the time is truncated on assignment
to a host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if
HV2 is negative, the value specified is the null value. If HV2 is not negative
the value specified is the value of HV1.

Host variables in dynamic SQL

84 SQL Reference, Volume 1

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH
or SELECT INTO statement, and if the value returned is null, HV1 is not
changed, and HV2 is set to a negative value. If the database is configured
with DFT_SQLMATHWARN yes (or was during binding of a static SQL
statement), HV2 could be -2. If HV2 is -2, a value for HV1 could not be
returned because of an error converting to the numeric type of HV1, or an
error evaluating an arithmetic expression that is used to determine the value
for HV1. When accessing a database with a client version earlier than DB2
Universal Database Version 5, HV2 will be -1 for arithmetic exceptions. If the
value returned is not null, that value is assigned to HV1 and HV2 is set to
zero (unless the assignment to HV1 requires string truncation of a non-LOB
string; in which case HV2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of a time, HV2 is set to the
number of seconds.

If the second host identifier is omitted, the host-variable does not have an
indicator variable. The value specified by the host-variable reference :HV1 is
always the value of HV1, and null values cannot be assigned to the variable.
Thus, this form should not be used in an INTO clause unless the
corresponding column cannot contain null values. If this form is used and the
column contains nulls, the database manager will generate an error at run
time.

An SQL statement that references host variables must be within the scope of
the declaration of those host variables. For host variables referenced in the
SELECT statement of a cursor, that rule applies to the OPEN statement rather
than to the DECLARE CURSOR statement.

Example: Using the PROJECT table, set the host variable PNAME
(VARCHAR(26)) to the project name (PROJNAME), the host variable STAFF
(dec(5,2)) to the mean staffing level (PRSTAFF), and the host variable
MAJPROJ (char(6)) to the major project (MAJPROJ) for project (PROJNO)
‘IF1000’. Columns PRSTAFF and MAJPROJ may contain null values, so
provide indicator variables STAFF_IND (smallint) and MAJPROJ_IND
(smallint).

SELECT PROJNAME, PRSTAFF, MAJPROJ
INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
FROM PROJECT
WHERE PROJNO = ’IF1000’

MBCS Considerations: Whether multi-byte characters can be used in a host
variable name depends on the host language.

References to BLOB, CLOB, and DBCLOB host variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see
“References to locator variables” on page 86), and LOB file reference variables
(see “References to BLOB, CLOB, and DBCLOB file reference variables” on
page 87

Host variables in dynamic SQL

Chapter 2. Language elements 85

page 87) can be defined in all host languages. Where LOBs are allowed, the
term host-variable in a syntax diagram can refer to a regular host variable, a
locator variable, or a file reference variable. Since these are not native data
types, SQL extensions are used and the precompilers generate the host
language constructs necessary to represent each variable. In the case of REXX,
LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire
large object value. If this is true and if there is no performance benefit to be
gained by deferred transfer of data from the server, a locator is not needed.
However, since host language or space restrictions will often dictate against
storing an entire large object in temporary storage at one time and/or because
of performance benefit, a large object may be referenced via a locator and
portions of that object may be selected into or updated from host variables
that contain only a portion of the large object at one time.

As with all other host variables, a large object locator variable may have an
associated indicator variable. Indicator variables for large object locator host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the locator host variable is unchanged. This means a locator can never
point to a null value.

References to locator variables
A locator variable is a host variable that contains the locator representing a LOB
value on the application server.

A locator variable in an SQL statement must identify a locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference
to a locator variable. The meta-variable locator-variable can be expanded to
include a host-identifier the same as that for host-variable.

When the indicator variable associated with a locator is null, the value of the
referenced LOB is null.

If a locator-variable that does not currently represent any value is referenced,
an error is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by
that transaction are released.

References to BLOB, CLOB, and DBCLOB host variables

86 SQL Reference, Volume 1

References to BLOB, CLOB, and DBCLOB file reference variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file
input and output for LOBs, and can be defined in all host languages. Since
these are not native data types, SQL extensions are used and the precompilers
generate the host language constructs necessary to represent each variable. In
the case of REXX, LOBs are mapped to strings.

A file reference variable represents (rather than contains) the file, just as a
LOB locator represents, rather than contains, the LOB bytes. Database queries,
updates and inserts may use file reference variables to store or to retrieve
single column values.

A file reference variable has the following properties:

Data Type BLOB, CLOB, or DBCLOB. This property is
specified when the variable is declared.

Direction This must be specified by the application
program at run time (as part of the File
Options value). The direction is one of:
v Input (used as a source of data on an

EXECUTE statement, an OPEN statement,
an UPDATE statement, an INSERT
statement, or a DELETE statement).

v Output (used as the target of data on a
FETCH statement or a SELECT INTO
statement).

File name This must be specified by the application
program at run time. It is one of:
v The complete path name of the file (which

is advised).
v A relative file name. If a relative file name

is provided, it is appended to the current
path of the client process.

Within an application, a file should only be
referenced in one file reference variable.

File Name Length This must be specified by the application
program at run time. It is the length of the file
name (in bytes).

File Options An application must assign one of a number
of options to a file reference variable before it
makes use of that variable. Options are set by
an INTEGER value in a field in the file

References to BLOB, CLOB, and DBCLOB file reference variables

Chapter 2. Language elements 87

reference variable structure. One of the
following values must be specified for each
file reference variable:
v Input (from client to server)

SQL_FILE_READ
This is a regular file that
can be opened, read and
closed. (The option is
SQL-FILE-READ in COBOL,
sql_file_read in FORTRAN,
and READ in REXX.)

v Output (from server to client)

SQL_FILE_CREATE
Create a new file. If the file
already exists, an error is
returned. (The option is
SQL-FILE-CREATE in
COBOL, sql_file_create in
FORTRAN, and CREATE in
REXX.)

SQL_FILE_OVERWRITE (Overwrite)
If an existing file with the
specified name exists, it is
overwritten; otherwise a
new file is created. (The
option is
SQL-FILE-OVERWRITE in
COBOL, sql_file_overwrite
in FORTRAN, and
OVERWRITE in REXX.)

SQL_FILE_APPEND
If an existing file with the
specified name exists, the
output is appended to it;
otherwise a new file is
created. (The option is
SQL-FILE-APPEND in
COBOL, sql_file_append in
FORTRAN, and APPEND in
REXX.)

Data Length
This is unused on input. On output,
the implementation sets the data

References to BLOB, CLOB, and DBCLOB file reference variables

88 SQL Reference, Volume 1

length to the length of the new data
written to the file. The length is in
bytes.

As with all other host variables, a file reference variable may have an
associated indicator variable.

Example of an output file reference variable (in C): Given a declare section
coded as:

EXEC SQL BEGIN DECLARE SECTION
SQL TYPE IS CLOB_FILE hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Following preprocessing this would be:
EXEC SQL BEGIN DECLARE SECTION

/* SQL TYPE IS CLOB_FILE hv_text_file; */
struct {

unsigned long name_length; // File Name Length
unsigned long data_length; // Data Length
unsigned long file_options; // File Options
char name[255]; // File Name

} hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the
database into a new file referenced by :hv_text_file.

strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");
hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text_file from papers
WHERE TITLE = ’The Relational Theory behind Juggling’;

Example of an input file reference variable (in C): Given the same declare
section as above, the following code can be used to insert the data from a
regular file referenced by :hv_text_file into a CLOB column.

strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");
hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
hv_text_file.file_options = SQL_FILE_READ:
strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO patents(title, text)
VALUES(:hv_patent_title, :hv_text_file);

References to structured type host variables
Structured type variables can be defined in all host languages except
FORTRAN, REXX, and Java. Since these are not native data types, SQL

References to BLOB, CLOB, and DBCLOB file reference variables

Chapter 2. Language elements 89

extensions are used and the precompilers generate the host language
constructs necessary to represent each variable.

As with all other host variables, a structured type variable may have an
associated indicator variable. Indicator variables for structured type host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the structured type host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data
type. The built-in data type associated with the structured type must be
assignable:
v from the result of the FROM SQL transform function for the structured type

as defined by the specified TRANSFORM GROUP option of the precompile
command; and

v to the parameter of the TO SQL transform function for the structured type
as defined by the specified TRANSFORM GROUP option of the precompile
command.

If using a parameter marker instead of a host variable, the appropriate
parameter type characteristics must be specified in the SQLDA. This requires
a ″doubled″ set of SQLVAR structures in the SQLDA, and the
SQLDATATYPE_NAME field of the secondary SQLVAR must be filled with
the schema and type name of the structured type. If the schema is omitted in
the SQLDA structure, an error results (SQLSTATE 07002).

Example: Define the host variables hv_poly and hv_point (of type POLYGON,
using built-in type BLOB(1048576)) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
static SQL

TYPE IS POLYGON AS BLOB(1M)
hv_poly, hv_point;

EXEC SQL END DECLARE SECTION;

Related concepts:

v “Queries” on page 16

Related reference:

v “CREATE ALIAS statement” in the SQL Reference, Volume 2

v “PREPARE statement” in the SQL Reference, Volume 2

v “SET SCHEMA statement” in the SQL Reference, Volume 2

v Appendix A, “SQL limits” on page 607
v Appendix C, “SQLDA (SQL descriptor area)” on page 621
v Appendix G, “Reserved schema names and reserved words” on page 823

References to structured type host variables

90 SQL Reference, Volume 1

v Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)
considerations” on page 883

v “Large objects (LOBs)” on page 99

Example

Chapter 2. Language elements 91

Data types

Data types

The smallest unit of data that can be manipulated in SQL is called a value.
Values are interpreted according to the data type of their source. Sources
include:
v Constants
v Columns
v Host variables
v Functions
v Expressions
v Special registers.

DB2 supports a number of built-in data types. It also provides support for
user-defined data types. Figure 10 on page 93 shows the supported built-in
data types.

Data types

92 SQL Reference, Volume 1

All data types include the null value. The null value is a special value that is
distinct from all non-null values and thereby denotes the absence of a
(non-null) value. Although all data types include the null value, columns
defined as NOT NULL cannot contain null values.

Related reference:

v “User-defined types” on page 108

fixed
length

built-in
data
types

stringdatetime

floating
point

decimal

packed

DECIMAL

DATALINK

binary
integer

time timestamp date

16 bit 32 bit 64 bit

single
precision

double
precision

fixed
length

varying
length

varying
length

graphiccharacter
varying
length
binary

external
data

signed
numeric

exact approximate

SMALLINT BIGINTINTEGER

REAL DOUBLE

TIME

GRAPHIC

VARGRAPHICVARCHAR DBCLOBCLOB

CHAR

TIMESTAMP DATE

BLOB

Figure 10. The DB2 Built-in Data Types

Data types

Chapter 2. Language elements 93

Numbers

All numbers have a sign and a precision. The sign is considered positive if the
value of a number is zero. The precision is the number of bits or digits
excluding the sign.

Small integer (SMALLINT)
A small integer is a two-byte integer with a precision of 5 digits. The range of
small integers is -32 768 to 32 767.

Large integer (INTEGER)
A large integer is a four-byte integer with a precision of 10 digits. The range of
large integers is −2 147 483 648 to +2 147 483 647.

Big integer (BIGINT)
A big integer is an eight-byte integer with a precision of 19 digits. The range of
big integers is −9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Single-precision floating-point (REAL)
A single-precision floating-point number is a 32-bit approximation of a real
number. The number can be zero or can range from -3.402E+38 to -1.175E-37,
or from 1.175E-37 to 3.402E+38.

Double-precision floating-point (DOUBLE or FLOAT)
A double-precision floating-point number is a 64-bit approximation of a real
number. The number can be zero or can range from -1.79769E+308 to
-2.225E-307, or from 2.225E-307 to 1.79769E+308.

Decimal (DECIMAL or NUMERIC)
A decimal value is a packed decimal number with an implicit decimal point.
The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part
of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits.

All values in a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is −n to +n, where
the absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -10**31+1 to 10**31-1.

Related reference:

v Appendix C, “SQLDA (SQL descriptor area)” on page 621

Numbers

94 SQL Reference, Volume 1

Character strings

A character string is a sequence of bytes. The length of the string is the number
of bytes in the sequence. If the length is zero, the value is called the empty
string. This value should not be confused with the null value.

Fixed-length character string (CHAR)
All values in a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must
be between 1 and 254, inclusive.

Varying-length character strings
There are three types of varying-length character string:
v A VARCHAR value can be up to 32 672 bytes long.
v A LONG VARCHAR value can be up to 32 700 bytes long.
v A CLOB (character large object) value can be up to 2 gigabytes

(2 147 483 647 bytes) long. A CLOB is used to store large SBCS or mixed
(SBCS and MBCS) character-based data (such as documents written with a
single character set) and, therefore, has an SBCS or mixed code page
associated with it.

Special restrictions apply to expressions resulting in a LONG VARCHAR or
CLOB data type, and to structured type columns; such expressions and
columns are not permitted in:
v A SELECT list preceded by the DISTINCT clause
v A GROUP BY clause
v An ORDER BY clause
v A column function with the DISTINCT clause
v A subselect of a set operator other than UNION ALL
v A basic, quantified, BETWEEN, or IN predicate
v A column function
v VARGRAPHIC, TRANSLATE, and datetime scalar functions
v The pattern operand in a LIKE predicate, or the search string operand in a

POSSTR function
v The string representation of a datetime value.

In addition to the restrictions listed above, expressions resulting in LONG
VARCHAR or CLOB data types or structured type columns are not permitted
in:
v A basic, quantified, BETWEEN, or IN predicate
v A column function
v VARGRAPHIC, TRANSLATE, and datetime scalar functions

Character strings

Chapter 2. Language elements 95

v The pattern operand in a LIKE predicate or the search string operand in the
POSSTR function

v The string representation of a datetime value.

The functions in the SYSFUN schema taking a VARCHAR as an argument
will not accept VARCHARs greater than 4 000 bytes long as an argument.
However, many of these functions also have an alternative signature accepting
a CLOB(1M). For these functions, the user may explicitly cast the greater than
4 000 VARCHAR strings into CLOBs and then recast the result back into
VARCHARs of desired length.

NUL-terminated character strings found in C are handled differently,
depending on the standards level of the precompile option.

Each character string is further defined as one of:

Bit data Data that is not associated with a code page.

Single-byte character set (SBCS) data
Data in which every character is represented by a single byte.

Mixed data Data that may contain a mixture of characters from a
single-byte character set and a multi-byte character set
(MBCS).

SBCS data is supported only in an SBCS database. Mixed data is only
supported in an MBCS database.

Varying-length character strings

96 SQL Reference, Volume 1

Graphic strings

A graphic string is a sequence of bytes that represents double-byte character
data. The length of the string is the number of double-byte characters in the
sequence. If the length is zero, the value is called the empty string. This value
should not be confused with the null value.

Graphic strings are not checked to ensure that their values contain only
double-byte character code points. (The exception to this rule is an application
precompiled with the WCHARTYPE CONVERT option. In this case,
validation does occur.) Rather, the database manager assumes that double-byte
character data is contained in graphic data fields. The database manager does
check that a graphic string value is an even number of bytes long.

NUL-terminated graphic strings found in C are handled differently,
depending on the standards level of the precompile option. This data type
cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

Fixed-length graphic strings (GRAPHIC)
All values in a fixed-length graphic string column have the same length,
which is determined by the length attribute of the column. The length
attribute must be between 1 and 127, inclusive.

Varying-length graphic strings
There are three types of varying-length graphic string:
v A VARGRAPHIC value can be up to 16 336 double-byte characters long.
v A LONG VARGRAPHIC value can be up to 16 350 double-byte characters

long.
v A DBCLOB (double-byte character large object) value can be up to

1 073 741 823 double-byte characters long. A DBCLOB is used to store large
DBCS character-based data (such as documents written with a single
character set) and, therefore, has a DBCS code page associated with it.

Special restrictions apply to an expression that results in a varying-length
graphic string whose maximum length is greater than 127 bytes. These
restrictions are the same as those specified in “Varying-length character
strings” on page 95.

Graphic strings

Chapter 2. Language elements 97

Binary strings

A binary string is a sequence of bytes. Unlike character strings, which usually
contain text data, binary strings are used to hold non-traditional data such as
pictures, voice, or mixed media. Character strings of the FOR BIT DATA
subtype may be used for similar purposes, but the two data types are not
compatible. The BLOB scalar function can be used to cast a FOR BIT DATA
character string to a binary string. Binary strings are not associated with a
code page. They have the same restrictions as character strings (for details, see
“Varying-length character strings” on page 95).

Binary large object (BLOB)
A binary large object is a varying-length binary string that can be up to 2
gigabytes (2 147 483 647 bytes) long. BLOBs can hold structured data for
exploitation by user-defined types and user-defined functions. Like FOR BIT
DATA character strings, BLOB strings are not associated with a code page.

Binary strings

98 SQL Reference, Volume 1

Large objects (LOBs)

The term large object and the generic acronym LOB refer to the BLOB, CLOB,
or DBCLOB data type. LOB values are subject to restrictions that apply to
LONG VARCHAR values, as described in “Varying-length character strings”
on page 95. These restrictions apply even if the length attribute of the LOB
string is 254 bytes or less.

LOB values can be very large, and the transfer of these values from the
database server to client application program host variables can be time
consuming. Because application programs typically process LOB values one
piece at a time, rather than as a whole, applications can reference a LOB value
by using a large object locator.

A large object locator, or LOB locator, is a host variable whose value represents
a single LOB value on the database server.

An application program can select a LOB value into a LOB locator. Then,
using the LOB locator, the application program can request database
operations on the LOB value (such as applying the scalar functions SUBSTR,
CONCAT, VALUE, or LENGTH; performing an assignment; searching the
LOB with LIKE or POSSTR; or applying user-defined functions against the
LOB) by supplying the locator value as input. The resulting output (data
assigned to a client host variable) would typically be a small subset of the
input LOB value.

LOB locators can represent more than just base values; they can also represent
the value associated with a LOB expression. For example, a LOB locator might
represent the value associated with:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

When a null value is selected into a normal host variable, the indicator
variable is set to -1, signifying that the value is null. In the case of LOB
locators, however, the meaning of indicator variables is slightly different.
Because a locator host variable can itself never be null, a negative indicator
variable value indicates that the LOB value represented by the LOB locator is
null. The null information is kept local to the client by virtue of the indicator
variable value — the server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row
or a location in the database. Once a value is selected into a locator, there is
no operation that one can perform on the original row or table that will affect
the value which is referenced by the locator. The value associated with a
locator is valid until the transaction ends, or until the locator is explicitly
freed, whichever comes first. Locators do not force extra copies of the data to
provide this function. Instead, the locator mechanism stores a description of

Large objects (LOBs)

Chapter 2. Language elements 99

the base LOB value. The materialization of the LOB value (or expression, as
shown above) is deferred until it is actually assigned to some location —
either a user buffer in the form of a host variable, or another record in the
database.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
It is not a database type; it is never stored in the database and, as a result,
cannot participate in views or check constraints. However, because a LOB
locator is a client representation of a LOB type, there are SQLTYPEs for LOB
locators so that they can be described within an SQLDA structure used by
FETCH, OPEN, or EXECUTE statements.

Large objects (LOBs)

100 SQL Reference, Volume 1

Datetime values

The datetime data types include DATE, TIME, and TIMESTAMP. Although
datetime values can be used in certain arithmetic and string operations, and
are compatible with certain strings, they are neither strings nor numbers.

Date
A date is a three-part value (year, month, and day). The range of the year part
is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which
is the appropriate length for a character string representation of the value.

Time
A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24. The range of
the other parts is 0 to 59. If the hour is 24, the minute and second
specifications are zero.

The internal representation of a time is a string of 3 bytes. Each byte consists
of 2 packed decimal digits. The first byte represents the hour, the second byte
the minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) designating a date and time as defined above, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes. Each byte
consists of 2 packed decimal digits. The first 4 bytes represent the date, the
next 3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,
which is the appropriate length for the character string representation of the
value.

String representations of datetime values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in
an internal form that is transparent to the user. Date, time, and timestamp

Datetime values

Chapter 2. Language elements 101

values can, however, also be represented by strings. This is useful because
there are no constants or variables whose data types are DATE, TIME, or
TIMESTAMP. Before it can be retrieved, a datetime value must be assigned to
a string variable. The CHAR function or the GRAPHIC function (for Unicode
databases only) can be used to change a datetime value to a string
representation. The string representation is normally the default format of
datetime values associated with the territory code of the application, unless
overridden by specification of the DATETIME option when the program is
precompiled or bound to the database.

No matter what its length, a large object string, a LONG VARCHAR value, or
a LONG VARGRAPHIC value cannot be used to represent a datetime value
(SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation
with an internal datetime value, the string representation is converted to the
internal form of the date, time, or timestamp value before the operation is
performed.

Date, time and timestamp strings must contain only characters and digits.

Date strings: A string representation of a date is a string that starts with a
digit and has a length of at least 8 characters. Trailing blanks may be
included; leading zeros may be omitted from the month and day portions.

Valid string formats for dates are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 5. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian Era

JIS yyyy-mm-dd 1991-10-27

Site-defined LOC Depends on the
territory code of
the application

—

Time strings: A string representation of a time is a string that starts with a
digit and has a length of at least 4 characters. Trailing blanks may be
included; a leading zero may be omitted from the hour part of the time, and

String representations of datetime values

102 SQL Reference, Volume 1

seconds may be omitted entirely. If seconds are omitted, an implicit
specification of 0 seconds is assumed. Thus, 13:30 is equivalent to 13:30:00.

Valid string formats for times are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 6. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization2

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined LOC Depends on the
territory code of
the application

—

Notes:

1. In ISO, EUR, and JIS format, .ss (or :ss) is optional.
2. The International Standards Organization changed the time format so that

it is identical with the Japanese Industrial Standard Christian Era format.
Therefore, use the JIS format if an application requires the current
International Standards Organization format.

3. In the USA time string format, the minutes specification may be omitted,
indicating an implicit specification of 00 minutes. Thus 1 PM is equivalent
to 1:00 PM.

4. In the USA time format, the hour must not be greater than 12 and cannot
be 0 except for the special case of 00:00 AM. There is a single space before
the AM and PM. Using the JIS format of the 24-hour clock, the
correspondence between the USA format and the 24-hour clock is as
follows:

12:01 AM through 12:59 AM corresponds to 00:01:00 through 00:59:00.
01:00 AM through 11:59 AM corresponds to 01:00:00 through 11:59:00.
12:00 PM (noon) through 11:59 PM corresponds to 12:00:00 through
23:59:00.
12:00 AM (midnight) corresponds to 24:00:00 and 00:00 AM (midnight)
corresponds to 00:00:00.

Timestamp strings: A string representation of a timestamp is a string that
starts with a digit and has a length of at least 16 characters. The complete

Time strings

Chapter 2. Language elements 103

string representation of a timestamp has the form yyyy-mm-dd-
hh.mm.ss.nnnnnn. Trailing blanks may be included. Leading zeros may be
omitted from the month, day, and hour part of the timestamp, and
microseconds may be truncated or entirely omitted. If any trailing zero digits
are omitted in the microseconds portion, an implicit specification of 0 is
assumed for the missing digits. Thus, 1991-3-2-8.30.00 is equivalent to
1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp,
but as an input value only. The ODBC string representation of a timestamp
has the form yyyy-mm-dd hh:mm:ss.nnnnnn.

Timestamp strings

104 SQL Reference, Volume 1

DATALINK values

A DATALINK value is an encapsulated value that contains a logical reference
from the database to a file stored outside of the database. The attributes of
this encapsulated value are as follows:

link type
The currently supported type of link is 'URL' (Uniform Resource Locator).

data location
The location of a file linked with a reference within DB2, in the form of a
URL. The allowed scheme names for this URL are:
v HTTP
v FILE
v UNC
v DFS

The other parts of the URL are:
v the file server name for the HTTP, FILE, and UNC schemes
v the cell name for the DFS scheme
v the full file path name within the file server or cell

comment
Up to 200 bytes of descriptive information, including the data location
attribute. This is intended for application-specific uses, such as further or
alternative identification of the location of the data.

Leading and trailing blank characters are trimmed while parsing data location
attributes as URLs. Also, the scheme names ('http', 'file', 'unc', 'dfs') and host
are case-insensitive and are always stored in the database in uppercase. When
a DATALINK value is fetched from a database, an access token is embedded
within the URL attribute, if the DATALINK column is defined with READ
PERMISSION DB or WRITE PERMISSION ADMIN. The token is generated
dynamically, and is not a permanent part of the DATALINK value stored in
the database.

It is possible for a DATALINK value to have only a comment attribute and an
empty data location attribute. Such a value may even be stored in a column
but, of course, no file will be linked to such a column. The total length of the
comment and the data location attribute of a DATALINK value is currently
limited to 200 bytes.

It is important to distinguish between DATALINK references to files and LOB
file reference variables. The similarity is that they both contain a
representation of a file. However:

DATALINK values

Chapter 2. Language elements 105

v DATALINKs are retained in the database, and both the links and the data
in the linked files can be considered to be a natural extension of data in the
database.

v File reference variables exist temporarily on the client and they can be
considered to be an alternative to a host program buffer.

Use built-in scalar functions to build a DATALINK value (DLVALUE,
DLNEWCOPY, DLPREVIOUSCOPY, and DLREPLACECONTENT) and to
extract the encapsulated values from a DATALINK value (DLCOMMENT,
DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY,
DLURLSCHEME, DLURLSERVER, DLURLCOMPLETEONLY,
DLURLCOMPLETEWRITE, and DLURLPATHWRITE).

Related reference:

v “Identifiers” on page 65
v Appendix Q, “Backus-Naur form (BNF) specifications for DATALINKs” on

page 891

DATALINK values

106 SQL Reference, Volume 1

XML values

The XML data type is an internal representation of XML, and can only be
used as input to functions that accept this data type as input. XML is a
transient data type that cannot be stored in the database, or returned to an
application.

Valid values for the XML data type include:
v An element
v A forest of elements
v The textual content of an element
v An empty XML value

Currently, the only supported operation is to serialize (by using the
XML2CLOB function) the XML value into a string that is stored as a CLOB
value.

XML values

Chapter 2. Language elements 107

User-defined types

There are three types of user-defined data type:
v Distinct type
v Structured type
v Reference type

Each of these types is described in the following sections.

Distinct types
A distinct type is a user-defined data type that shares its internal representation
with an existing type (its “source” type), but is considered to be a separate
and incompatible type for most operations. For example, one might want to
define a picture type, a text type, and an audio type, all of which have quite
different semantics, but which use the built-in data type BLOB for their
internal representation.

The following example illustrates the creation of a distinct type named
AUDIO:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB,
it is considered to be a separate type; this allows the creation of functions
written specifically for AUDIO, and assures that these functions will not be
applied to values of any other data type (pictures, text, and so on).

Distinct types have qualified identifiers. If the schema name is not used to
qualify the distinct type name when used in other than the CREATE
DISTINCT TYPE, DROP DISTINCT TYPE, or COMMENT ON DISTINCT
TYPE statements, the SQL path is searched in sequence for the first schema
with a distinct type that matches.

Distinct types support strong typing by ensuring that only those functions
and operators explicitly defined on a distinct type can be applied to its
instances. For this reason, a distinct type does not automatically acquire the
functions and operators of its source type, because these may not be
meaningful. (For example, the LENGTH function of the AUDIO type might
return the length of its object in seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, LOB
types, or DATALINK are subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly
specified to apply to the distinct type. This can be done by creating
user-defined functions that are sourced on functions defined on the source
type of the distinct type. The comparison operators are automatically

User-defined types

108 SQL Reference, Volume 1

generated for user-defined distinct types, except those using LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or DATALINK as
the source type. In addition, functions are generated to support casting from
the source type to the distinct type, and from the distinct type to the source
type.

Structured types
A structured type is a user-defined data type that has a structure that is defined
in the database. It contains a sequence of named attributes, each of which has
a data type. A structured type also includes a set of method specifications.

A structured type may be used as the type of a table, view, or column. When
used as a type for a table or view, that table or view is known as a typed table
or typed view, respectively. For typed tables and typed views, the names and
data types of the attributes of the structured type become the names and data
types of the columns of this typed table or typed view. Rows of the typed
table or typed view can be thought of as a representation of instances of the
structured type. When used as a data type for a column, the column contains
values of that structured type (or values of any of that type’s subtypes, as
defined below). Methods are used to retrieve or manipulate attributes of a
structured column object.

Terminology: A supertype is a structured type for which other structured types,
called subtypes, have been defined. A subtype inherits all the attributes and
methods of its supertype and may have additional attributes and methods
defined. The set of structured types that are related to a common supertype is
called a type hierarchy and the type that does not have any supertype is called
the root type of the type hierarchy.

The term subtype applies to a user-defined structured type and all
user-defined structured types that are below it in the type hierarchy.
Therefore, a subtype of a structured type T is T and all structured types below
T in the hierarchy. A proper subtype of a structured type T is a structured type
below T in the type hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy.
For this reason, it is necessary to develop a shorthand way of referring to the
specific type of recursive definitions that are allowed. The following
definitions are used:
v Directly uses: A type A is said to directly use another type B, if and only if

one of the following is true:
1. type A has an attribute of type B

2. type B is a subtype of A, or a supertype of A

v Indirectly uses: A type A is said to indirectly use a type B, if one of the
following is true:

Distinct types

Chapter 2. Language elements 109

1. type A directly uses type B

2. type A directly uses some type C, and type C indirectly uses type B

A type may not be defined so that one of its attribute types directly or
indirectly uses itself. If it is necessary to have such a configuration, consider
using a reference as the attribute. For example, with structured type attributes,
there cannot be an instance of ″employee″ with an attribute of ″manager″
when ″manager″ is of type ″employee″. There can, however, be an attribute of
″manager″ with a type of REF(employee).

A type cannot be dropped if certain other objects use the type, either directly
or indirectly. For example, a type cannot be dropped if a table or view column
makes direct or indirect use of the type.

Reference types
A reference type is a companion type to a structured type. Similar to a distinct
type, a reference type is a scalar type that shares a common representation
with one of the built-in data types. This same representation is shared for all
types in the type hierarchy. The reference type representation is defined when
the root type of a type hierarchy is created. When using a reference type, a
structured type is specified as a parameter of the type. This parameter is
called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view.
When a reference type is used, it may have a scope defined. The scope
identifies a table (called the target table) or view (called the target view) that
contains the target row of a reference value. The target table or view must
have the same type as the target type of the reference type. An instance of a
scoped reference type uniquely identifies a row in a typed table or typed
view, called the target row.

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

v “CURRENT PATH” on page 159
v “Character strings” on page 95
v “Assignments and comparisons” on page 117

Structured types

110 SQL Reference, Volume 1

Promotion of data types

Data types can be classified into groups of related data types. Within such
groups, a precedence order exists where one data type is considered to
precede another data type. This precedence is used to allow the promotion of
one data type to a data type later in the precedence ordering. For example,
the data type CHAR can be promoted to VARCHAR; INTEGER can be
promoted to DOUBLE-PRECISION; but CLOB is NOT promotable to
VARCHAR.

Promotion of data types is used when:
v Performing function resolution
v Casting user-defined types
v Assigning user-defined types to built-in data types

Table 7 shows the precedence list (in order) for each data type and can be
used to determine the data types to which a given data type can be promoted.
The table shows that the best choice is always the same data type instead of
choosing to promote to another data type.

Table 7. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB

VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG
VARCHAR

LONG VARCHAR, CLOB

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

VARGRAPHIC VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

LONG
VARGRAPHIC

LONG VARGRAPHIC, DBCLOB

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double

INTEGER INTEGER, BIGINT, decimal, real, double

BIGINT BIGINT, decimal, real, double

decimal decimal, real, double

real real, double

double double

DATE DATE

Promotion of data types

Chapter 2. Language elements 111

Table 7. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

udt udt (same name) or a supertype of udt

REF(T) REF(S) (provided that S is a supertype of T)

Notes:

1. The lowercase types above are defined as follows:

v decimal = DECIMAL(p,s) or NUMERIC(p,s)

v real = REAL or FLOAT(n), where n is not greater than 24

v double = DOUBLE, DOUBLE-PRECISION, FLOAT or FLOAT(n), where n is
greater than 24

v udt = a user-defined type

Shorter and longer form synonyms of the listed data types are considered to be the
same as the listed form.

2. For a Unicode database, the following are considered to be equivalent data types:

v CHAR and GRAPHIC

v VARCHAR and VARGRAPHIC

v LONG VARCHAR and LONG VARGRAPHIC

v CLOB and DBCLOB

Related reference:

v “Functions” on page 168
v “Casting between data types” on page 113
v “Assignments and comparisons” on page 117

Promotion of data types

112 SQL Reference, Volume 1

Casting between data types

There are many occasions where a value with a given data type needs to be
cast to a different data type or to the same data type with a different length,
precision or scale. Data type promotion is one example where the promotion
of one data type to another data type requires that the value be cast to the
new data type. A data type that can be cast to another data type is castable
from the source data type to the target data type.

Casting between data types can be done explicitly using the CAST
specification but may also occur implicitly during assignments involving
user-defined types. Also, when creating sourced user-defined functions, the
data types of the parameters of the source function must be castable to the
data types of the function that is being created.

The supported casts between built-in data types are shown in Table 8 on
page 115. The first column represents the data type of the cast operand (source
data type), and the data types across the top represent the target data type of
the CAST specification.

In a Unicode database, if a truncation occurs when a character or graphic
string is cast to another data type, a warning returns if any nonblank
characters are truncated. This truncation behavior is unlike the assignment of
character or graphic strings to a target when an error occurs if any nonblank
characters are truncated.

The following casts involving distinct types are supported:
v Cast from distinct type DT to its source data type S

v Cast from the source data type S of distinct type DT to distinct type DT

v Cast from distinct type DT to the same distinct type DT

v Cast from a data type A to distinct type DT where A is promotable to the
source data type S of distinct type DT

v Cast from an INTEGER to distinct type DT with a source data type
SMALLINT

v Cast from a DOUBLE to distinct type DT with a source data type REAL
v Cast from a VARCHAR to distinct type DT with a source data type CHAR
v Cast from a VARGRAPHIC to distinct type DT with a source data type

GRAPHIC
v For a Unicode database, cast from a VARCHAR or a VARGRAPHIC to

distinct type DT with a source data type CHAR or GRAPHIC.

It is not possible to specify FOR BIT DATA when performing a cast to a
character type.

Casting between data types

Chapter 2. Language elements 113

It is not possible to cast a structured type value to something else. A
structured type ST should not need to be cast to one of its supertypes,
because all methods on the supertypes of ST are applicable to ST. If the
desired operation is only applicable to a subtype of ST, use the
subtype-treatment expression to treat ST as one of its subtypes.

When a user-defined data type involved in a cast is not qualified by a schema
name, the SQL path is used to find the first schema that includes the
user-defined data type by that name.

The following casts involving reference types are supported:
v cast from reference type RT to its representation data type S

v cast from the representation data type S of reference type RT to reference
type RT

v cast from reference type RT with target type T to a reference type RS with
target type S where S is a supertype of T.

v cast from a data type A to reference type RT, where A is promotable to the
representation data type S of reference type RT.

When the target type of a reference data type involved in a cast is not
qualified by a schema name, the SQL path is used to find the first schema that
includes the user-defined data type by that name.

Casting between data types

114 SQL Reference, Volume 1

Table 8. Supported Casts between Built-in Data Types

Target Data Type →

Source Data Type ↓

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I

M
A
L

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G
V
A
R
G

D
B
C
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

B
L
O
B

SMALLINT Y Y Y Y Y Y Y - - - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - - - -

BIGINT Y Y Y Y Y Y Y - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - - - -

REAL Y Y Y Y Y Y Y - - - - - - - - - - -

DOUBLE Y Y Y Y Y Y Y - - - - - - - - - - -

CHAR Y Y Y Y - - Y Y Y Y Y1 Y1 - - Y Y Y Y

VARCHAR Y Y Y Y - - Y Y Y Y Y1 Y1 - - Y Y Y Y

LONG VARCHAR - - - - - - Y Y Y Y - - Y1 Y1 - - - Y

CLOB - - - - - - Y Y Y Y - - - Y1 - - - Y

GRAPHIC - - - - - - Y1 Y1 - - Y Y Y Y Y1 Y1 Y1 Y

VARGRAPHIC - - - - - - Y1 Y1 - - Y Y Y Y Y1 Y1 Y1 Y

LONG
VARGRAPHIC

- - - - - - - - Y1 Y1 Y Y Y Y - - - Y

DBCLOB - - - - - - - - - Y1 Y Y Y Y - - - Y

DATE - - - - - - Y Y - - Y1 Y1 - - Y - - -

TIME - - - - - - Y Y - - Y1 Y1 - - - Y - -

TIMESTAMP - - - - - - Y Y - - Y1 Y1 - - Y Y Y -

BLOB - - - - - - - - - - - - - - - - - Y

Notes

v See the description preceding the table for information on supported casts involving user-defined
types and reference types.

v Only a DATALINK type can be cast to a DATALINK type.

v It is not possible to cast a structured type value to anything else.

1 Cast is only supported for Unicode databases.

Casting between data types

Chapter 2. Language elements 115

Related reference:

v “Expressions” on page 187
v “CREATE FUNCTION statement” in the SQL Reference, Volume 2

v “CURRENT PATH” on page 159
v “Promotion of data types” on page 111
v “Assignments and comparisons” on page 117

Casting between data types

116 SQL Reference, Volume 1

Assignments and comparisons

The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH,
SELECT INTO, VALUES INTO and SET transition-variable statements.
Arguments of functions are also assigned when invoking a function.
Comparison operations are performed during the execution of statements that
include predicates and other language elements such as MAX, MIN,
DISTINCT, GROUP BY, and ORDER BY.

One basic rule for both operations is that the data type of the operands
involved must be compatible. The compatibility rule also applies to set
operations.

Another basic rule for assignment operations is that a null value cannot be
assigned to a column that cannot contain null values, nor to a host variable
that does not have an associated indicator variable.

Assignments and comparisons involving both character and graphic data are
only supported when one of the strings is a literal.

Following is a compatibility matrix showing the data type compatibilities for
assignment and comparison operations.

Table 9. Data Type Compatibility for Assignments and Comparisons

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Binary
String

UDT

Binary
Integer

Yes Yes Yes No No No No No No 2

Decimal
Number

Yes Yes Yes No No No No No No 2

Floating
Point

Yes Yes Yes No No No No No No 2

Character
String

No No No Yes Yes 6,7 1 1 1 No 3 2

Graphic
String

No No No Yes 6,7 Yes 1 1 1 No 2

Date No No No 1 1 Yes No No No 2

Time No No No 1 1 No Yes No No 2

Timestamp No No No 1 1 No No Yes No 2

Binary
String

No No No No 3 No No No No Yes 2

UDT 2 2 2 2 2 2 2 2 2 Yes

Assignments and comparisons

Chapter 2. Language elements 117

Table 9. Data Type Compatibility for Assignments and Comparisons (continued)

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Binary
String

UDT

1 The compatibility of datetime values and strings is limited to assignment and comparison:

v Datetime values can be assigned to string columns and to string variables.

v A valid string representation of a date can be assigned to a date column or compared with a date.

v A valid string representation of a time can be assigned to a time column or compared with a time.

v A valid string representation of a timestamp can be assigned to a timestamp column or compared
with a timestamp.

(Graphic string support is only available for Unicode databases.)

2 A user-defined distinct type value is only comparable to a value defined with the same user-defined
distinct type. In general, assignments are supported between a distinct type value and its source data
type. A user-defined structured type is not comparable and can only be assigned to an operand of the
same structured type or one of its supertypes. For additional information see “User-defined type
assignments” on page 127.

3 Note that this means that character strings defined with the FOR BIT DATA attribute are also not
compatible with binary strings.

4 A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK value
can only be assigned to a column if the column is defined with NO LINK CONTROL, or the file exists
and is not already under file link control.

5 For information on assignment and comparison of reference types, see “Reference type assignments”
on page 127 and “Reference type comparisons” on page 133.

6 Only supported for Unicode databases.

7 Bit data and graphic strings are not compatible.

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number is never truncated. If the scale of the target number is less
than the scale of the assigned number the excess digits in the fractional part
of a decimal number are truncated.

Decimal or integer to floating-point: Floating-point numbers are
approximations of real numbers. Hence, when a decimal or integer number is
assigned to a floating-point column or variable, the result may not be identical
to the original number.

Floating-point or decimal to integer: When a floating-point or decimal
number is assigned to an integer column or variable, the fractional part of the
number is lost.

Assignments and comparisons

118 SQL Reference, Volume 1

Decimal to decimal: When a decimal number is assigned to a decimal
column or variable, the number is converted, if necessary, to the precision and
the scale of the target. The necessary number of leading zeros is appended or
eliminated, and, in the fractional part of the number, the necessary number of
trailing zeros is appended, or the necessary number of trailing digits is
eliminated.

Integer to decimal: When an integer is assigned to a decimal column or
variable, the number is converted first to a temporary decimal number and
then, if necessary, to the precision and scale of the target. The precision and
scale of the temporary decimal number is 5,0 for a small integer, or 11,0 for a
large integer, or 19,0 for a big integer.

Floating-point to decimal: When a floating-point number is converted to
decimal, the number is first converted to a temporary decimal number of
precision 31, and then, if necessary, truncated to the precision and scale of the
target. In this conversion, the number is rounded (using floating-point
arithmetic) to a precision of 31 decimal digits. As a result, a number less than
0.5*10-31 is reduced to 0. The scale is given the largest possible value that
allows the whole part of the number to be represented without loss of
significance.

String assignments
There are two types of assignments:
v storage assignment is when a value is assigned to a column or parameter of a

routine
v retrieval assignment is when a value is assigned to a host variable.

The rules for string assignment differ based on the assignment type.

Storage assignment: The basic rule is that the length of the string assigned
to a column or routine parameter must not be greater than the length attribute
of the column or the routine parameter. If the length of the string is greater
than the length attribute of the column or the routine parameter, the following
actions may occur:
v The string is assigned with trailing blanks truncated (from all string types

except long strings) to fit the length attribute of the target column or
routine parameter

v An error is returned (SQLSTATE 22001) when:
– Non-blank characters would be truncated from other than a long string
– Any character (or byte) would be truncated from a long string.

If a string is assigned to a fixed-length column and the length of the string is
less than the length attribute of the target, the string is padded to the right
with the necessary number of single-byte, double-byte, or UCS-2 blanks. The

Decimal to decimal

Chapter 2. Language elements 119

pad character is always a blank, even for columns defined with the FOR BIT
DATA attribute. (UCS-2 defines several SPACE characters with different
properties. For a Unicode database, the database manager always uses the
ASCII SPACE at position x’0020’ as UCS-2 blank. For an EUC database, the
IDEOGRAPHIC SPACE at position x’3000’ is used for padding GRAPHIC
strings.)

Retrieval assignment: The length of a string assigned to a host variable may
be longer than the length attribute of the host variable. When a string is
assigned to a host variable and the length of the string is longer than the
length attribute of the variable, the string is truncated on the right by the
necessary number of characters (or bytes). When this occurs, a warning is
returned (SQLSTATE 01004) and the value ’W’ is assigned to the SQLWARN1
field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value
is not a LOB, the indicator variable is set to the original length of the string.

If a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the
right with the necessary number of single-byte, double-byte, or UCS-2 blanks.
The pad character is always a blank, even for strings defined with the FOR
BIT DATA attribute. (UCS-2 defines several SPACE characters with different
properties. For a Unicode database, the database manager always uses the
ASCII SPACE at position x’0020’ as UCS-2 blank. For an EUC database, the
IDEOGRAPHIC SPACE at position x’3000’ is used for padding GRAPHIC
strings.)

Retrieval assignment of C NUL-terminated host variables is handled based on
options specified with the PREP or BIND command.

Conversion rules for string assignments: A character string or graphic string
assigned to a column or host variable is first converted, if necessary, to the
code page of the target. Character conversion is necessary only if all of the
following are true:
v The code pages are different.
v The string is neither null nor empty.
v Neither string has a code page value of 0 (FOR BIT DATA).

For Unicode databases, character strings can be assigned to a graphic column,
and graphic strings can be assigned to a character column.

MBCS considerations for character string assignments: There are several
considerations when assigning character strings that could contain both single

Storage assignment

120 SQL Reference, Volume 1

and multi-byte characters. These considerations apply to all character strings,
including those defined as FOR BIT DATA.
v Blank padding is always done using the single-byte blank character (X'20').
v Blank truncation is always done based on the single-byte blank character

(X'20'). The double-byte blank character is treated like any other character
with respect to truncation.

v Assignment of a character string to a host variable may result in
fragmentation of MBCS characters if the target host variable is not large
enough to contain the entire source string. If an MBCS character is
fragmented, each byte of the MBCS character fragment in the target is set to
a single-byte blank character (X'20'), no further bytes are moved from the
source, and SQLWARN1 is set to ’W’ to indicate truncation. Note that the
same MBCS character fragment handling applies even when the character
string is defined as FOR BIT DATA.

DBCS considerations for graphic string assignments: Graphic string
assignments are processed in a manner analogous to that for character strings.
For non-Unicode databases, graphic string data types are compatible only
with other graphic string data types, and never with numeric, character string,
or datetime data types. For Unicode databases, graphic string data types are
compatible with character string data types.

If a graphic string value is assigned to a graphic string column, the length of
the value must not be greater than the length of the column.

If a graphic string value (the ’source’ string) is assigned to a fixed length
graphic string data type (the ’target’, which can be a column or host variable),
and the length of the source string is less than that of the target, the target
will contain a copy of the source string which has been padded on the right
with the necessary number of double-byte blank characters to create a value
whose length equals that of the target.

If a graphic string value is assigned to a graphic string host variable and the
length of the source string is greater than the length of the host variable, the
host variable will contain a copy of the source string which has been
truncated on the right by the necessary number of double-byte characters to
create a value whose length equals that of the host variable. (Note that for this
scenario, truncation need not be concerned with bisection of a double-byte
character; if bisection were to occur, either the source value or target host
variable would be an ill-defined graphic string data type.) The warning flag
SQLWARN1 in the SQLCA will be set to ’W’. The indicator variable, if
specified, will contain the original length (in double-byte characters) of the
source string. In the case of DBCLOB, however, the indicator variable does not
contain the original length.

MBCS considerations for character string assignments

Chapter 2. Language elements 121

Retrieval assignment of C NUL-terminated host variables (declared using
wchar_t) is handled based on options specified with the PREP or BIND
command.

Datetime assignments
The basic rule for datetime assignments is that a DATE, TIME, or
TIMESTAMP value can only be assigned to a column with a matching data
type (whether DATE, TIME, or TIMESTAMP) or to a fixed- or varying-length
string variable or string column. The assignment must not be to a LONG
VARCHAR, CLOB, LONG VARGRAPHIC, DBCLOB, or BLOB variable or
column.

When a datetime value is assigned to a string variable or string column,
conversion to a string representation is automatic. Leading zeros are not
omitted from any part of the date, time, or timestamp. The required length of
the target will vary, depending on the format of the string representation. If
the length of the target is greater than required, and the target is a
fixed-length string, it is padded on the right with blanks. If the length of the
target is less than required, the result depends on the type of datetime value
involved, and on the type of target.

When the target is a host variable, the following rules apply:
v For a DATE: If the variable length is less than 10 characters, an error

occurs.
v For a TIME: If the USA format is used, the length of the variable must not

be less than 8 characters; in other formats the length must not be less than 5
characters.
If ISO or JIS formats are used, and if the length of the host variable is less
than 8 characters, the seconds part of the time is omitted from the result
and assigned to the indicator variable, if provided. The SQLWARN1 field of
the SQLCA is set to indicate the omission.

v For a TIMESTAMP: If the host variable is less than 19 characters, an error
occurs. If the length is less than 26 characters, but greater than or equal to
19 characters, trailing digits of the microseconds part of the value are
omitted. The SQLWARN1 field of the SQLCA is set to indicate the omission.

DATALINK assignments
The assignment of a value to a DATALINK column results in the
establishment of a link to a file unless the linkage attributes of the value are
empty or the column is defined with NO LINK CONTROL. In cases where a
linked value already exists in the column, that file is unlinked. Assigning a
null value where a linked value already exists also unlinks the file associated
with the old value.

DBCS considerations for graphic string assignments

122 SQL Reference, Volume 1

If the application provides the same data location as already exists in the
column, the link is retained. There are several reasons that this might be done:
v The comment is being changed.
v If the table is placed in Datalink Reconcile Not Possible (DRNP) state, the

links in the table can be reinstated by providing linkage attributes identical
to the ones in the column.

v If the column is defined with WRITE PERMISSION ADMIN and the file
content is changed, a new version of the link can be established by
providing a DATALINK value constructed by using the DLURLNEWCOPY
function with the same data location.

v If the column is defined with WRITE PERMISSION ADMIN and the file
content is changed, but the change needs to be backed out, the existing
version of the link can be reinstated by providing a DATALINK value
constructed by using the DLURLPREVIOUSCOPY function with the same
data location.

v The content of the referenced file is being replaced by another file specified
in the DLURLREPLACECONTENT scalar function.

A DATALINK value may be assigned to a column in any of the following
ways:
v The DLVALUE scalar function can be used to create a new DATALINK

value and assign it to a column. Unless the value contains only a comment
or the URL is exactly the same, the act of assignment will link the file.

v A DATALINK value can be constructed in a CLI parameter using the CLI
function SQLBuildDataLink. This value can then be assigned to a column.
Unless the value contains only a comment or the URL is exactly the same,
the act of assignment will link the file.

v The DLURLNEWCOPY scalar function can be used to construct a
DATALINK value and assign it to a column. The data location referenced
by the constructed DATALINK value must be the same as the one that
already exists in the column. The act of assignment by using an UPDATE
statement will re-establish the link to the file. A file backup will be taken if
the column is defined with RECOVERY YES. This type of assignment is
used to notify the database that the file has been updated. The database is
thus made aware of the new file and will re-establish a new link to the file.

v The DLURLPREVIOUSCOPY scalar function can be used to construct a
DATALINK value and assign it to a column. The data location referenced
by the constructed DATALINK value must be the same as the one that
already exists in the column. The act of assignment by using an UPDATE
statement will reinstate the link. It will also restore the file to the previous
version from the archive if the column is defined with RECOVERY YES.
This type of assignment is used to back out any change to the file that was
made since the previous committed version.

DATALINK assignments

Chapter 2. Language elements 123

v The DLURLREPLACECONTENT scalar function can be used to create a
new DATALINK value and assign it to a column. The act of assignment
will not only link the file, but also replace the content with another file
specified in the DLURLREPLACECONTENT scalar function.

When assigning a value to a DATALINK column, the following error
conditions return SQLSTATE 428D1:
v Data Location (URL) format is invalid (reason code 21).
v File server is not registered with this database (reason code 22).
v Invalid link type specified (reason code 23).
v Invalid length of comment or URL (reason code 27).

Note that the size of a URL parameter or function result is the same on
both input or output, and the size is bound by the length of the
DATALINK column. However, in some cases the URL value is returned
with an access token attached. In situations where this is possible, the
output location must have sufficient storage space for the access token and
the length of the DATALINK column. Hence, the actual length of both the
comment and the URL (in its fully expanded form) provided on input
should be restricted to accommodate the output storage space. If the
restricted length is exceeded, this error is raised.

v Input data location does not contain a valid write token (reason code 32).
The assignment requires a valid write token to be embedded in the data
location. This requirement only applies when the column is defined with
WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE, and the
DATALINK value is constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function. On the other hand, a user has the
option to provide a write token for a DATALINK column defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE.
However, if the token is not valid, the same error is raised.
This error can also occur when constructing a DATALINK value using the
DLURLNEWCOPY or DLURLPREVIOUSCOPY scalar function with value
’1’ specified in the second argument, but the value does not contain a valid
write token.

v The DATALINK value constructed by the DLURLPREVIOUSCOPY scalar
function can be assigned only to a DATALINK column defined with WRITE
PERMISSION ADMIN and RECOVERY YES (reason code 33).

v The DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function does not match the value that
already exists in the column (reason code 34).

v The DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function cannot be used in an INSERT
statement to assign a new value (reason code 35).

DATALINK assignments

124 SQL Reference, Volume 1

v The DATALINK value with scheme DFS cannot be assigned to a
DATALINK column defined with WRITE PERMISSION ADMIN (reason
code 38).

v The DATALINK value constructed by the DLURLNEWCOPY scalar
function cannot be assigned to a DATALINK column defined with WRITE
PERMISSION BLOCKED (reason code 39).

v The same DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function cannot be assigned multiple times
within the same transaction (reason code 41).

v The DATALINK value constructed by the DLURLREPLACECONTENT
scalar function can be assigned to a DATALINK column defined with NO
LINK CONTROL, only if the second argument is an empty string or a null
value (reason code 42).

v The unlink operation of the replacement file specified in the
DLREPLACECONTENT scalar function has not committed (reason code
43).

v The replacement file specified in the DLREPLACECONTENT scalar
function is being used in another replacement process (reason code 44).

v The DATALINK-referenced file is being used as the replacement file in
another operation (reason code 45).

v The format of the replacement file specified in the DLREPLACECONTENT
scalar function is not valid (reason code 46).

v The replacement file value specified in the DLREPLACECONTENT scalar
function cannot be a directory or a symbolic link (reason code 47).

v The replacement file specified in the DLREPLACECONTENT scalar
function is being linked to a database (reason code 48).

v The replacement file specified in the DLREPLACECONTENT scalar
function cannot be found by a Data Links File Manager (reason code 49).

v The DATALINK value constructed by the DLURLNEWCOPY scalar
function with a write token contained in the data location value can be
assigned only to a DATALINK column with WRITE PERMISSION ADMIN
(reason code 50).

When the assignment is also creating a link, the following errors can occur:
v File server not currently available (SQLSTATE 57050).
v File does not exist (SQLSTATE 428D1, reason code 24).
v File already linked to another column (SQLSTATE 428D1, reason code 25).

Note that this error will be raised even if the link is to a different database.
v Referenced file cannot be accessed for linking (reason code 26).
v The write token embedded in the data location does not match the write

token used to open the file (SQLSTATE 428D1, reason code 36).

DATALINK assignments

Chapter 2. Language elements 125

v DATALINK value referenced file is in the update-in-progress state
(SQLSTATE 428D1, reason code 37).

v The previous archive copy of the DATALINK value referenced file is not
available (SQLSTATE 428D1, reason code 40).

In addition, when the assignment removes an existing link, the following
errors can occur:
v File server not currently available (SQLSTATE 57050).
v File with referential integrity control is not in a correct state according to

the Data Links File Manager (SQLSTATE 58004).
v DATALINK value referenced file is in the update-in-progress state

(SQLSTATE 428D1, reason code 37).

If, when retrieving a DATALINK value for write access (by using the
DLURLCOMPLETEWRITE or DLURLPATHWRITE scalar function), the
DATALINK column is defined with WRITE PERMISSION ADMIN, the
directory access privilege is checked at the file server (DataLink File
Manager). The user who issues the query must have the authority to write to
the files under the given directory before a write token is generated and
embedded in the return DATALINK value. If the user does not have write
authority, no write token will be generated, and the SELECT statement will
fail (SQLSTATE 42511, reason code 1).

Portions of a DATALINK value can be assigned to host variables following
the application of scalar functions such as DLLINKTYPE or DLURLPATH.

Note that usually no attempt is made to access the file server at retrieval time.
It is therefore possible that subsequent attempts to access the file server
through file system commands might fail. It may be necessary to access the
file server to determine the prefix name associated with a path. This can be
changed at the file server when the mount point of a file system is moved.
First access of a file on a server will cause the required values to be retrieved
from the file server and cached at the database server for the subsequent
retrieval of DATALINK values for that file server. An error is returned if the
file server cannot be accessed (SQLSTATE 57050).

If using the scalar functions DLURLCOMPLETEWRITE or
DLURLPATHWRITE to retrieve a DATALINK value, it may be necessary to
access the file server to determine the directory access privilege on a path for
a user. An error is returned if the file server cannot be accessed (SQLSTATE
57050).

When retrieving a DATALINK value, the registry of file servers at the
database server is checked to confirm that the file server is still registered
with the database server (SQLSTATE 55022). In addition, a warning may be

DATALINK assignments

126 SQL Reference, Volume 1

returned when retrieving a DATALINK value because the table is in reconcile
pending or reconcile not possible state (SQLSTATE 01627).

User-defined type assignments
With user-defined types, different rules are applied for assignments to host
variables than are used for all other assignments.

Distinct Types: Assignment to host variables is done based on the source type
of the distinct type. That is, it follows the rule:
v A value of a distinct type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the source
type of this distinct type is assignable to this host variable.

If the target of the assignment is a column based on a distinct type, the source
data type must be castable to the target data type.

Structured Types: Assignment to and from host variables is based on the
declared type of the host variable; that is, it follows the rule:

A value of a structured type on the right hand side of an assignment is
assignable to a host variable on the left hand side if and only if the
declared type of the host variable is the structured type or a supertype of
the structured type.

If the target of the assignment is a column of a structured type, the source
data type must be the target data type or a subtype of the target data type.

Reference type assignments
A reference type with a target type of T can be assigned to a reference type
column that is also a reference type with target type of S where S is a
supertype of T. If an assignment is made to a scoped reference column or
variable, no check is performed to ensure that the actual value being assigned
exists in the target table or view defined by the scope.

Assignment to host variables is done based on the representation type of the
reference type. That is, it follows the rule:
v A value of a reference type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the
representation type of this reference type is assignable to this host variable.

If the target of the assignment is a column, and the right hand side of the
assignment is a host variable, the host variable must be explicitly cast to the
reference type of the target column.

Numeric comparisons
Numbers are compared algebraically; that is, with regard to sign. For
example, −2 is less than +1.

DATALINK assignments

Chapter 2. Language elements 127

If one number is an integer and the other is decimal, the comparison is made
with a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended
with trailing zeros so that its fractional part has the same number of digits as
the other number.

If one number is floating-point and the other is integer or decimal, the
comparison is made with a temporary copy of the other number, which has
been converted to double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String comparisons
Character strings are compared according to the collating sequence specified
when the database was created, except those with a FOR BIT DATA attribute
which are always compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is
made using a logical copy of the shorter string which is padded on the right
with single-byte blanks sufficient to extend its length to that of the longer
string. This logical extension is done for all character strings including those
tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are
compared according to the collating sequence specified when the database
was created. For example, the default collating sequence supplied by the
database manager may give lowercase and uppercase versions of the same
character the same weight. The database manager performs a two-pass
comparison to ensure that only identical strings are considered equal to each
other. In the first pass, strings are compared according to the database
collating sequence. If the weights of the characters in the strings are equal, a
second ″tie-breaker″ pass is performed to compare the strings on the basis of
their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. If either operand is null, the result is unknown.

Long strings and LOB strings are not supported in any comparison operations
that use the basic comparison operators (=, <>, <, >, <=, and >=). They are
supported in comparisons using the LIKE predicate and the POSSTR function.

Numeric comparisons

128 SQL Reference, Volume 1

Portions of long strings and LOB strings of up to 4 000 bytes can be compared
using the SUBSTR and VARCHAR scalar functions. For example, given the
columns:

MY_SHORT_CLOB CLOB(300)
MY_LONG_VAR LONG VARCHAR

then the following is valid:
WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

Examples:

For these examples, ’A’, ’Á’, ’a’, and ’á’, have the code point values X’41’,
X’C1’, X’61’, and X’E1’ respectively.

Consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have
weights 136, 139, 135, and 138. Then the characters sort in the order of their
weights as follows:
’a’ < ’A’ < ’á’ < ’Á’

Now consider four DBCS characters D1, D2, D3, and D4 with code points
0xC141, 0xC161, 0xE141, and 0xE161, respectively. If these DBCS characters are
in CHAR columns, they sort as a sequence of bytes according to the collation
weights of those bytes. First bytes have weights of 138 and 139, therefore D3
and D4 come before D2 and D1; second bytes have weights of 135 and 136.
Hence, the order is as follows:
D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or
if these DBCS characters were stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points as follows:

’A’ < ’a’ < ’Á’ < ’á’

The DBCS characters sort as sequence of bytes, in the order of code points as
follows:
D1 < D2 < D3 < D4

Now consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have
(non-unique) weights 74, 75, 74, and 75. Considering collation weights alone
(first pass), ’a’ is equal to ’A’, and ’á’ is equal to ’Á’. The code points of the
characters are used to break the tie (second pass) as follows:
’A’ < ’a’ < ’Á’ < ’á’

DBCS characters in CHAR columns sort a sequence of bytes, according to
their weights (first pass) and then according to their code points to break the

String comparisons

Chapter 2. Language elements 129

tie (second pass). First bytes have equal weights, so the code points (0xC1 and
0xE1) break the tie. Therefore, characters D1 and D2 sort before characters D3
and D4. Then the second bytes are compared in similar way, and the final
result is as follows:
D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute,
or if the DBCS characters are stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points:
D1 < D2 < D3 < D4

For this particular example, the result happens to be the same as when
collation weights were used, but obviously this is not always the case.

Conversion rules for comparison: When two strings are compared, one of
the strings is first converted, if necessary, to the encoding scheme and code
page of the other string.

Ordering of results: Results that require sorting are ordered based on the
string comparison rules discussed in “String comparisons” on page 128. The
comparison is performed at the database server. On returning results to the
client application, code page conversion may be performed. This subsequent
code page conversion does not affect the order of the server-determined result
set.

MBCS considerations for string comparisons: Mixed SBCS/MBCS character
strings are compared according to the collating sequence specified when the
database was created. For databases created with default (SYSTEM) collation
sequence, all single-byte ASCII characters are sorted in correct order, but
double-byte characters are not necessarily in code point sequence. For
databases created with IDENTITY sequence, all double-byte characters are
correctly sorted in their code point order, but single-byte ASCII characters are
sorted in their code point order as well. For databases created with
COMPATIBILITY sequence, a compromise order is used that sorts properly for
most double-byte characters, and is almost correct for ASCII. This was the
default collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in
unusual results for multi-byte characters that occur in mixed strings, because
each byte is considered independently.

Example:

For this example, ’A’, ’B’, ’a’, and ’b’ double-byte characters have the code
point values X'8260', X'8261', X'8281', and X'8282', respectively.

String comparisons

130 SQL Reference, Volume 1

Consider a collating sequence where the code points X'8260', X'8261', X'8281',
and X'8282' have weights 96, 65, 193, and 194. Then:

’B’ < ’A’ < ’a’ < ’b’

and
’AB’ < ’AA’ < ’Aa’ < ’Ab’ < ’aB’ < ’aA’ < ’aa’ < ’ab’

Graphic string comparisons are processed in a manner analogous to that for
character strings.

Graphic string comparisons are valid between all graphic string data types
except LONG VARGRAPHIC. LONG VARGRAPHIC and DBCLOB data types
are not allowed in a comparison operation.

For graphic strings, the collating sequence of the database is not used. Instead,
graphic strings are always compared based on the numeric (binary) values of
their corresponding bytes.

Using the previous example, if the literals were graphic strings, then:
’A’ < ’B’ < ’a’ < ’b’

and
’AA’ < ’AB’ < ’Aa’ < ’Ab’ < ’aA’ < ’aB’ < ’aa’ < ’ab’

When comparing graphic strings of unequal lengths, the comparison is made
using a logical copy of the shorter string which is padded on the right with
double-byte blank characters sufficient to extend its length to that of the
longer string.

Two graphic values are equal if they are both empty or if all corresponding
graphics are equal. If either operand is null, the result is unknown. If two
values are not equal, their relation is determined by a simple binary string
comparison.

As indicated in this section, comparing strings on a byte by byte basis can
produce unusual results; that is, a result that differs from what would be
expected in a character by character comparison. The examples shown here
assume the same MBCS code page, however, the situation can be further
complicated when using different multi-byte code pages with the same
national language. For example, consider the case of comparing a string from
a Japanese DBCS code page and a Japanese EUC code page.

Datetime comparisons
A DATE, TIME, or TIMESTAMP value may be compared either with another
value of the same data type or with a string representation of that data type.

MBCS considerations for string comparisons

Chapter 2. Language elements 131

All comparisons are chronological, which means the farther a point in time is
from January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero
seconds is implied.

Comparisons involving TIMESTAMP values are chronological without regard
to representations that might be considered equivalent.

Example:
TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

User-defined type comparisons
Values with a user-defined distinct type can only be compared with values of
exactly the same user-defined distinct type. The user-defined distinct type
must have been defined using the WITH COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:
CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER
(NAME VARCHAR(20),

ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,
HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a
function or CAST specification to cast between the distinct type and the
source type. The following comparisons are all valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

Datetime comparisons

132 SQL Reference, Volume 1

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Values with a user-defined structured type cannot be compared with any
other value (the NULL predicate and the TYPE predicate can be used).

Reference type comparisons
Reference type values can be compared only if their target types have a
common supertype. The appropriate comparison function will only be found
if the schema name of the common supertype is included in the function path.
The comparison is performed using the representation type of the reference
types. The scope of the reference is not considered in the comparison.

Related reference:

v “Identifiers” on page 65
v “LIKE predicate” on page 238
v “POSSTR” on page 427
v “Datetime values” on page 101
v “Casting between data types” on page 113
v “Rules for result data types” on page 134
v “Rules for string conversions” on page 139

User-defined type comparisons

Chapter 2. Language elements 133

Rules for result data types

The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:
v Corresponding columns in fullselects of set operations (UNION,

INTERSECT and EXCEPT)
v Result expressions of a CASE expression
v Arguments of the scalar function COALESCE (or VALUE)
v Expression values of the in list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on long strings for the
various operations.

The rules involving various data types follow. In some cases, a table is used to
show the possible result data types.

These tables identify the data type of the result, including the applicable
length or precision and scale. The result type is determined by considering the
operands. If there is more than one pair of operands, start by considering the
first pair. This gives a result type which is considered with the next operand
to determine the next result type, and so on. The last intermediate result type
and the last operand determine the result type for the operation. Processing of
operations is done from left to right so that the intermediate result types are
important when operations are repeated. For example, consider a situation
involving:

CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4
characters. The final result type is VARCHAR(4). Values in the result from the
first UNION operation will always have a length of 4.

Character strings
Character strings are compatible with other character strings. Character strings
include data types CHAR, VARCHAR, LONG VARCHAR, and CLOB.

If one operand is... And the other operand
is...

The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) where z = max(x,y)

Rules for result data types

134 SQL Reference, Volume 1

If one operand is... And the other operand
is...

The data type of the result is...

LONG VARCHAR CHAR(y),
VARCHAR(y), or
LONG VARCHAR

LONG VARCHAR

CLOB(x) CHAR(y),
VARCHAR(y), or
CLOB(y)

CLOB(z) where z = max(x,y)

CLOB(x) LONG VARCHAR CLOB(z) where z = max(x,32700)

The code page of the result character string will be derived based on the rules
for string conversions.

Graphic strings
Graphic strings are compatible with other graphic strings. Graphic strings
include data types GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and
DBCLOB.

If one operand is... And the other operand
is...

The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR
VARGRAPHIC(y)

VARGRAPHIC(z) where z =
max(x,y)

LONG VARGRAPHIC GRAPHIC(y),
VARGRAPHIC(y), or
LONG VARGRAPHIC

LONG VARGRAPHIC

DBCLOB(x) GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max (x,y)

DBCLOB(x) LONG VARGRAPHIC DBCLOB(z) where z = max
(x,16350)

The code page of the result graphic string will be derived based on the rules
for string conversions.

Character and graphic strings in a Unicode database
In a Unicode database, character strings and graphic strings are compatible.

If one operand is... And the other operand
is...

The data type of the result is...

GRAPHIC(x) CHAR(y) or
GRAPHIC(y)

GRAPHIC(z) where z = max(x,y)

Character strings

Chapter 2. Language elements 135

If one operand is... And the other operand
is...

The data type of the result is...

VARGRAPHIC(x) CHAR(y) or
VARCHAR(y)

VARGRAPHIC(z) where z =
max(x,y)

VARCHAR(x) GRAPHIC(y) or
VARGRAPHIC

VARGRAPHIC(z) where z =
max(x,y)

LONG VARGRAPHIC CHAR(y) or
VARCHAR(y) or LONG
VARCHAR

LONG VARGRAPHIC

LONG VARCHAR GRAPHIC(y) or
VARGRAPHIC(y)

LONG VARGRAPHIC

DBCLOB(x) CHAR(y) or
VARCHAR(y) or
CLOB(y)

DBCLOB(z) where z = max(x,y)

DBCLOB(x) LONG VARCHAR DBCLOB(z) where z =
max(x,16350)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

CLOB(x) LONG VARGRAPHIC DBCLOB(z) where z =
max(x,16350)

Binary large object (BLOB)
A BLOB is compatible only with another BLOB and the result is a BLOB. The
BLOB scalar function can be used to cast from other types if they should be
treated as BLOB types. The length of the result BLOB is the largest length of
all the data types.

Numeric
Numeric types are compatible with other numeric types. Numeric types
include SMALLINT, INTEGER, BIGINT, DECIMAL, REAL and DOUBLE.

If one operand is... And the other operand
is...

The data type of the result is...

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

BIGINT BIGINT BIGINT

BIGINT INTEGER BIGINT

BIGINT SMALLINT BIGINT

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

Character and graphic strings in a Unicode database

136 SQL Reference, Volume 1

If one operand is... And the other operand
is...

The data type of the result is...

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s

= max(x,z)

REAL REAL REAL

REAL DECIMAL, BIGINT,
INTEGER, or
SMALLINT

DOUBLE

DOUBLE any numeric DOUBLE
1 Precision cannot exceed 31.

DATE
A date is compatible with another date, or any CHAR or VARCHAR
expression that contains a valid string representation of a date. The data type
of the result is DATE.

TIME
A time is compatible with another time, or any CHAR or VARCHAR
expression that contains a valid string representation of a time. The data type
of the result is TIME.

TIMESTAMP
A timestamp is compatible with another timestamp, or any CHAR or
VARCHAR expression that contains a valid string representation of a
timestamp. The data type of the result is TIMESTAMP.

DATALINK
A datalink is compatible with another datalink. The data type of the result is
DATALINK. The length of the result DATALINK is the largest length of all
the data types.

User-defined types

Distinct types: A user-defined distinct type is compatible only with the same
user-defined distinct type. The data type of the result is the user-defined
distinct type.

Reference types: A reference type is compatible with another reference type
provided that their target types have a common supertype. The data type of

Numeric

Chapter 2. Language elements 137

the result is a reference type having the common supertype as the target type.
If all operands have the identical scope table, the result has that scope table.
Otherwise the result is unscoped.

Structured types: A structured type is compatible with another structured
type provided that they have a common supertype. The static data type of the
resulting structured type column is the structured type that is the least
common supertype of either column.

For example, consider the following structured type hierarchy,
A
/ \
B C
/ \
D E
/ \
F G

Structured types of the static type E and F are compatible with the resulting
static type of B, which is the least common super type of E and F.

Nullable attribute of result
With the exception of INTERSECT and EXCEPT, the result allows nulls unless
both operands do not allow nulls.
v For INTERSECT, if either operand does not allow nulls the result does not

allow nulls (the intersection would never be null).
v For EXCEPT, if the first operand does not allow nulls the result does not

allow nulls (the result can only be values from the first operand).

Related reference:

v “BLOB” on page 301
v “Rules for string conversions” on page 139

Reference types

138 SQL Reference, Volume 1

Rules for string conversions

The code page used to perform an operation is determined by rules which are
applied to the operands in that operation. This section explains those rules.

These rules apply to:
v Corresponding string columns in fullselects with set operations (UNION,

INTERSECT and EXCEPT)
v Operands of concatenation
v Operands of predicates (with the exception of LIKE)
v Result expressions of a CASE expression
v Arguments of the scalar function COALESCE (and VALUE)
v Expression values of the in list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause.

In each case, the code page of the result is determined at bind time, and the
execution of the operation may involve conversion of strings to the code page
identified by that code page. A character that has no valid conversion is
mapped to the substitution character for the character set and SQLWARN10 is
set to ’W’ in the SQLCA.

The code page of the result is determined by the code pages of the operands.
The code pages of the first two operands determine an intermediate result
code page, this code page and the code page of the next operand determine a
new intermediate result code page (if applicable), and so on. The last
intermediate result code page and the code page of the last operand
determine the code page of the result string or column. For each pair of code
pages, the result is determined by the sequential application of the following
rules:
v If the code pages are equal, the result is that code page.
v If either code page is BIT DATA (code page 0), the result code page is BIT

DATA.
v In a Unicode database, if one code page denotes data in an encoding

scheme that is different from the other code page, the result is UCS-2 over
UTF-8 (that is, the graphic data type over the character data type). (In a
non-Unicode database, conversion between different encoding schemes is
not supported.)

v For operands that are host variables (whose code page is not BIT DATA),
the result code page is the database code page. Input data from such host
variables is converted from the application code page to the database code
page before being used.

Conversions to the code page of the result are performed, if necessary, for:

Rules for string conversions

Chapter 2. Language elements 139

v An operand of the concatenation operator
v The selected argument of the COALESCE (or VALUE) scalar function
v The selected result expression of the CASE expression
v The expressions of the in list of the IN predicate
v The corresponding expressions of a multiple row VALUES clause
v The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:
v The code pages are different
v Neither string is BIT DATA
v The string is neither null nor empty

Examples

Example 1: Given the following in a database created with code page 850:

Expression Type Code Page

COL_1 column 850

HV_2 host variable 437

When evaluating the predicate:
COL_1 CONCAT :HV_2

the result code page of the two operands is 850, because the host variable data
will be converted to the database code page before being used.

Example 2: Using information from the previous example when evaluating the
predicate:

COALESCE(COL_1, :HV_2:NULLIND,)

the result code page is 850; therefore, the result code page for the COALESCE
scalar function will be code page 850.

Rules for string conversions

140 SQL Reference, Volume 1

Partition-compatible data types

Partition compatibility is defined between the base data types of corresponding
columns of partitioning keys. Partition-compatible data types have the
property that two variables, one of each type, with the same value, are
mapped to the same partitioning map index by the same partitioning
function.

Table 10 shows the compatibility of data types in partitions.

Partition compatibility has the following characteristics:
v Internal formats are used for DATE, TIME, and TIMESTAMP. They are not

compatible with each other, and none are compatible with CHAR.
v Partition compatibility is not affected by columns with NOT NULL or FOR

BIT DATA definitions.
v NULL values of compatible data types are treated identically. Different

results might be produced for NULL values of non-compatible data types.
v Base data type of the UDT is used to analyze partition compatibility.
v Decimals of the same value in the partitioning key are treated identically,

even if their scale and precision differ.
v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or

VARGRAPHIC) are ignored by the system-provided hashing function.
v CHAR or VARCHAR of different lengths are compatible data types.
v REAL or DOUBLE values that are equal are treated identically even though

their precision differs.

Table 10. Partition Compatibilities

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Distinct
Type

Structured
Type

Binary
Integer

Yes No No No No No No No 1 No

Decimal
Number

No Yes No No No No No No 1 No

Floating
Point

No No Yes No No No No No 1 No

Character
String3

No No No Yes2 No No No No 1 No

Graphic
String3

No No No No Yes No No No 1 No

Date No No No No No Yes No No 1 No

Time No No No No No No Yes No 1 No

Partition-compatible data types

Chapter 2. Language elements 141

Table 10. Partition Compatibilities (continued)

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Distinct
Type

Structured
Type

TimestampNo No No No No No No Yes 1 No

Distinct
Type

1 1 1 1 1 1 1 1 1 No

Structured
Type3

No No No No No No No No No No

Note:
1 A user-defined distinct type (UDT) value is partition compatible with the source type of the

UDT or any other UDT with a partition compatible source type.
2 The FOR BIT DATA attribute does not affect the partition compatibility.
3 Note that user-defined structured types and data types LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, and BLOB are not applicable for partition compatibility since
they are not supported in partitioning keys.

Partition-compatible data types

142 SQL Reference, Volume 1

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified
as string constants or numeric constants. Numeric constants are further
classified as integer, floating-point, or decimal.

All constants have the NOT NULL attribute.

A negative zero value in a numeric constant (-0) is the same value as a zero
without the sign (0).

User-defined types have strong typing. This means that a user-defined type is
only compatible with its own type. A constant, however, has a built-in type.
Therefore, an operation involving a user-defined type and a constant is only
possible if the user-defined type has been cast to the constant’s built-in type,
or if the constant has been cast to the user-defined type. For example, using
the table and distinct type in “User-defined type comparisons” on page 132,
the following comparisons with the constant 14 are valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(14 AS YOUTH)

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > 14

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of
an integer constant is large integer if its value is within the range of a large
integer. The data type of an integer constant is big integer if its value is
outside the range of large integer but within the range of a big integer. A
constant that is defined outside the range of big integer values is considered a
decimal constant.

Note that the smallest literal representation of a large integer constant is
-2 147 483 647, and not -2 147 483 648, which is the limit for integer values.
Similarly, the smallest literal representation of a big integer constant is
-9 223 372 036 854 775 807, and not -9 223 372 036 854 775 808, which is the limit
for big integer values.

Examples:
64 -15 +100 32767 720176 12345678901

Constants

Chapter 2. Language elements 143

In syntax diagrams, the term 'integer' is used for a large integer constant that
must not include a sign.

Floating-point constants
A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may include a sign and a decimal point;
the second number may include a sign but not a decimal point. The data type
of a floating-point constant is double-precision. The value of the constant is
the product of the first number and the power of 10 specified by the second
number; it must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30.

Examples:
15E1 2.E5 2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number that consists of no more
than 31 digits and either includes a decimal point or is not within the range of
binary integers. It must be within the range of decimal numbers. The
precision is the total number of digits (including leading and trailing zeros);
the scale is the number of digits to the right of the decimal point (including
trailing zeros).

Examples:
25.5 1000. -15. +37589.3333333333

Character string constants
A character string constant specifies a varying-length character string, and
consists of a sequence of characters that starts and ends with an apostrophe
('). This form of string constant specifies the character string contained
between the string delimiters. The length of the character string must not be
greater than 32 672 bytes. Two consecutive string delimiters are used to
represent one string delimiter within the character string.

Examples:
'12/14/1985'
'32'
'DON''T CHANGE'

The constant value is always converted to the database code page when it is
bound to the database. It is considered to be in the database code page.
Therefore, if used in an expression that combines a constant with a FOR BIT
DATA column, and whose result is FOR BIT DATA, the constant value will
not be converted from its database code page representation when used.

Integer constants

144 SQL Reference, Volume 1

Hexadecimal constants
A hexadecimal constant specifies a varying-length character string in the code
page of the application server.

The format of a hexadecimal constant is an X followed by a sequence of
characters that starts and ends with an apostrophe ('). The characters between
the apostrophes must be an even number of hexadecimal digits. The number
of hexadecimal digits must not exceed 16 336, otherwise an error is raised
(SQLSTATE -54002). A hexadecimal digit represents 4 bits. It is specified as a
digit or any of the letters A through F (uppercase or lowercase), where A
represents the bit pattern '1010', B represents '1011', and so on. If a
hexadecimal constant is improperly formatted (for example, if it contains an
invalid hexadecimal digit or an odd number of hexadecimal digits), an error is
raised (SQLSTATE 42606).

Examples:
X'FFFF' representing the bit pattern '1111111111111111'

X'4672616E6B' representing the VARCHAR pattern of the ASCII string 'Frank'

Graphic string constants
A graphic string constant specifies a varying-length graphic string consisting of
a sequence of double-byte characters that starts and ends with a single-byte
apostrophe ('), and that is preceded by a single-byte G or N. The characters
between the apostrophes must represent an even number of bytes, and the
length of the graphic string must not exceed 16 336 bytes.

Examples:
G'double-byte character string'
N'double-byte character string'

The apostrophe must not appear as part of an MBCS character to be
considered a delimiter.

Related reference:

v “Expressions” on page 187
v “Assignments and comparisons” on page 117

Hexadecimal constants

Chapter 2. Language elements 145

Special registers

Special registers

A special register is a storage area that is defined for an application process by
the database manager. It is used to store information that can be referenced in
SQL statements. Special registers are in the database code page.

The name of a special register can be specified with the underscore character;
for example, CURRENT_DATE.

Some special registers can be updated using the SET statement. The following
table shows which of the special registers can be updated.

Table 11. Updatable Special Registers

Special Register Updatable

CLIENT ACCTNG Yes

CLIENT APPLNAME Yes

CLIENT USERID Yes

CLIENT WRKSTNNAME Yes

CURRENT DATE No

CURRENT DBPARTITIONNUM No

CURRENT DEFAULT TRANSFORM GROUP Yes

CURRENT DEGREE Yes

CURRENT EXPLAIN MODE Yes

CURRENT EXPLAIN SNAPSHOT Yes

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION Yes

CURRENT PATH Yes

CURRENT QUERY OPTIMIZATION Yes

CURRENT REFRESH AGE Yes

CURRENT SCHEMA Yes

CURRENT SERVER No

CURRENT TIME No

CURRENT TIMESTAMP No

CURRENT TIMEZONE No

USER No

When a special register is referenced in a routine, the value of the special
register in the routine depends on whether the special register is updatable or

Special registers

146 SQL Reference, Volume 1

not. For non-updatable special registers, the value is set to the default value
for the special register. For updatable special registers, the initial value is
inherited from the invoker of the routine and can be changed with a
subsequent SET statement inside the routine.

Special registers

Chapter 2. Language elements 147

CLIENT ACCTNG

The CLIENT ACCTNG special register contains the value of the accounting
string from the client information specified for this connection. The data type
of the register is VARCHAR(255). The default value of this register is an
empty string.

The value of the accounting string can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Get the current value of the accounting string for this connection.
VALUES (CLIENT ACCTNG)

INTO :ACCT_STRING

CLIENT ACCTNG

148 SQL Reference, Volume 1

CLIENT APPLNAME

The CLIENT APPLNAME special register contains the value of the application
name from the client information specified for this connection. The data type
of the register is VARCHAR(255). The default value of this register is an
empty string.

The value of the application name can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Select which departments are allowed to use the application being
used in this connection.

SELECT DEPT
FROM DEPT_APPL_MAP
WHERE APPL_NAME = CLIENT APPLNAME

CLIENT APPLNAME

Chapter 2. Language elements 149

CLIENT USERID

The CLIENT USERID special register contains the value of the client user ID
from the client information specified for this connection. The data type of the
register is VARCHAR(255). The default value of this register is an empty
string.

The value of the client user ID can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Find out in which department the current client user ID works.
SELECT DEPT

FROM DEPT_USERID_MAP
WHERE USER_ID = CLIENT USERID

CLIENT USERID

150 SQL Reference, Volume 1

CLIENT WRKSTNNAME

The CLIENT WRKSTNNAME special register contains the value of the
workstation name from the client information specified for this connection.
The data type of the register is VARCHAR(255). The default value of this
register is an empty string.

The value of the workstation name can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Get the workstation name being used for this connection.
VALUES (CLIENT WRKSTNNAME)

INTO :WS_NAME

CLIENT WRKSTNNAME

Chapter 2. Language elements 151

CURRENT DATE

The CURRENT DATE (or CURRENT_DATE) special register specifies a date
that is based on a reading of the time-of-day clock when the SQL statement is
executed at the application server. If this special register is used more than
once within a single SQL statement, or used with CURRENT TIME or
CURRENT TIMESTAMP within a single statement, all values are based on a
single clock reading.

When used in an SQL statement inside a routine, CURRENT DATE is not
inherited from the invoking statement.

In a federated system, CURRENT DATE can be used in a query intended for
data sources. When the query is processed, the date returned will be obtained
from the CURRENT DATE register at the federated server, not from the data
sources.

Example: Using the PROJECT table, set the project end date (PRENDATE) of
the MA2111 project (PROJNO) to the current date.

UPDATE PROJECT
SET PRENDATE = CURRENT DATE
WHERE PROJNO = ’MA2111’

CURRENT DATE

152 SQL Reference, Volume 1

CURRENT DBPARTITIONNUM

The CURRENT DBPARTITIONNUM (or CURRENT_DBPARTITIONNUM)
special register specifies an INTEGER value that identifies the coordinator
node number for the statement. For statements issued from an application, the
coordinator is the partition to which the application connects. For statements
issued from a routine, the coordinator is the partition from which the routine
is invoked.

When used in an SQL statement inside a routine, CURRENT
DBPARTITIONNUM is never inherited from the invoking statement.

CURRENT DBPARTITIONNUM returns 0 if the database instance is not
defined to support partitioning. (In other words, if there is no db2nodes.cfg
file. For partitioned databases, the db2nodes.cfg file exists and contains
partition, or node, definitions.)

CURRENT DBPARTITIONNUM can be changed through the CONNECT
statement, but only under certain conditions.

For compatibility with versions earlier than Version 8, the keyword NODE can
be substituted for DBPARTITIONNUM.

Example: Set the host variable APPL_NODE (integer) to the number of the
partition to which the application is connected.

VALUES CURRENT DBPARTITIONNUM
INTO :APPL_NODE

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

CURRENT DBPARTITIONNUM

Chapter 2. Language elements 153

CURRENT DEFAULT TRANSFORM GROUP

The CURRENT DEFAULT TRANSFORM GROUP (or
CURRENT_DEFAULT_TRANSFORM_GROUP) special register specifies a
VARCHAR(18) value that identifies the name of the transform group used by
dynamic SQL statements for exchanging user-defined structured type values
with host programs. This special register does not specify the transform
groups used in static SQL statements, or in the exchange of parameters and
results with external functions or methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP
statement. If no value is set, the initial value of the special register is the
empty string (a VARCHAR with a length of zero).

In a dynamic SQL statement (that is, one which interacts with host variables),
the name of the transform group used for exchanging values is the same as
the value of this special register, unless this register contains the empty string.
If the register contains the empty string (no value was set by using the SET
CURRENT DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM
transform group is used for the transform. If the DB2_PROGRAM transform
group is not defined for the structured type subject, an error is raised at run
time (SQLSTATE 42741).

Examples:

Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL
functions defined in the MYSTRUCT1 transform are used to exchange
user-defined structured type variables with the host program.

SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

Retrieve the name of the default transform group assigned to this special
register.

VALUES (CURRENT DEFAULT TRANSFORM GROUP)

CURRENT DEFAULT TRANSFORM GROUP

154 SQL Reference, Volume 1

CURRENT DEGREE

The CURRENT DEGREE (or CURRENT_DEGREE) special register specifies
the degree of intra-partition parallelism for the execution of dynamic SQL
statements. (For static SQL, the DEGREE bind option provides the same
control.) The data type of the register is CHAR(5). Valid values are ANY or
the string representation of an integer between 1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an
SQL statement is dynamically prepared, the execution of that statement will
not use intra-partition parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1
and less than or equal to 32 767 when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition
parallelism with the specified degree.

If the value of CURRENT DEGREE is ANY when an SQL statement is
dynamically prepared, the execution of that statement can involve
intra-partition parallelism using a degree determined by the database
manager.

The actual runtime degree of parallelism will be the lower of:
v The value of the maximum query degree (max_querydegree) configuration

parameter
v The application runtime degree
v The SQL statement compilation degree.

If the intra_parallel database manager configuration parameter is set to NO,
the value of the CURRENT DEGREE special register will be ignored for the
purpose of optimization, and the statement will not use intra-partition
parallelism.

The value can be changed by invoking the SET CURRENT DEGREE
statement.

The initial value of CURRENT DEGREE is determined by the dft_degree
database configuration parameter.

Related reference:

v “SET CURRENT DEGREE statement” in the SQL Reference, Volume 2

CURRENT DEGREE

Chapter 2. Language elements 155

CURRENT EXPLAIN MODE

The CURRENT EXPLAIN MODE (or CURRENT_EXPLAIN_MODE) special
register holds a VARCHAR(254) value which controls the behavior of the
Explain facility with respect to eligible dynamic SQL statements. This facility
generates and inserts Explain information into the Explain tables. This
information does not include the Explain snapshot. Possible values are YES,
NO, EXPLAIN, RECOMMEND INDEXES, and EVALUATE INDEXES. (For
static SQL, the EXPLAIN bind option provides the same control. In the case of
the PREP and BIND commands, the EXPLAIN option values are: YES, NO,
and ALL.)

YES Enables the Explain facility and causes Explain information for a
dynamic SQL statement to be captured when the statement is
compiled.

EXPLAIN
Enables the facility, but dynamic statements are not executed.

NO Disables the Explain facility.

RECOMMEND INDEXES
Recommends a set of indexes for each dynamic query. Populates the
ADVISE_INDEX table with the set of indexes.

EVALUATE INDEXES
Explains dynamic queries as though the recommended indexes
existed. The indexes are picked up from the ADVISE_INDEX table.

The initial value is NO. The value can be changed by invoking the SET
CURRENT EXPLAIN MODE statement.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values interact when the Explain facility is invoked. The
CURRENT EXPLAIN MODE special register also interacts with the EXPLAIN
bind option. RECOMMEND INDEXES and EVALUATE INDEXES can only be
set for the CURRENT EXPLAIN MODE register, and must be set using the
SET CURRENT EXPLAIN MODE statement.

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value
currently in the CURRENT EXPLAIN MODE special register.

VALUES CURRENT EXPLAIN MODE
INTO :EXPL_MODE

Related reference:

v “SET CURRENT EXPLAIN MODE statement” in the SQL Reference, Volume
2

v Appendix K, “Explain register values” on page 857

CURRENT EXPLAIN MODE

156 SQL Reference, Volume 1

CURRENT EXPLAIN SNAPSHOT

The CURRENT EXPLAIN SNAPSHOT (or CURRENT_EXPLAIN_SNAPSHOT)
special register holds a CHAR(8) value that controls the behavior of the
Explain snapshot facility. This facility generates compressed information,
including access plan information, operator costs, and bind-time statistics.

Only the following statements consider the value of this register: DELETE,
INSERT, SELECT, SELECT INTO, UPDATE, VALUES, or VALUES INTO.
Possible values are YES, NO, and EXPLAIN. (For static SQL, the EXPLSNAP
bind option provides the same control. In the case of the PREP and BIND
commands, the EXPLSNAP option values are: YES, NO, and ALL.)

YES Enables the Explain snapshot facility and takes a snapshot of the
internal representation of a dynamic SQL statement as the statement is
compiled.

EXPLAIN
Enables the facility, but dynamic statements are not executed.

NO Disables the Explain snapshot facility.

The initial value is NO. The value can be changed by invoking the SET
CURRENT EXPLAIN SNAPSHOT statement.

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE
special register values interact when the Explain facility is invoked. The
CURRENT EXPLAIN SNAPSHOT special register also interacts with the
EXPLSNAP bind option.

Example: Set the host variable EXPL_SNAP (char(8)) to the value currently in
the CURRENT EXPLAIN SNAPSHOT special register.

VALUES CURRENT EXPLAIN SNAPSHOT
INTO :EXPL_SNAP

Related reference:

v “SET CURRENT EXPLAIN SNAPSHOT statement” in the SQL Reference,
Volume 2

v Appendix K, “Explain register values” on page 857

CURRENT EXPLAIN SNAPSHOT

Chapter 2. Language elements 157

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special
register specifies a VARCHAR(254) value that identifies the types of tables
that can be considered when optimizing the processing of dynamic SQL
queries. Materialized query tables are never considered by static embedded
SQL queries.

The initial value of CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION is SYSTEM. Its value can be changed by the SET CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION statement.

Related reference:

v “SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
statement” in the SQL Reference, Volume 2

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

158 SQL Reference, Volume 1

CURRENT PATH

The CURRENT PATH (or CURRENT_PATH) special register specifies a
VARCHAR(254) value that identifies the SQL path to be used when resolving
function references and data type references in dynamically prepared SQL
statements. CURRENT FUNCTION PATH is a synonym for CURRENT PATH.
CURRENT PATH is also used to resolve stored procedure references in CALL
statements. The initial value is the default value specified below. For static
SQL, the FUNCPATH bind option provides an SQL path that is used for
function and data type resolution.

The CURRENT PATH special register contains a list of one or more schema
names that are enclosed by double quotation marks and separated by
commas. For example, an SQL path specifying that the database manager is to
look first in the FERMAT schema, then in the XGRAPHIC schema, and finally
in the SYSIBM schema, is returned in the CURRENT PATH special register as:
"FERMAT","XGRAPHIC","SYSIBM"

The default value is “SYSIBM”,“SYSFUN”,“SYSPROC”,X, where X is the
value of the USER special register, delimited by double quotation marks. The
value can be changed by invoking the SET CURRENT PATH statement. The
schema SYSIBM does not need to be specified. If it is not included in the SQL
path, it is implicitly assumed to be the first schema. SYSIBM does not take up
any of the 254 characters if it is implicitly assumed.

A data type that is not qualified with a schema name will be implicitly
qualified with the first schema in the SQL path that contains a data type with
the same unqualified name. There are exceptions to this rule, as outlined in
the descriptions of the following statements: CREATE DISTINCT TYPE,
CREATE FUNCTION, COMMENT, and DROP.

Example: Using the SYSCAT.VIEWS catalog view, find all views that were
created with the same setting as the current value of the CURRENT PATH
special register.

SELECT VIEWNAME, VIEWSCHEMA FROM SYSCAT.VIEWS
WHERE FUNC_PATH = CURRENT PATH

Related reference:

v “Functions” on page 168
v “SET PATH statement” in the SQL Reference, Volume 2

CURRENT PATH

Chapter 2. Language elements 159

CURRENT QUERY OPTIMIZATION

The CURRENT QUERY OPTIMIZATION (or
CURRENT_QUERY_OPTIMIZATION) special register specifies an INTEGER
value that controls the class of query optimization performed by the database
manager when binding dynamic SQL statements. The QUERYOPT bind
option controls the class of query optimization for static SQL statements. The
possible values range from 0 to 9. For example, if the query optimization class
is set to 0 (minimal optimization), then the value in the special register is 0.
The default value is determined by the dft_queryopt database configuration
parameter. The value can be changed by invoking the SET CURRENT QUERY
OPTIMIZATION statement.

Example: Using the SYSCAT.PACKAGES catalog view, find all plans that were
bound with the same setting as the current value of the CURRENT QUERY
OPTIMIZATION special register.

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

Related reference:

v “SET CURRENT QUERY OPTIMIZATION statement” in the SQL Reference,
Volume 2

CURRENT QUERY OPTIMIZATION

160 SQL Reference, Volume 1

CURRENT REFRESH AGE

The CURRENT REFRESH AGE special register specifies a timestamp duration
value with a data type of DECIMAL(20,6). It is the maximum duration since a
particular timestamped event occurred to a cached data object (for example, a
REFRESH TABLE statement processed on a system-maintained REFRESH
DEFERRED materialized query table), such that the cached data object can be
used to optimize the processing of a query. If CURRENT REFRESH AGE has a
value of 99 999 999 999 999 (ANY), and the query optimization class is 5 or
more, the types of tables specified in CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION are considered when optimizing the processing
of a dynamic SQL query.

The initial value of CURRENT REFRESH AGE is zero. The value can be
changed by invoking the SET CURRENT REFRESH AGE statement.

Related reference:

v “SET CURRENT REFRESH AGE statement” in the SQL Reference, Volume 2

CURRENT REFRESH AGE

Chapter 2. Language elements 161

CURRENT SCHEMA

The CURRENT SCHEMA (or CURRENT_SCHEMA) special register specifies a
VARCHAR(128) value that identifies the schema name used to qualify
database object references, where applicable, in dynamically prepared SQL
statements. For compatibility with DB2 for OS/390, CURRENT SQLID (or
CURRENT_SQLID) is a synonym for CURRENT SCHEMA.

The initial value of CURRENT SCHEMA is the authorization ID of the current
session user. The value can be changed by invoking the SET SCHEMA
statement.

The QUALIFIER bind option controls the schema name used to qualify
database object references, where applicable, for static SQL statements.

Example: Set the schema for object qualification to 'D123'.
SET CURRENT SCHEMA = 'D123'

CURRENT SCHEMA

162 SQL Reference, Volume 1

CURRENT SERVER

The CURRENT SERVER (or CURRENT_SERVER) special register specifies a
VARCHAR(18) value that identifies the current application server. The register
contains the actual name of the application server, not an alias.

CURRENT SERVER can be changed through the CONNECT statement, but
only under certain conditions.

When used in an SQL statement inside a routine, CURRENT SERVER is not
inherited from the invoking statement.

Example: Set the host variable APPL_SERVE (VARCHAR(18)) to the name of
the application server to which the application is connected.

VALUES CURRENT SERVER INTO :APPL_SERVE

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

CURRENT SERVER

Chapter 2. Language elements 163

CURRENT TIME

The CURRENT TIME (or CURRENT_TIME) special register specifies a time
that is based on a reading of the time-of-day clock when the SQL statement is
executed at the application server. If this special register is used more than
once within a single SQL statement, or used with CURRENT DATE or
CURRENT TIMESTAMP within a single statement, all values are based on a
single clock reading.

When used in an SQL statement inside a routine, CURRENT TIME is not
inherited from the invoking statement.

In a federated system, CURRENT TIME can be used in a query intended for
data sources. When the query is processed, the time returned will be obtained
from the CURRENT TIME register at the federated server, not from the data
sources.

Example: Using the CL_SCHED table, select all the classes (CLASS_CODE) that
start (STARTING) later today. Today’s classes have a value of 3 in the DAY
column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIME

164 SQL Reference, Volume 1

CURRENT TIMESTAMP

The CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) special register
specifies a timestamp that is based on a reading of the time-of-day clock when
the SQL statement is executed at the application server. If this special register
is used more than once within a single SQL statement, or used with
CURRENT DATE or CURRENT TIME within a single statement, all values are
based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT TIMESTAMP is
not inherited from the invoking statement.

In a federated system, CURRENT TIMESTAMP can be used in a query
intended for data sources. When the query is processed, the timestamp
returned will be obtained from the CURRENT TIMESTAMP register at the
federated server, not from the data sources.

Example: Insert a row into the IN_TRAY table. The value of the RECEIVED
column should be a timestamp that indicates when the row was inserted. The
values for the other three columns come from the host variables SRC (char(8)),
SUB (char(64)), and TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMESTAMP

Chapter 2. Language elements 165

CURRENT TIMEZONE

The CURRENT TIMEZONE (or CURRENT_TIMEZONE) special register
specifies the difference between UTC (Coordinated Universal Time, formerly
known as GMT) and local time at the application server. The difference is
represented by a time duration (a decimal number in which the first two
digits are the number of hours, the next two digits are the number of minutes,
and the last two digits are the number of seconds). The number of hours is
between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from a local
time converts that local time to UTC. The time is calculated from the
operating system time at the moment the SQL statement is executed. (The
CURRENT TIMEZONE value is determined from C runtime functions.)

The CURRENT TIMEZONE special register can be used wherever an
expression of the DECIMAL(6,0) data type is used; for example, in time and
timestamp arithmetic.

When used in an SQL statement inside a routine, CURRENT TIMEZONE is
not inherited from the invoking statement.

Example: Insert a record into the IN_TRAY table, using a UTC timestamp for
the RECEIVED column.

INSERT INTO IN_TRAY VALUES (
CURRENT TIMESTAMP - CURRENT TIMEZONE,
:source,
:subject,
:notetext)

CURRENT TIMEZONE

166 SQL Reference, Volume 1

USER

The USER special register specifies the run-time authorization ID passed to
the database manager when an application starts on a database. The data type
of the register is VARCHAR(128).

When used in an SQL statement inside a routine, USER is not inherited from
the invoking statement.

Example: Select all notes from the IN_TRAY table that were placed there by the
user.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

USER

Chapter 2. Language elements 167

Functions

A database function is a relationship between a set of input data values and a
set of result values. For example, the TIMESTAMP function can be passed
input data values of type DATE and TIME, and the result is a TIMESTAMP.
Functions can either be built-in or user-defined.
v Built-in functions are provided with the database manager. They return a

single result value and are identified as part of the SYSIBM schema. Such
functions include column functions (for example, AVG), operator functions
(for example, +), and casting functions (for example, DECIMAL).

v User-defined functions are functions that are registered to a database in
SYSCAT.ROUTINES (using the CREATE FUNCTION statement).
User-defined functions are never part of the SYSIBM schema. One set of
such functions is provided with the database manager in a schema called
SYSFUN.
User-defined functions extend the capabilities of the database system by
adding function definitions (provided by users or third party vendors) that
can be applied in the database engine itself. Extending database functions
lets the database exploit the same functions in the engine that an
application uses, providing more synergy between application and
database.

External, SQL, and sourced user-defined functions
A user-defined function can be an external function, an SQL function, or a
sourced function. An external function is defined to the database with a
reference to an object code library, and a function within that library that will
be executed when the function is invoked. External functions cannot be
column functions. An SQL function is defined to the database using only the
SQL RETURN statement. It can return either a scalar value, a row, or a table.
SQL functions cannot be column functions. A sourced function is defined to the
database with a reference to another built-in or user-defined function that is
already known to the database. Sourced functions can be scalar functions or
column functions. They are useful for supporting existing functions with
user-defined types.

Scalar, column, row, and table user-defined functions
Each user-defined function is also categorized as a scalar, column, or table
function. A scalar function is a function that returns a single-valued answer
each time it is called. For example, the built-in function SUBSTR() is a scalar
function. Scalar UDFs can be either external or sourced.

A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer. These are also sometimes called
aggregating functions in DB2. An example of a column function is the built-in
function AVG(). An external column UDF cannot be defined to DB2, but a

Functions

168 SQL Reference, Volume 1

column UDF, which is sourced upon one of the built-in column functions, can
be defined. This is useful for distinct types. For example, if there is a distinct
type SHOESIZE defined with base type INTEGER, a UDF AVG(SHOESIZE),
which is sourced on the built-in function AVG(INTEGER), could be defined,
and it would be a column function.

A row function is a function that returns one row of values. It may only be
used as a transform function, mapping attribute values of a structured type
into values in a row. A row function must be defined as an SQL function.

A table function is a function that returns a table to the SQL statement which
references it. It may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language processing
power to data that is not DB2 data, or to convert such data into a DB2 table.
It could, for example, take a file and convert it into a table, sample data from
the World Wide Web and tabularize it, or access a Lotus Notes database and
return information about mail messages, such as the date, sender, and the text
of the message. This information can be joined with other tables in the
database. A table function can be defined as an external function or as an SQL
function. (A table function cannot be a sourced function.)

Function signatures
A function is identified by its schema, a function name, the number of
parameters, and the data types of its parameters. This is called a function
signature, which must be unique within the database. There can be more than
one function with the same name in a schema, provided that the number of
parameters or the data types of the parameters are different. A function name
for which there are multiple function instances is called an overloaded function.
A function name can be overloaded within a schema, in which case there is
more than one function by that name in the schema. These functions must
have different parameter types. A function name can also be overloaded in an
SQL path, in which case there is more than one function by that name in the
path. These functions do not necessarily have different parameter types.

A function can be invoked by referring (in an allowable context) to its
qualified name (schema and function name), followed by the list of arguments
enclosed in parentheses. A function can also be invoked without the schema
name, resulting in a choice of possible functions in different schemas with the
same or acceptable parameters. In this case, the SQL path is used to assist in
function resolution. The SQL path is a list of schemas that are searched to
identify a function with the same name, number of parameters and acceptable
data types. For static SQL statements, the SQL path is specified using the
FUNCPATH bind option. For dynamic SQL statements, the SQL path is the
value of the CURRENT PATH special register.

Scalar, column, row, and table user-defined functions

Chapter 2. Language elements 169

Access to functions is controlled through the EXECUTE privilege. GRANT
and REVOKE statements are used to specify who can or cannot execute a
specific function or a set of functions. The EXECUTE privilege (or DBADM
authority) is needed to invoke a function. The definer of the function
automatically receives the EXECUTE privilege. The definer of an external
function or an SQL function having the WITH GRANT option on all
underlying objects also receives the WITH GRANT option with the EXECUTE
privilege on the function. The definer (or SYSADM or DBADM) must then
grant it to the user who wants to invoke the function from any SQL
statement, reference the function in any DDL statement (such as CREATE
VIEW, CREATE TRIGGER, or when defining a constraint), or create another
function sourced on this function. If the EXECUTE privilege is not granted to
a user, the function will not be considered by the function resolution
algorithm, even if it is a better match. Built-in functions (SYSIBM functions)
and SYSFUN functions have the EXECUTE privilege implicitly granted to
PUBLIC.

Function resolution
After function invocation, the database manager must decide which of the
possible functions with the same name is the “best fit”. This includes
resolving functions from the built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function
is invoked in SQL, it is passed a list of zero or more arguments. They are
positional in that the semantics of an argument are determined by its position
in the argument list. A parameter is a formal definition of an input to a
function. When a function is defined to the database, either internally (a
built-in function) or by a user (a user-defined function), its parameters (zero
or more) are specified, and the order of their definitions defines their
positions and their semantics. Therefore, every parameter is a particular
positional input to a function. On invocation, an argument corresponds to a
particular parameter by virtue of its position in the list of arguments.

The database manager uses the name of the function given in the invocation,
EXECUTE privilege on the function, the number and data types of the
arguments, all the functions with the same name in the SQL path, and the
data types of their corresponding parameters as the basis for deciding
whether or not to select a function. The following are the possible outcomes of
the decision process:
v A particular function is deemed to be the best fit. For example, given the

functions named RISK in the schema TEST with signatures defined as:
TEST.RISK(INTEGER)
TEST.RISK(DOUBLE)

an SQL path including the TEST schema and the following function
reference (where DB is a DOUBLE column):

Function signatures

170 SQL Reference, Volume 1

SELECT ... RISK(DB) ...

then, the second RISK will be chosen.

The following function reference (where SI is a SMALLINT column):
SELECT ... RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to
INTEGER and is a better match than DOUBLE which is further down the
precedence list.

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter that is closest in the
structured type hierarchy to the static type of the function argument.

v No function is deemed to be an acceptable fit. For example, given the same
two functions in the previous case and the following function reference
(where C is a CHAR(5) column):

SELECT ... RISK(C) ...

the argument is inconsistent with the parameter of both RISK functions.
v A particular function is selected based on the SQL path and the number

and data types of the arguments passed on invocation. For example, given
functions named RANDOM with signatures defined as:

TEST.RANDOM(INTEGER)
PROD.RANDOM(INTEGER)

and an SQL path of:
"TEST","PROD"

the following function reference:
SELECT ... RANDOM(432) ...

will choose TEST.RANDOM, because both RANDOM functions are equally
good matches (exact matches in this particular case), and both schemas are
in the path, but TEST precedes PROD in the SQL path.

Determining the best fit
A comparison of the data types of the arguments with the defined data types
of the parameters of the functions under consideration forms the basis for the
decision of which function in a group of like-named functions is the “best fit”.
Note that the data types of the results of the functions, or the type of function
(column, scalar, or table) under consideration do not enter into this
determination.

Function resolution

Chapter 2. Language elements 171

Function resolution is performed using the following steps:
1. First, find all functions from the catalog (SYSCAT.ROUTINES), and built-in

functions, such that all of the following are true:
v For invocations where the schema name was specified (a qualified

reference), the schema name and the function name match the
invocation name.

v For invocations where the schema name was not specified (an
unqualified reference), the function name matches the invocation name
and has a schema name that matches one of the schemas in the SQL
path.

v The invoker has the EXECUTE privilege on the function.
v The number of defined parameters matches the invocation.
v Each invocation argument matches the function’s corresponding defined

parameter in data type, or is “promotable” to it.
2. Next, consider each argument of the function invocation, from left to right.

For each argument, eliminate all functions that are not the best match for
that argument. The best match for a given argument is the first data type
appearing in the precedence list corresponding to the argument data type
for which there exists a function with a parameter of that data type.
Lengths, precisions, scales and the FOR BIT DATA attribute are not
considered in this comparison. For example, a DECIMAL(9,1) argument is
considered an exact match for a DECIMAL(6,5) parameter, and a
VARCHAR(19) argument is an exact match for a VARCHAR(6) parameter.
The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Note that only the static type (declared type) of the
structured-type argument is considered, not the dynamic type (most
specific type).

3. If more than one candidate function remains after Step 2, all remaining
candidate functions must have identical signatures but be in different
schemas. Choose the function whose schema is earliest in the user’s SQL
path.

4. If there are no candidate functions remaining after step 2, an error is
returned (SQLSTATE 42884).

Function path considerations for built-in functions
Built-in functions reside in a special schema called SYSIBM. Additional
functions are available in the SYSFUN and SYSPROC schemas, but are not
considered built-in functions since they are developed as user-defined
functions and have no special processing considerations. Users cannot define
additional functions in the SYSIBM, SYSFUN, or SYSPROC schemas (or in any
other schema whose name begins with the letters SYS).

Determining the best fit

172 SQL Reference, Volume 1

As already stated, the built-in functions participate in the function resolution
process exactly as do the user-defined functions. One difference between
built-in and user-defined functions, from a function resolution perspective, is
that the built-in functions must always be considered during function
resolution. Therefore, omission of SYSIBM from the path results in the
assumption (for function and data type resolution) that SYSIBM is the first
schema on the path.

For example, if a user’s SQL path is defined as:
"SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the
same number and types of arguments as SYSIBM.LENGTH, then an
unqualified reference to LENGTH in this user’s SQL statement will result in
selecting SHAREFUN.LENGTH. However, if the user’s SQL path is defined
as:

"SHAREFUN","SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified
reference to LENGTH in this user’s SQL statement will result in selecting
SYSIBM.LENGTH, because SYSIBM implicitly appears first in the path.

To minimize potential problems in this area:
v Never use the names of built-in functions for user-defined functions.
v If, for some reason, it is necessary to create a user-defined function with the

same name as a built-in function, be sure to qualify any references to it.

Example of function resolution
Following is an example of successful function resolution. (Note that not all
required keywords are shown.)

There are seven ACT functions, in three different schemas, registered as:
CREATE FUNCTION AUGUSTUS.ACT (CHAR(5), INT, DOUBLE) SPECIFIC ACT_1 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_2 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE, INT) SPECIFIC ACT_3 ...
CREATE FUNCTION JULIUS.ACT (INT, DOUBLE, DOUBLE) SPECIFIC ACT_4 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_5 ...
CREATE FUNCTION JULIUS.ACT (SMALLINT, INT, DOUBLE) SPECIFIC ACT_6 ...
CREATE FUNCTION NERO.ACT (INT, INT, DEC(7,2)) SPECIFIC ACT_7 ...

The function reference is as follows (where I1 and I2 are INTEGER columns,
and D is a DECIMAL column):

SELECT ... ACT(I1, I2, D) ...

Assume that the application making this reference has an SQL path
established as:

Function path considerations for built-in functions

Chapter 2. Language elements 173

"JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...
v The function with specific name ACT_7 is eliminated as a candidate,

because the schema NERO is not included in the SQL path.
v The function with specific name ACT_3 is eliminated as a candidate,

because it has the wrong number of parameters. ACT_1 and ACT_6 are
eliminated because, in both cases, the first argument cannot be promoted to
the data type of the first parameter.

v Because there is more than one candidate remaining, the arguments are
considered in order.

v For the first argument, the remaining functions, ACT_2, ACT_4, and ACT_5
are an exact match with the argument type. No functions can be eliminated
from consideration; therefore the next argument must be examined.

v For this second argument, ACT_2 and ACT_5 are exact matches, but ACT_4
is not, so it is eliminated from consideration. The next argument is
examined to determine some differentiation between ACT_2 and ACT_5.

v For the third and last argument, neither ACT_2 nor ACT_5 match the
argument type exactly, but both are equally good.

v There are two functions remaining, ACT_2 and ACT_5, with identical
parameter signatures. The final tie-breaker is to see which function’s
schema comes first in the SQL path, and on this basis, ACT_5 is the
function chosen.

Function invocation
Once the function is selected, there are still possible reasons why the use of
the function may not be permitted. Each function is defined to return a result
with a specific data type.If this result data type is not compatible with the
context in which the function is invoked, an error will occur. For example,
given functions named STEP defined, this time, with different data types as
the result:

STEP(SMALLINT) returns CHAR(5)
STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):
SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen.An error occurs on the statement because the result type is CHAR(5)
instead of a numeric type as required for an argument of the addition
operator.

A couple of other examples where this can happen are as follows, both of
which will result in an error on the statement:

Example of function resolution

174 SQL Reference, Volume 1

v The function was referenced in a FROM clause, but the function selected by
the function resolution step was a scalar or column function.

v The reverse case, where the context calls for a scalar or column function,
and function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact
match to the data types of the parameters of the selected function, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns. This includes the case where
precision, scale, or length differs between the argument and the parameter.

Conservative binding semantics
There are instances in which routines and data types are resolved when a
statement is processed, and the database manager must be able to repeat this
resolution. This is true in:
v Static DML statements in packages
v Views
v Triggers
v Check constraints
v SQL routines

For static DML statements in packages, the routine and data type references
are resolved during a bind operation. Routine and data type references in
views, triggers, SQL routines, and check constraints are resolved when the
database object is created.

If routine resolution is performed again on any routine references in these
objects, it could change the behavior if:
v A new routine has been added with a signature that is a better match, but

the actual executable performs different operations.
v The definer has been granted the execute privilege on a routine with a

signature that is a better match, but the actual executable performs different
operations.

Similarly, if resolution is performed again on any data type in these objects, it
could change the behavior if a new data type has been added with the same
name in a different schema that is also on the SQL path. To avoid this, the
database manager applies conservative binding semantics wherever necessary.
This ensures that routine and data type references will be resolved using the
same SQL path and the set of routines to which it previously resolved when it
was bound. The creation timestamp of routines and data types considered
during resolution is not later than the time when the statement was bound.
(Built-in functions added starting with Version 6.1 have a creation timestamp
that is based on the time of database creation or migration.) In this way, only
the routines and data types that were considered during routine and data

Function invocation

Chapter 2. Language elements 175

type resolution when the statement was originally processed will be
considered. Hence, newly created routines, newly authorized routines, and
data types are not considered when conservative binding semantics are
applied.

Consider a database with two functions that have the signatures
SCHEMA1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). Assume the SQL
path contains both schemas SCHEMA1 and SCHEMA2 (although their order
within the SQL path does not matter). USER1 has been granted the EXECUTE
privilege on the function SCHEMA2.BAR(DOUBLE). Suppose USER1 creates a
view that calls BAR(INT_VAL). This will resolve to the function
SCHEMA2.BAR(DOUBLE). The view will always use
SCHEMA2.BAR(DOUBLE), even if someone grants USER1 the EXECUTE
privilege on SCHEMA1.BAR(INTEGER) after the view has been created.

For static DML in packages, the packages can rebind implicitly, or by
explicitly issuing the REBIND command (or corresponding API), or the BIND
command (or corresponding API). The implicit rebind is always performed to
resolve routines and data types with conservative binding semantics. The
REBIND command provides the option to resolve with conservative binding
semantics (RESOLVE CONSERVATIVE) or to resolve by considering any new
routines and data types (RESOLVE ANY, the default option).

Implicit rebind of a package always resolves the same routine. Even if
EXECUTE privilege on a better-matched routine was granted, that routine will
not be considered. Explicit rebind of a package can result in a different routine
being selected. (But if RESOLVE CONSERVATIVE is specified, routine
resolution will follow conservative binding semantics).

If a routine is specified during the creation of a view, trigger, constraint, or
SQL routine body, the specific instance of the routine to be used is determined
by routine resolution at the time the object is created. Subsequent granting of
the EXECUTE privilege after the object has been created will not change the
specific routine that the object uses.

Consider a database with two functions that have the signatures
SCHEMA1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). USER1 has been
granted the EXECUTE privilege on the function SCHEMA2.BAR(DOUBLE).
Suppose USER1 creates a view that calls BAR(INT_VAL). This will resolve to
the function SCHEMA2.BAR(DOUBLE). The view will always use
SCHEMA2.BAR(DOUBLE), even if someone grants USER1 the EXECUTE
privilege on SCHEMA1.BAR(INTEGER) after the view has been created.

The same behavior occurs in other database objects. For example, if a package
is implicitly rebound (perhaps after dropping an index), the package will refer

Conservative binding semantics

176 SQL Reference, Volume 1

to the same specific routine both before and after the implicit rebind. An
explicit rebind of a package, however, can result in a different routine being
selected.

Related reference:

v “CURRENT PATH” on page 159
v “Promotion of data types” on page 111
v “Assignments and comparisons” on page 117

Conservative binding semantics

Chapter 2. Language elements 177

Methods

A database method of a structured type is a relationship between a set of
input data values and a set of result values, where the first input value (or
subject argument) has the same type, or is a subtype of the subject type (also
called the subject parameter), of the method. For example, a method called
CITY, of type ADDRESS, can be passed input data values of type VARCHAR,
and the result is an ADDRESS (or a subtype of ADDRESS).

Methods are defined implicitly or explicitly, as part of the definition of a
user-defined structured type.

Implicitly defined methods are created for every structured type. Observer
methods are defined for each attribute of the structured type. Observer
methods allow applications to get the value of an attribute for an instance of
the type. Mutator methods are also defined for each attribute, allowing
applications to mutate the type instance by changing the value for an attribute
of a type instance. The CITY method described above is an example of a
mutator method for the type ADDRESS.

Explicitly defined methods, or user-defined methods, are methods that are
registered to a database in SYSCAT.ROUTINES, by using a combination of
CREATE TYPE (or ALTER TYPE ADD METHOD) and CREATE METHOD
statements. All methods defined for a structured type are defined in the same
schema as the type.

User-defined methods for structured types extend the function of the database
system by adding method definitions (provided by users or third party
vendors) that can be applied to structured type instances in the database
engine. Defining database methods lets the database exploit the same methods
in the engine that an application uses, providing more synergy between
application and database.

External and SQL user-defined methods
A user-defined method can be either external or based on an SQL expression.
An external method is defined to the database with a reference to an object
code library and a function within that library that will be executed when the
method is invoked. A method based on an SQL expression returns the result
of the SQL expression when the method is invoked. Such methods do not
require any object code library, because they are written completely in SQL.

A user-defined method can return a single-valued answer each time it is
called. This value can be a structured type. A method can be defined as type
preserving (using SELF AS RESULT), to allow the dynamic type of the subject
argument to be returned as the returned type of the method. All implicitly
defined mutator methods are type preserving.

Methods

178 SQL Reference, Volume 1

Method signatures
A method is identified by its subject type, a method name, the number of
parameters, and the data types of its parameters. This is called a method
signature, and it must be unique within the database.

There can be more than one method with the same name for a structured
type, provided that:
v The number of parameters or the data types of the parameters are different,

or
v The methods are part of the same method hierarchy (that is, the methods

are in an overriding relationship or override the same original method), or
v The same function signature (using the subject type or any of its subtypes

or supertypes as the first parameter) does not exist.

A method name that has multiple method instances is called an overloaded
method. A method name can be overloaded within a type, in which case there
is more than one method by that name for the type (all of which have
different parameter types). A method name can also be overloaded in the
subject type hierarchy, in which case there is more than one method by that
name in the type hierarchy. These methods must have different parameter
types.

A method can be invoked by referring (in an allowable context) to the method
name, preceded by both a reference to a structured type instance (the subject
argument), and the double dot operator. A list of arguments enclosed in
parentheses must follow. Which method is actually invoked depends on the
static type of the subject type, using the method resolution process described
in the following section. Methods defined WITH FUNCTION ACCESS can
also be invoked using function invocation, in which case the regular rules for
function resolution apply.

If function resolution results in a method defined WITH FUNCTION ACCESS,
all subsequent steps of method invocation are processed.

Access to methods is controlled through the EXECUTE privilege. GRANT and
REVOKE statements are used to specify who can or cannot execute a specific
method or a set of methods. The EXECUTE privilege (or DBADM authority)
is needed to invoke a method. The definer of the method automatically
receives the EXECUTE privilege. The definer of an external method or an SQL
method having the WITH GRANT option on all underlying objects also
receives the WITH GRANT option with the EXECUTE privilege on the
method. The definer (or SYSADM or DBADM) must then grant it to the user
who wants to invoke the method from any SQL statement, or reference the
method in any DDL statement (such as CREATE VIEW, CREATE TRIGGER,

Method signatures

Chapter 2. Language elements 179

or when defining a constraint). If the EXECUTE privilege is not granted to a
user, the method will not be considered by the method resolution algorithm,
even if it is a better match.

Method resolution
After method invocation, the database manager must decide which of the
possible methods with the same name is the “best fit”. Functions (built-in or
user-defined) are not considered during method resolution.

An argument is a value passed to a method upon invocation. When a method
is invoked in SQL, it is passed the subject argument (of some structured type)
and a list of zero or more arguments. They are positional in that the semantics
of an argument are determined by its position in the argument list. A
parameter is a formal definition of an input to a method. When a method is
defined to the database, either implicitly (system-generated for a type) or by a
user (a user-defined method), its parameters are specified (with the subject
parameter as the first parameter), and the order of their definitions defines
their positions and their semantics. Therefore, every parameter is a particular
positional input to a method. On invocation, an argument corresponds to a
particular parameter by virtue of its position in the list of arguments.

The database manager uses the name of the method given in the invocation,
EXECUTE privilege on the method, the number and data types of the
arguments, all the methods with the same name for the subject argument’s
static type (and it’s supertypes), and the data types of their corresponding
parameters as the basis for deciding whether or not to select a method. The
following are the possible outcomes of the decision process:
v A particular method is deemed to be the best fit. For example, given the

methods named RISK for the type SITE with signatures defined as:
PROXIMITY(INTEGER) FOR SITE
PROXIMITY(DOUBLE) FOR SITE

the following method invocation (where ST is a SITE column, DB is a
DOUBLE column):

SELECT ST..PROXIMITY(DB) ...

then, the second PROXIMITY will be chosen.

The following method invocation (where SI is a SMALLINT column):
SELECT ST..PROXIMITY(SI) ...

would choose the first PROXIMITY, because SMALLINT can be promoted
to INTEGER and is a better match than DOUBLE, which is further down
the precedence list.

Method signatures

180 SQL Reference, Volume 1

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter that is closest in the
structured type hierarchy to the static type of the function argument.

v No method is deemed to be an acceptable fit. For example, given the same
two functions in the previous case and the following function reference
(where C is a CHAR(5) column):

SELECT ST..PROXIMITY(C) ...

the argument is inconsistent with the parameter of both PROXIMITY
functions.

v A particular method is selected based on the methods in the type hierarchy
and the number and data types of the arguments passed on invocation. For
example, given methods named RISK for the types SITE and DRILLSITE (a
subtype of SITE) with signatures defined as:

RISK(INTEGER) FOR DRILLSITE
RISK(DOUBLE) FOR SITE

and the following method invocation (where DRST is a DRILLSITE column,
DB is a DOUBLE column):

SELECT DRST..RISK(DB) ...

the second RISK will be chosen, because DRILLSITE can be promoted to
SITE.

The following method reference (where SI is a SMALLINT column):
SELECT DRST..RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to
INTEGER, which is closer on the precedence list than DOUBLE, and
DRILLSITE is a better match than SITE, which is a supertype.

Methods within the same type hierarchy cannot have the same signatures,
considering parameters other than the subject parameter.

Determining the best fit
A comparison of the data types of the arguments with the defined data types
of the parameters of the methods under consideration forms the basis for the
decision of which method in a group of like-named methods is the “best fit”.
Note that the data types of the results of the methods under consideration do
not enter into this determination.

Method resolution is performed using the following steps:
1. First, find all methods from the catalog (SYSCAT.ROUTINES) such that all

of the following are true:

Method resolution

Chapter 2. Language elements 181

v The method name matches the invocation name, and the subject
parameter is the same type or is a supertype of the static type of the
subject argument.

v The invoker has the EXECUTE privilege on the method.
v The number of defined parameters matches the invocation.
v Each invocation argument matches the method’s corresponding defined

parameter in data type, or is “promotable” to it.
2. Next, consider each argument of the method invocation, from left to right.

The leftmost argument (and thus the first argument) is the implicit SELF
parameter. For example, a method defined for type ADDRESS_T has an
implicit first parameter of type ADDRESS_T. For each argument, eliminate
all functions that are not the best match for that argument. The best match
for a given argument is the first data type appearing in the precedence list
corresponding to the argument data type for which there exists a function
with a parameter of that data type. Length, precision, scale and the FOR
BIT DATA attribute are not considered in this comparison. For example, a
DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact
match for a VARCHAR(6) parameter.
The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Note that only the static type (declared type) of the
structured-type argument is considered, not the dynamic type (most
specific type).

3. At most, one candidate method remains after Step 2. This is the method
that is chosen.

4. If there are no candidate methods remaining after step 2, an error is
returned (SQLSTATE 42884).

Example of method resolution
Following is an example of successful method resolution.

There are seven FOO methods for three structured types defined in a
hierarchy of GOVERNOR as a subtype of EMPEROR as a subtype of
HEADOFSTATE, registered with the following signatures:

CREATE METHOD FOO (CHAR(5), INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_1 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_2 ...
CREATE METHOD FOO (INT, INT, DOUBLE, INT) FOR HEADOFSTATE SPECIFIC FOO_3 ...
CREATE METHOD FOO (INT, DOUBLE, DOUBLE) FOR EMPEROR SPECIFIC FOO_4 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_5 ...
CREATE METHOD FOO (SMALLINT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_6 ...
CREATE METHOD FOO (INT, INT, DEC(7,2)) FOR GOVERNOR SPECIFIC FOO_7 ...

The method reference is as follows (where I1 and I2 are INTEGER columns, D
is a DECIMAL column and E is an EMPEROR column):

Determining the best fit

182 SQL Reference, Volume 1

SELECT E..FOO(I1, I2, D) ...

Following through the algorithm...
v FOO_7 is eliminated as a candidate, because the type GOVERNOR is a

subtype (not a supertype) of EMPEROR.
v FOO_3 is eliminated as a candidate, because it has the wrong number of

parameters.
v FOO_1 and FOO_6 are eliminated because, in both cases, the first argument

(not the subject argument) cannot be promoted to the data type of the first
parameter. Because there is more than one candidate remaining, the
arguments are considered in order.

v For the subject argument, FOO_2 is a supertype, while FOO_4 and FOO_5
match the subject argument.

v For the first argument, the remaining methods, FOO_4 and FOO_5, are an
exact match with the argument type. No methods can be eliminated from
consideration; therefore the next argument must be examined.

v For this second argument, FOO_5 is an exact match, but FOO_4 is not, so it
is eliminated from consideration. This leaves FOO_5 as the method chosen.

Method invocation
Once the method is selected, there are still possible reasons why the use of the
method may not be permitted.

Each method is defined to return a result with a specific data type. If this
result data type is not compatible with the context in which the method is
invoked, an error will occur. For example, assume that the following methods
named STEP are defined, each with a different data type as the result:

STEP(SMALLINT) FOR TYPEA RETURNS CHAR(5)
STEP(DOUBLE) FOR TYPEA RETURNS INTEGER

and the following method reference (where S is a SMALLINT column and TA
is a column of TYPEA):

SELECT 3 + TA..STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen. An error occurs on the statement, because the result type is CHAR(5)
instead of a numeric type, as required for an argument of the addition
operator.

Starting from the method that has been chosen, the algorithm described in
“Dynamic dispatch of methods” is used to build the set of dispatchable
methods at compile time. Exactly which method is invoked is described in
“Dynamic dispatch of methods”.

Note that when the selected method is a type preserving method:

Example of method resolution

Chapter 2. Language elements 183

v the static result type following function resolution is the same as the static
type of the subject argument of the method invocation

v the dynamic result type when the method is invoked is the same as the
dynamic type of the subject argument of the method invocation.

This may be a subtype of the result type specified in the type preserving
method definition, which in turn may be a supertype of the dynamic type
that is actually returned when the method is processed.

In cases where the arguments of the method invocation were not an exact
match to the data types of the parameters of the selected method, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns. This includes the case where
precision, scale, or length differs between the argument and the parameter,
but excludes the case where the dynamic type of the argument is a subtype of
the parameter’s static type.

Dynamic dispatch of methods
Methods provide the functionality and encapsulate the data of a type. A
method is defined for a type and can always be associated with this type. One
of the method’s parameters is the implicit SELF parameter. The SELF
parameter is of the type for which the method has been declared. The
argument that is passed as the SELF argument when the method is invoked in
a DML statement is called subject.

When a method is chosen using method resolution (see “Method resolution”
on page 180), or a method has been specified in a DDL statement, this
method is known as the “most specific applicable authorized method”. If the
subject is of a structured type, that method could have one or more overriding
methods. DB2 must then determine which of these methods to invoke, based
on the dynamic type (most specific type) of the subject at run time. This
determination is called “determining the most specific dispatchable method”.
That process is described here.
1. Find the original method in the method hierarchy that the most specific

applicable authorized method is part of. This is called the root method.
2. Create the set of dispatchable methods, which includes the following:

v The most specific applicable authorized method.
v Any method that overrides the most specific applicable authorized

method, and which is defined for a type that is a subtype of the subject
of this invocation.

3. Determine the most specific dispatchable method, as follows:
a. Start with an arbitrary method that is an element of the set of

dispatchable methods and that is a method of the dynamic type of the
subject, or of one of its supertypes. This is the initial most specific
dispatchable method.

Method invocation

184 SQL Reference, Volume 1

b. Iterate through the elements of the set of dispatchable methods. For
each method: If the method is defined for one of the proper subtypes
of the type for which the most specific dispatchable method is defined,
and if it is defined for one of the supertypes of the most specific type
of the subject, then repeat step 2 with this method as the most specific
dispatchable method; otherwise, continue iterating.

4. Invoke the most specific dispatchable method.

Example:

Given are three types, ″Person″, ″Employee″, and ″Manager″. There is an
original method ″income″, defined for ″Person″, which computes a person’s
income. A person is by default unemployed (a child, a retiree, and so on).
Therefore, ″income″ for type ″Person″ always returns zero. For type
″Employee″ and for type ″Manager″, different algorithms have to be applied
to calculate the income. Hence, the method ″income″ for type ″Person″ is
overridden in ″Employee″ and ″Manager″.

Create and populate a table as follows:
CREATE TABLE aTable (id integer, personColumn Person);

INSERT INTO aTable VALUES (0, Person()), (1, Employee()), (2, Manager());

List all persons who have a minimum income of $40000:
SELECT id, person, name

FROM aTable
WHERE person..income() >= 40000;

The method ″income″ for type ″Person″ is chosen, using method resolution, to
be the most specific applicable authorized method.
1. The root method is ″income″ for ″Person″ itself.
2. The second step of the algorithm above is carried out to construct the set

of dispatchable methods:
v The method ″income″ for type ″Person″ is included, because it is the

most specific applicable authorized method.
v The method ″income″ for type ″Employee″, and ″income″ for ″Manager″

is included, because both methods override the root method, and both
″Employee″ and ″Manager″ are subtypes of ″Person″.

Therefore, the set of dispatchable methods is: {″income″ for ″Person″,
″income″ for ″Employee″, ″income″ for ″Manager″}.

3. Determine the most specific dispatchable method:
v For a subject whose most specific type is ″Person″:

a. Let the initial most specific dispatchable method be ″income″ for
type ″Person″.

Dynamic dispatch of methods

Chapter 2. Language elements 185

b. Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of ″Person″ and for a supertype
of the most specific type of the subject, ″income″ for type ″Person″ is
the most specific dispatchable method.

v For a subject whose most specific type is ″Employee″:
a. Let the initial most specific dispatchable method be ″income″ for

type ″Person″.
b. Iterate through the set of dispatchable methods. Because method

″income″ for type ″Employee″ is defined for a proper subtype of
″Person″ and for a supertype of the most specific type of the subject
(Note: A type is its own super- and subtype.), method ″income″ for
type ″Employee″ is a better match for the most specific dispatchable
method. Repeat this step with method ″income″ for type ″Employee″
as the most specific dispatchable method.

c. Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of ″Employee″ and for a
supertype of the most specific type of the subject, method ″income″
for type ″Employee″ is the most specific dispatchable method.

v For a subject whose most specific type is ″Manager″:
a. Let the initial most specific dispatchable method be ″income″ for

type ″Person″.
b. Iterate through the set of dispatchable methods. Because method

″income″ for type ″Manager″ is defined for a proper subtype of
″Person″ and for a supertype of the most specific type of the subject
(Note: A type is its own super- and subtype.), method ″income″ for
type ″Manager″ is a better match for the most specific dispatchable
method. Repeat this step with method ″income″ for type ″Manager″
as the most specific dispatchable method.

c. Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of ″Manager″ and for a
supertype of the most specific type of the subject, method ″income″
for type ″Manager″ is the most specific dispatchable method.

4. Invoke the most specific dispatchable method.

Related reference:

v “Promotion of data types” on page 111
v “Assignments and comparisons” on page 117

Dynamic dispatch of methods

186 SQL Reference, Volume 1

Expressions

An expression specifies a value. It can be a simple value, consisting of only a
constant or a column name, or it can be more complex. When repeatedly
using similar complex expressions, an SQL function to encapsulate a common
expression can be considered.

In a Unicode database, an expression that accepts a character or graphic string
will accept any string types for which conversion is supported.

expression:

�

operator

function
+ (expression)
− constant

column-name
host-variable
special-register

(1)
(scalar-fullselect)

(2)
labeled-duration

(3)
case-expression

(4)
cast-specification

(5)
dereference-operation

(6)
OLAP-function

(7)
XML-function

(8)
method-invocation

(9)
subtype-treatment

(10)
sequence-reference

operator:

(11)
CONCAT
/
*
+
−

Expressions

Chapter 2. Language elements 187

Notes:

1 See “Scalar fullselect” on page 194 for more information.

2 See “Labeled durations” on page 195 for more information.

3 See “CASE expressions” on page 201 for more information.

4 See “CAST specifications” on page 203 for more information.

5 See “Dereference operations” on page 206 for more information.

6 See “OLAP functions” on page 207 for more information.

7 See “XML functions” on page 214 for more information.

8 See “Method invocation” on page 218 for more information.

9 See “Subtype treatment” on page 219 for more information.

10 See “Sequence reference” on page 220 for more information.

11 || may be used as a synonym for CONCAT.

Expressions without operators
If no operators are used, the result of the expression is the specified value.

Examples:
SALARY:SALARY’SALARY’MAX(SALARY)

Expressions with the concatenation operator
The concatenation operator (CONCAT) links two string operands to form a
string expression.

The operands of concatenation must be compatible strings. Note that a binary
string cannot be concatenated with a character string, including character
strings defined as FOR BIT DATA (SQLSTATE 42884).

In a Unicode database, concatenation involving both character string operands
and graphic string operands will first convert the character operands to
graphic operands. Note that in a non-Unicode database, concatenation cannot
involve both character and graphic operands.

If either operand can be null, the result can be null, and if either is null, the
result is the null value. Otherwise, the result consists of the first operand
string followed by the second. Note that no check is made for improperly
formed mixed data when doing concatenation.

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the
operands as shown in the following table:

Expressions

188 SQL Reference, Volume 1

Table 12. Data Type and Length of Concatenated Operands

Operands Combined
Length
Attributes

Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B) >4000 LONG VARCHAR

CHAR(A) LONG VARCHAR - LONG VARCHAR

VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR

VARCHAR(A) LONG VARCHAR - LONG VARCHAR

LONG VARCHAR LONG VARCHAR - LONG VARCHAR

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) LONG VARCHAR - CLOB(MIN(A+32K, 2G))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

LONG VARGRAPHIC LONG
VARGRAPHIC

- LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

Expressions with the concatenation operator

Chapter 2. Language elements 189

Table 12. Data Type and Length of Concatenated Operands (continued)

Operands Combined
Length
Attributes

Result

DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Note that, for compatibility with previous versions, there is no automatic
escalation of results involving LONG data types to LOB data types. For
example, concatenation of a CHAR(200) value and a completely full LONG
VARCHAR value would result in an error rather than in a promotion to a
CLOB data type.

The code page of the result is considered a derived code page and is
determined by the code page of its operands.

One operand may be a parameter marker. If a parameter marker is used, then
the data type and length attributes of that operand are considered to be the
same as those for the non-parameter marker operand. The order of operations
must be considered to determine these attributes in cases with nested
concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the
following:

FIRSTNME CONCAT ’ ’ CONCAT LASTNAME

returns the value Pierre Fermat.

Example 2: Given:
v COLA defined as VARCHAR(5) with value ’AA’

v :host_var defined as a character host variable with length 5 and value
’BB ’

v COLC defined as CHAR(5) with value ’CC’

v COLD defined as CHAR(5) with value ’DDDDD’

The value of COLA CONCAT :host_var CONCAT COLC CONCAT COLD is
’AABB CC DDDDD’

Expressions with the concatenation operator

190 SQL Reference, Volume 1

The data type is VARCHAR, the length attribute is 17 and the result code
page is the database code page.

Example 3: Given:
COLA defined as CHAR(10)
COLB defined as VARCHAR(5)

The parameter marker in the expression:
COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15), because COLA CONCAT COLB is evaluated first,
giving a result that is the first operand of the second CONCAT operation.

User-defined types
A user-defined type cannot be used with the concatenation operator, even if it
is a distinct type with a source data type that is a string type. To concatenate,
create a function with the CONCAT operator as its source. For example, if
there were distinct types TITLE and TITLE_DESCRIPTION, both of which had
VARCHAR(25) data types, the following user-defined function, ATTACH,
could be used to concatenate them.

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a
user-defined function to add the new data types.

CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Expressions with arithmetic operators
If arithmetic operators are used, the result of the expression is a value derived
from the application of the operators to the values of the operands.

If any operand can be null, or the database is configured with
DFT_SQLMATHWARN set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null
value.

Arithmetic operators can be applied to signed numeric types and datetime
types (see “Datetime arithmetic in SQL” on page 196). For example, USER+2 is
invalid. Sourced functions can be defined for arithmetic operations on distinct
types with a source type that is a signed numeric type.

The prefix operator + (unary plus) does not change its operand. The prefix
operator − (unary minus) reverses the sign of a nonzero operand; and if the

Expressions with the concatenation operator

Chapter 2. Language elements 191

data type of A is small integer, the data type of −A is large integer. The first
character of the token following a prefix operator must not be a plus or minus
sign.

The infix operators +, −, *, and / specify addition, subtraction, multiplication,
and division, respectively. The value of the second operand of division must
not be zero. These operators can also be treated as functions. Thus, the
expression ″+″(a,b) is equivalent to the expression a+b. “operator” function.

Arithmetic errors
If an arithmetic error such as zero divide or a numeric overflow occurs during
the processing of an expression, an error is returned and the SQL statement
processing the expression fails with an error (SQLSTATE 22003 or 22012).

A database can be configured (using DFT_SQLMATHWARN set to yes) so
that arithmetic errors return a null value for the expression, issue a warning
(SQLSTATE 01519 or 01564), and proceed with processing of the SQL
statement. When arithmetic errors are treated as nulls, there are implications
on the results of SQL statements. The following are some examples of these
implications.
v An arithmetic error that occurs in the expression that is the argument of a

column function causes the row to be ignored in the determining the result
of the column function. If the arithmetic error was an overflow, this may
significantly impact the result values.

v An arithmetic error that occurs in the expression of a predicate in a
WHERE clause can cause rows to not be included in the result.

v An arithmetic error that occurs in the expression of a predicate in a check
constraint results in the update or insert proceeding since the constraint is
not false.

If these types of impacts are not acceptable, additional steps should be taken
to handle the arithmetic error to produce acceptable results. Some examples
are:
v add a case expression to check for zero divide and set the desired value for

such a situation
v add additional predicates to handle nulls (like a check constraint on not

nullable columns could become:
check (c1*c2 is not null and c1*c2>5000)

to cause the constraint to be violated on an overflow).

Two-integer operands
If both operands of an arithmetic operator are integers, the operation is
performed in binary and the result is a large integer unless either (or both)
operand is a big integer, in which case the result is a big integer. Any

Expressions with arithmetic operators

192 SQL Reference, Volume 1

remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of the result type.

Integer and decimal operands
If one operand is an integer and the other is a decimal, the operation is
performed in decimal using a temporary copy of the integer that has been
converted to a decimal number with precision p and scale 0; p is 19 for a big
integer, 11 for a large integer, and 5 for a small integer.

Two-decimal operands
If both operands are decimal, the operation is performed in decimal. The
result of any decimal arithmetic operation is a decimal number with a
precision and scale that are dependent on the operation and the precision and
scale of the operands. If the operation is addition or subtraction and the
operands do not have the same scale, the operation is performed with a
temporary copy of one of the operands. The copy of the shorter operand is
extended with trailing zeros so that its fractional part has the same number of
digits as the longer operand.

The result of a decimal operation must not have a precision greater than 31.
The result of decimal addition, subtraction, and multiplication is derived from
a temporary result which may have a precision greater than 31. If the
precision of the temporary result is not greater than 31, the final result is the
same as the temporary result.

Decimal arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and s denote the precision and scale of the
first operand, and the symbols p' and s' denote the precision and scale of the
second operand.

Addition and subtraction
The precision is min(31,max(p-s,p’-s’) +max(s,s’)+1). The scale of the result of
addition and subtraction is max (s,s’).

Multiplication
The precision of the result of multiplication is min (31,p+ p’) and the scale is
min(31,s+s’).

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale
must not be negative.

Note: The MIN_DEC_DIV_3 database configuration parameter alters the scale
for decimal arithmetic operations involving division. If the parameter
value is set to NO, the scale is calculated as 31-p+s-s'. If the parameter

Two-integer operands

Chapter 2. Language elements 193

is set to YES, the scale is calculated as MAX(3, 31-p+ s-s'). This ensures
that the result of decimal division always has a scale of at least 3
(precision is always 31).

Floating-point operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point, the operands having first been converted to
double-precision floating-point numbers, if necessary. Thus, if any element of
an expression is a floating-point number, the result of the expression is a
double-precision floating-point number.

An operation involving a floating-point number and an integer is performed
with a temporary copy of the integer which has been converted to
double-precision floating-point. An operation involving a floating-point
number and a decimal number is performed with a temporary copy of the
decimal number which has been converted to double-precision floating-point.
The result of a floating-point operation must be within the range of
floating-point numbers.

User-defined types as operands
A user-defined type cannot be used with arithmetic operators, even if its
source data type is numeric. To perform an arithmetic operation, create a
function with the arithmetic operator as its source. For example, if there were
distinct types INCOME and EXPENSES, both of which had DECIMAL(8,2)
data types, then the following user-defined function, REVENUE, could be
used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Scalar fullselect
A scalar fullselect, as supported in an expression, is a fullselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If
the fullselect does not return a row, the result of the expression is the null
value. If the select list element is an expression that is simply a column name
or a dereference operation, the result column name is based on the name of
the column.

Datetime operations and durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. Following is a
definition of durations and a specification of the rules for datetime arithmetic.

Division

194 SQL Reference, Volume 1

A duration is a number representing an interval of time. There are four types
of durations.

Labeled durations

labeled-duration:

function
(expression)
constant
column-name
host-variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

A labeled duration represents a specific unit of time as expressed by a number
(which can be the result of an expression) followed by one of the seven
duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,
SECONDS, or MICROSECONDS. (The singular form of these keywords is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.) The number specified is converted as if it were assigned to
a DECIMAL(15,0) number. A labeled duration can only be used as an operand
of an arithmetic operator in which the other operand is a value of data type
DATE, TIME, or TIMESTAMP. Thus, the expression HIREDATE + 2 MONTHS
+ 14 DAYS is valid, whereas the expression HIREDATE + (2 MONTHS + 14
DAYS) is not. In both of these expressions, the labeled durations are 2
MONTHS and 14 DAYS.

Date duration
A date duration represents a number of years, months, and days, expressed as
a DECIMAL(8,0) number. To be properly interpreted, the number must have
the format yyyymmdd., where yyyy represents the number of years, mm the
number of months, and dd the number of days. (The period in the format
indicates a DECIMAL data type.) The result of subtracting one date value
from another, as in the expression HIREDATE − BRTHDATE, is a date
duration.

Time duration
A time duration represents a number of hours, minutes, and seconds, expressed
as a DECIMAL(6,0) number. To be properly interpreted, the number must
have the format hhmmss., where hh represents the number of hours, mm the

Datetime operations and durations

Chapter 2. Language elements 195

number of minutes, and ss the number of seconds. (The period in the format
indicates a DECIMAL data type.) The result of subtracting one time value
from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds, expressed as a DECIMAL(20,6) number.
To be properly interpreted, the number must have the format
yyyymmddhhmmss.zzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent,
respectively, the number of years, months, days, hours, minutes, seconds, and
microseconds. The result of subtracting one timestamp value from another is a
timestamp duration.

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the
other operand must be a duration. The specific rules governing the use of the
addition operator with datetime values follow.
v If one operand is a date, the other operand must be a date duration or

labeled duration of YEARS, MONTHS, or DAYS.
v If one operand is a time, the other operand must be a time duration or a

labeled duration of HOURS, MINUTES, or SECONDS.
v If one operand is a timestamp, the other operand must be a duration. Any

type of duration is valid.
v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not
the same as those for addition because a datetime value cannot be subtracted
from a duration, and because the operation of subtracting two datetime values
is not the same as the operation of subtracting a duration from a datetime
value. The specific rules governing the use of the subtraction operator with
datetime values follow.
v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of YEARS,
MONTHS, or DAYS.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of HOURS,
MINUTES, or SECONDS.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a
timestamp, a string representation of a timestamp, or a duration.

Time duration

196 SQL Reference, Volume 1

v If the second operand is a timestamp, the first operand must be a
timestamp or a string representation of a timestamp.

v Neither operand of the subtraction operator can be a parameter marker.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and
days between the two dates. The data type of the result is DECIMAL(8,0). If
DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1.
If DATE1 is less than DATE2, however, DATE1 is subtracted from DATE2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = DATE1 − DATE2.

If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) − DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) − DAY(DATE2)
where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) − MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) − YEAR(DATE2).

For example, the result of DATE('3/15/2000') − '12/31/1999' is 00000215. (or, a
duration of 0 years, 2 months, and 15 days).

Incrementing and decrementing dates: The result of adding a duration to a
date, or of subtracting a duration from a date, is itself a date. (For the
purposes of this operation, a month denotes the equivalent of a calendar page.
Adding months to a date, then, is like turning the pages of a calendar, starting
with the page on which the date appears.) The result must fall between the
dates January 1, 0001 and December 31, 9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date
is affected. The month is unchanged, as is the day unless the result would be
February 29 of a non-leap-year. In this case, the day is changed to 28, and a
warning indicator in the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless

Datetime arithmetic in SQL

Chapter 2. Language elements 197

the result would be invalid (September 31, for example). In this case, the day
is set to the last day of the month, and a warning indicator in the SQLCA is
set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day
portion of the date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and
subtracted from dates. As with labeled durations, the result is a valid date,
and a warning indicator is set in the SQLCA whenever an end-of-month
adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration
is subtracted from a date, the date is incremented by the specified number of
years, months, and days, in that order. Thus, DATE1 + X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number
of days, months, and years, in that order. Thus, DATE1 − X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:

DATE1 − DAY(X) DAYS − MONTH(X) MONTHS − YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the
same date one month later unless that date does not exist in the later month.
In that case, the date is set to that of the last day of the later month. For
example, January 28 plus one month gives February 28; and one month added
to January 29, 30, or 31 results in either February 28 or, for a leap year,
February 29.

Note: If one or more months is added to a given date and then the same
number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting time values: The result of subtracting one time (TIME2) from
another (TIME1) is a time duration that specifies the number of hours,
minutes, and seconds between the two times. The data type of the result is
DECIMAL(6,0).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

Incrementing and decrementing dates

198 SQL Reference, Volume 1

If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = TIME1 − TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) − SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) − SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) − MINUTE(TIME2).

If MINUTE(TIME1) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) − MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) − HOUR(TIME2).

For example, the result of TIME(’11:02:26’) − ’00:32:56’ is 102930. (a duration
of 10 hours, 29 minutes, and 30 seconds).

Incrementing and decrementing time values: The result of adding a
duration to a time, or of subtracting a duration from a time, is itself a time.
Any overflow or underflow of hours is discarded, thereby ensuring that the
result is always a time. If a duration of hours is added or subtracted, only the
hours portion of the time is affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and
subtracted from times. The result is a time that has been incremented or
decremented by the specified number of hours, minutes, and seconds, in that
order. TIME1 + X, where “X” is a DECIMAL(6,0) number, is equivalent to the
expression:

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time ’24:00:00’ is accepted as a valid time, it is never
returned as the result of time addition or subtraction, even if the
duration operand is zero (for example, time(’24:00:00’)±0 seconds =
’00:00:00’).

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting time values

Chapter 2. Language elements 199

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years,
months, days, hours, minutes, seconds, and microseconds between the two
timestamps. The data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less
than TS2, however, TS1 is subtracted from TS2 and the sign of the result is
made negative. The following procedural description clarifies the steps
involved in the operation result = TS1 − TS2:

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) −
MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) − MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in
the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) − HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) − HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for
subtracting dates.

Incrementing and decrementing timestamps: The result of adding a
duration to a timestamp, or of subtracting a duration from a timestamp is
itself a timestamp. Date and time arithmetic is performed as previously
defined, except that an overflow or underflow of hours is carried into the date
part of the result, which must be within the range of valid dates.
Microseconds overflow into seconds.

Precedence of operations
Expressions within parentheses and dereference operations are evaluated first
from left to right. (Parentheses are also used in subselect statements, search
conditions, and functions. However, they should not be used to arbitrarily
group sections within SQL statements.) When the order of evaluation is not
specified by parentheses, prefix operators are applied before multiplication
and division, and multiplication and division are applied before addition and
subtraction. Operators at the same precedence level are applied from left to
right.

Subtracting timestamps

200 SQL Reference, Volume 1

CASE expressions

case-expression:

CASE searched-when-clause
simple-when-clause

ELSE NULL

ELSE result-expression
END

searched-when-clause:

� WHEN search-condition THEN result-expression
NULL

simple-when-clause:

�expression WHEN expression THEN result-expression
NULL

CASE expressions allow an expression to be selected based on the evaluation
of one or more conditions. In general, the value of the case-expression is the
value of the result-expression following the first (leftmost) case that evaluates to
true. If no case evaluates to true and the ELSE keyword is present then the
result is the value of the result-expression or NULL. If no case evaluates to true
and the ELSE keyword is not present then the result is NULL. Note that when
a case evaluates to unknown (because of NULLs), the case is not true and
hence is treated the same way as a case that evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY
clause, or an ORDER BY clause, the search-condition in a searched-when-clause
cannot be a quantified predicate, IN predicate using a fullselect, or an EXISTS
predicate (SQLSTATE 42625).

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression
following the WHEN keyword. The data type of the expression prior to the

1 4 32

1.10 * (Salary + Bonus) + Salary / :VAR3

Figure 11. Precedence of Operations

CASE expressions

Chapter 2. Language elements 201

first WHEN keyword must therefore be comparable to the data types of each
expression following the WHEN keyword(s). The expression prior to the first
WHEN keyword in a simple-when-clause cannot include a function that is
variant or has an external action (SQLSTATE 42845).

A result-expression is an expression following the THEN or ELSE keywords.
There must be at least one result-expression in the CASE expression (NULL
cannot be specified for every case) (SQLSTATE 42625). All result expressions
must have compatible data types (SQLSTATE 42804).

Examples:

v If the first character of a department number is a division in the
organization, then a CASE expression can be used to list the full name of
the division to which each employee belongs:

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)

WHEN ’A’ THEN ’Administration’
WHEN ’B’ THEN ’Human Resources’
WHEN ’C’ THEN ’Accounting’
WHEN ’D’ THEN ’Design’
WHEN ’E’ THEN ’Operations’

END
FROM EMPLOYEE;

v The number of years of education are used in the EMPLOYEE table to give
the education level. A CASE expression can be used to group these and to
show the level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE

WHEN EDLEVEL < 15 THEN ’SECONDARY’
WHEN EDLEVEL < 19 THEN ’COLLEGE’
ELSE ’POST GRADUATE’

END
FROM EMPLOYEE

v Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees
who earn more than 25% of their income from commission, but who are not
fully paid on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25;

v The following CASE expressions are the same:
SELECT LASTNAME,

CASE
WHEN LASTNAME = ’Haas’ THEN ’President’
...

CASE expressions

202 SQL Reference, Volume 1

SELECT LASTNAME,
CASE LASTNAME
WHEN ’Haas’ THEN ’President’
...

There are two scalar functions, NULLIF and COALESCE, that are specialized
to handle a subset of the functionality provided by CASE. Table 13 shows the
equivalent expressions using CASE or these functions.

Table 13. Equivalent CASE Expressions

Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2
END

COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE
COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

CAST specifications

cast-specification:

CAST (expression
NULL
parameter-marker

AS data-type �

�)
(1)

SCOPE typed-table-name
typed-view-name

Notes:

1 The SCOPE clause only applies to the REF data type.

The CAST specification returns the cast operand (the first operand) cast to the
type specified by the data type. If the cast is not supported, an error is
returned (SQLSTATE 42846).

expression
If the cast operand is an expression (other than parameter marker or
NULL), the result is the argument value converted to the specified target
data type.

When casting character strings (other than CLOBs) to a character string
with a different length, a warning (SQLSTATE 01004) is returned if
truncation of other than trailing blanks occurs. When casting graphic
character strings (other than DBCLOBs) to a graphic character string with
a different length, a warning (SQLSTATE 01004) is returned if truncation

CASE expressions

Chapter 2. Language elements 203

of other than trailing blanks occurs. For BLOB, CLOB and DBCLOB cast
operands, the warning is issued if any characters are truncated.

NULL
If the cast operand is the keyword NULL, the result is a null value that
has the specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case
because it has a special meaning. If the cast operand is a parameter-marker,
the specified data type is considered a promise that the replacement will be
assignable to the specified data type (using store assignment for strings).
Such a parameter marker is considered a typed parameter marker. Typed
parameter markers will be treated like any other typed value for the
purpose of function resolution, DESCRIBE of a select list or for column
assignment.

data type
The name of an existing data type. If the type name is not qualified, the
SQL path is used to do data type resolution. A data type that has an
associated attributes like length or precision and scale should include
these attributes when specifying data type (CHAR defaults to a length of 1
and DECIMAL defaults to a precision of 5 and scale of 0 if not specified).
Restrictions on the supported data types are based on the specified cast
operand.
v For a cast operand that is an expression, the supported target data types

depend on the data type of the cast operand (source data type).
v For a cast operand that is the keyword NULL, any existing data type

can be used.
v For a cast operand that is a parameter marker, the target data type can

be any existing data type. If the data type is a user-defined distinct
type, the application using the parameter marker will use the source
data type of the user-defined distinct type. If the data type is a
user-defined structured type, the application using the parameter
marker will use the input parameter type of the TO SQL transform
function for the user-defined structured type.

SCOPE
When the data type is a reference type, a scope may be defined that
identifies the target table or target view of the reference.

typed-table-name
The name of a typed table. The table must already exist (SQLSTATE
42704). The cast must be to data-type REF(S), where S is the type of
typed-table-name (SQLSTATE 428DM).

CAST specifications

204 SQL Reference, Volume 1

typed-view-name
The name of a typed view. The view must exist or have the same
name as the view being created that includes the cast as part of the
view definition (SQLSTATE 42704). The cast must be to data-type
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character data, the result data type is a
fixed-length character string . When character data is cast to numeric data, the
result data type depends on the type of number specified. For example, if cast
to integer, it becomes a large integer .

Examples:

v An application is only interested in the integer portion of the SALARY
(defined as decimal(9,2)) from the EMPLOYEE table. The following query,
including the employee number and the integer value of SALARY, could be
prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

v Assume the existence of a distinct type called T_AGE that is defined on
SMALLINT and used to create column AGE in PERSONNEL table. Also
assume the existence of a distinct type called R_YEAR that is defined on
INTEGER and used to create column RETIRE_YEAR in PERSONNEL table.
The following update statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data
type of R_YEAR, although the application will use an integer for this
parameter marker. This does not require the explicit CAST specification
because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a
distinct type T_AGE. This satisfies the requirement that the comparison
must be performed with compatible data types. The application will use the
source data type (which is SMALLINT) for processing this parameter
marker.

Successful processing of this statement assumes that the function path
includes the schema name of the schema (or schemas) where the two
distinct types are defined.

v An application supplies a value that is a series of bits, for example an audio
stream, and it should not undergo code page conversion before being used
in an SQL statement. The application could use the following CAST:

CAST(? AS VARCHAR(10000) FOR BIT DATA)

CAST specifications

Chapter 2. Language elements 205

Dereference operations

dereference-operation:

scoped-ref-expression −> name1

�

()
,

expression

The scope of the scoped reference expression is a table or view called the
target table or view. The scoped reference expression identifies a target row.
The target row is the row in the target table or view (or in one of its subtables
or subviews) whose object identifier (OID) column value matches the
reference expression. The dereference operation can be used to access a
column of the target row, or to invoke a method, using the target row as the
subject of the method. The result of a dereference operation can always be
null. The dereference operation takes precedence over all other operators.

scoped-ref-expression
An expression that is a reference type that has a scope (SQLSTATE
428DT). If the expression is a host variable, parameter marker or other
unscoped reference type value, a CAST specification with a SCOPE clause
is required to give the reference a scope.

name1
Specifies an unqualified identifier.

If no parentheses follow name1, and name1 matches the name of an
attribute of the target type, then the value of the dereference operation is
the value of the named column in the target row. In this case, the data
type of the column (made nullable) determines the result type of the
dereference operation. If no target row exists whose object identifier
matches the reference expression, then the result of the dereference
operation is null. If the dereference operation is used in a select list and is
not included as part of an expression, name1 becomes the result column
name.

If parentheses follow name1, or if name1 does not match the name of an
attribute of the target type, then the dereference operation is treated as a
method invocation. The name of the invoked method is name1. The
subject of the method is the target row, considered as an instance of its
structured type. If no target row exists whose object identifier matches the
reference expression, the subject of the method is a null value of the target
type. The expressions inside parentheses, if any, provide the remaining
parameters of the method invocation. The normal process is used for

Dereference operations

206 SQL Reference, Volume 1

resolution of the method invocation. The result type of the selected
method (made nullable) determines the result type of the dereference
operation.

The authorization ID of the statement that uses a dereference operation must
have SELECT privilege on the target table of the scoped-ref-expression
(SQLSTATE 42501).

A dereference operation can never modify values in the database. If a
dereference operation is used to invoke a mutator method, the mutator
method modifies a copy of the target row and returns the copy, leaving the
database unchanged.

Examples:

v Assume the existence of an EMPLOYEE table that contains a column called
DEPTREF which is a reference type scoped to a typed table based on a type
that includes the attribute DEPTNAME. The values of DEPTREF in the
table EMPLOYEE should correspond to the OID column values in the target
table of DEPTREF column.

SELECT EMPNO, DEPTREF−>DEPTNAME
FROM EMPLOYEE

v Using the same tables as in the previous example, use a dereference
operation to invoke a method named BUDGET, with the target row as
subject parameter, and '1997' as an additional parameter.

SELECT EMPNO, DEPTREF−>BUDGET(’1997’) AS DEPTBUDGET97
FROM EMPLOYEE

OLAP functions

OLAP-function:

ranking-function
numbering-function
aggregation-function

ranking-function:

RANK ()
DENSE_RANK ()

OVER (
window-partition-clause

�

� window-order-clause)

numbering-function:

ROW_NUMBER () OVER (
window-partition-clause

�

Dereference operations

Chapter 2. Language elements 207

�)
window-order-clause

aggregation-function:

column-function OVER (
window-partition-clause

�

�
window-order-clause

window-aggregation-group-clause

�

�
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

)
window-aggregation-group-clause

window-partition-clause:

�

,

PARTITION BY partitioning-expression

window-order-clause:

ORDER BY �

,
asc option

sort-key-expression
desc option

ORDER OF table-designator

asc option:

NULLS LAST
ASC

NULLS FIRST

desc option:

NULLS FIRST
DESC

NULLS LAST

OLAP functions

208 SQL Reference, Volume 1

window-aggregation-group-clause:

ROWS
RANGE

group-start
group-between
group-end

group-start:

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
CURRENT ROW

group-between:

BETWEEN group-bound1 AND group-bound2

group-bound1:

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound2:

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-end:

UNBOUNDED FOLLOWING
unsigned-constant FOLLOWING

On-Line Analytical Processing (OLAP) functions provide the ability to return
ranking, row numbering and existing column function information as a scalar
value in a query result. An OLAP function can be included in expressions in a
select-list or the ORDER BY clause of a select-statement (SQLSTATE 42903).
An OLAP function cannot be used as an argument of a column function
(SQLSTATE 42607). The query result to which the OLAP function is applied is
the result table of the innermost subselect that includes the OLAP function.

When specifying an OLAP function, a window is specified that defines the
rows over which the function is applied, and in what order. When used with
a column function, the applicable rows can be further refined, relative to the
current row, as either a range or a number of rows preceding and following

OLAP functions

Chapter 2. Language elements 209

the current row. For example, within a partition by month, an average can be
calculated over the previous three month period.

The ranking function computes the ordinal rank of a row within the window.
Rows that are not distinct with respect to the ordering within their window
are assigned the same rank. The results of ranking may be defined with or
without gaps in the numbers resulting from duplicate values.

If RANK is specified, the rank of a row is defined as 1 plus the number of
rows that strictly precede the row. Thus, if two or more rows are not distinct
with respect to the ordering, then there will be one or more gaps in the
sequential rank numbering.

If DENSE_RANK (or DENSERANK) is specified, the rank of a row is defined
as 1 plus the number of preceding rows that are distinct with respect to the
ordering. Therefore, there will be no gaps in the sequential rank numbering.

The ROW_NUMBER (or ROWNUMBER) function computes the sequential
row number of the row within the window defined by the ordering, starting
with 1 for the first row. If the ORDER BY clause is not specified in the
window, the row numbers are assigned to the rows in arbitrary order, as
returned by the subselect (not according to any ORDER BY clause in the
select-statement).

The data type of the result of RANK, DENSE_RANK or ROW_NUMBER is
BIGINT. The result cannot be null.

PARTITION BY (partitioning-expression,...)
Defines the partition within which the function is applied. A
partitioning-expression is an expression used in defining the partitioning of
the result set. Each column-name referenced in a partitioning-expression
must unambiguously reference a result set column of the OLAP function
subselect statement (SQLSTATE 42702 or 42703). A partitioning-expression
cannot include a scalar-fullselect (SQLSTATE 42822) or any function that is
not deterministic or has an external action (SQLSTATE 42845).

ORDER BY (sort-key-expression,...)
Defines the ordering of rows within a partition that determines the value
of the OLAP function or the meaning of the ROW values in the
window-aggregation-group-clause (it does not define the ordering of the
query result set).

sort-key-expression
An expression used in defining the ordering of the rows within a window
partition. Each column name referenced in a sort-key-expression must
unambiguously reference a column of the result set of the subselect,
including the OLAP function (SQLSTATE 42702 or 42703). A

OLAP functions

210 SQL Reference, Volume 1

sort-key-expression cannot include a scalar fullselect (SQLSTATE 42822) or
any function that is not deterministic or that has an external action
(SQLSTATE 42845). This clause is required for the RANK and
DENSE_RANK functions (SQLSTATE 42601).

ASC
Uses the values of the sort-key-expression in ascending order.

DESC
Uses the values of the sort-key-expression in descending order.

NULLS FIRST
The window ordering considers null values before all non-null values in
the sort order.

NULLS LAST
The window ordering considers null values after all non-null values in the
sort order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied
to the result table of the subselect. There must be a table reference
matching table-designator in the FROM clause of the subselect that specifies
this clause (SQLSTATE 42703). The subselect (or fullselect) corresponding
to the specified table-designator must include an ORDER BY clause that is
dependant on the data (SQLSTATE 428FI). The ordering that is applied is
the same as if the columns of the ORDER BY clause in the nested
subselect (or fullselect) were included in the outer subselect (or fullselect),
and these columns were specified in place of the ORDER OF clause.

window-aggregation-group-clause
The aggregation group of a row R is a set of rows defined in relation to R
(in the ordering of the rows of R’s partition). This clause specifies the
aggregation group. If this clause is not specified, the default is the same as
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,
providing a cumulative aggregation result.

ROWS
Indicates the aggregation group is defined by counting rows.

RANGE
Indicates the aggregation group is defined by an offset from a sort
key.

group-start
Specifies the starting point for the aggregation group. The aggregation
group end is the current row. Specification of the group-start clause is
equivalent to a group-between clause of the form ″BETWEEN
group-start AND CURRENT ROW″.

OLAP functions

Chapter 2. Language elements 211

group-between
Specifies the aggregation group start and end based on either ROWS
or RANGE.

group-end
Specifies the ending point for the aggregation group. The aggregation
group start is the current row. Specification of the group-end clause is
equivalent to a group-between clause of the form ″BETWEEN
CURRENT ROW AND group-end″.

UNBOUNDED PRECEDING
Includes the entire partition preceding the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

UNBOUNDED FOLLOWING
Includes the entire partition following the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

CURRENT ROW
Specifies the start or end of the aggregation group based on the
current row. If ROWS is specified, the current row is the aggregation
group boundary. If RANGE is specified, the aggregation group
boundary includes the set of rows with the same values for the
sort-key-expressions as the current row. This clause cannot be specified
in group-bound2 if group-bound1 specifies value FOLLOWING.

value PRECEDING
Specifies either the range or number of rows preceding the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow subtraction. This
clause cannot be specified in group-bound2 if group-bound1 is
CURRENT ROW or value FOLLOWING.

value FOLLOWING
Specifies either the range or number of rows following the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow addition.

Examples:

OLAP functions

212 SQL Reference, Volume 1

v Display the ranking of employees, in order by surname, according to their
total salary (based on salary plus bonus) that have a total salary more than
$30,000.

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

FROM EMPLOYEE WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER
BY LASTNAME with:

ORDER BY RANK_SALARY

or
ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)

v Rank the departments according to their average total salary.
SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,

RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY RANK_AVG_SAL

v Rank the employees within a department according to their education level.
Having multiple employees with the same rank in the department should
not increase the next ranking value.

SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,
DENSE_RANK() OVER

(PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

v Provide row numbers in the result of a query.
SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,

LASTNAME, SALARY
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

v List the top five wage earners.
SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY

FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMPLOYEE) AS RANKED_EMPLOYEE

WHERE RANK_SALARY < 6
ORDER BY RANK_SALARY

Note that a nested table expression was used to first compute the result,
including the rankings, before the rank could be used in the WHERE
clause. A common table expression could also have been used.

OLAP functions

Chapter 2. Language elements 213

XML functions

XML-function:

XML2CLOB (xmlagg-function)
xmlelement-function

xmlagg-function:

XMLAGG

�

(xmlelement-function)
,

ASC
ORDER BY sort-key

DESC

sort-key:

column-name
sort-key-expression

xmlelement-function:

XMLELEMENT (NAME element-name �

�

�

�

xmlattributes-function
,

element-content
,

xmlattributes-function , element-content

)

xmlattributes-function:

XMLATTRIBUTES �

,

(attribute-value)
AS attribute-name

XML2CLOB
Returns the argument as a CLOB value. The schema is SYSIBM. The
argument must be an expression of data type XML. The result has the
CLOB data type.

XMLAGG
Returns the concatenation of a set of XML data. The schema is SYSIBM.
The data type of the result is XML, and its length is set to 1 073 741 823. If

XML functions

214 SQL Reference, Volume 1

the XMLAGG function is applied to an empty set, the result is a null
value. Otherwise, the result is the concatenation of the values in the set.

ORDER BY
Specifies the order of the rows from the same grouping set that are
processed in the aggregation. If the ORDER BY clause is omitted, or if
the ORDER BY clause cannot distinguish the order of the column
data, the rows in the same grouping set are arbitrarily ordered.

sort-key
The sort key can be a column name or a sort-key-expression. Note
that if the sort key is a constant, it does not refer to the position of the
output column (as in the ordinary ORDER BY clause), but it is simply
a constant, which implies no sort key.

Restrictions on using the XMLAGG function are:
v Column functions cannot be used as direct input (SQLSTATE 42607).
v XMLAGG cannot be used as a column function of an OLAP aggregate

function (SQLSTATE 42601).

XMLELEMENT
Constructs an XML element from the arguments. The schema is SYSIBM.
This function takes an element name, an optional collection of attributes,
and zero or more arguments that will make up the element’s content. The
result data type is XML.

NAME
This keyword precedes the name of the XML element.

element-name
The name of the XML element.

xmlattributes-function
XML attributes that are the result of the XMLATTRIBUTES function. If
specified, this must appear in the second argument of XMLELEMENT
as the XMLATTRIBUTES function with the appropriate format.

element-content
The content of the generated elements is specified by an expression or
a list of expressions. The data type of the result of the expression must
be one of SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC,
REAL, DOUBLE, CHAR, VARCHAR, LONG VARCHAR, CLOB,
GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB, DATE,
TIME, TIMESTAMP, XML, or any distinct type whose source type is
one of the preceding data types. Character string data defined as FOR
BIT DATA is not allowed. The expressions can be any SQL expression,
but cannot include a scalar fullselect, or a subquery.

XML functions

Chapter 2. Language elements 215

XMLATTRIBUTES
Constructs XML attributes from the arguments. The schema is SYSIBM.
The result has the same internal XML data type as the arguments.

attribute-value
The attribute value is an expression. The data type of the result of the
expression must be one of: SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, REAL, DOUBLE, CHAR, VARCHAR, LONG
VARCHAR, CLOB, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,
DBCLOB, DATE, TIME, TIMESTAMP, or any distinct type whose
source type is one of the preceding data types. Character string data
defined as FOR BIT DATA is not allowed. The expression can be any
SQL expression but cannot include a scalar fullselect or a subquery. If
the expression is not a simple column reference, an attribute name
must be specified. Duplicate attribute names are not allowed
(SQLSTATE 42713).

attribute-name
The attribute name is an SQL identifier.

Examples:

v Construct a CLOB from the expression returned by the XMLELEMENT
function. The query

SELECT e.empno, XML2CLOB(XMLELEMENT(NAME "Emp", e.firstnme || ’ ’ ||
e.lastname))

AS "Result" FROM employee e
WHERE e.edlevel = 12

produces the following result:
EMPNO Result
000290 <Emp>JOHN PARKER</Emp>
000310 <Emp>MAUDE SETRIGHT</Emp>

v Produce a department element (for each department) with a list of
employees, sorted by employee last name:

SELECT XML2CLOB(XMLELEMENT(NAME "Department",
XMLATTRIBUTES(e.workdept AS "name"),
XMLAGG(XMLELEMENT(NAME "emp", e.lastname)

ORDER BY e.lastname
)

)) AS "dept_list"
FROM employee e
WHERE e.workdept IN (’C01’,’E21’)
GROUP BY workdept

This query produces the following output. Note that no spaces or newline
characters are actually produced in the result; the following output has
been formatted for clarity.

XML functions

216 SQL Reference, Volume 1

dept_list
<Department name = "C01">

<emp>KWAN</emp>
<emp>NICHOLLS</emp>
<emp>QUINTANA</emp>

</Department>
<Department name = "E21">

<emp>GOUNOT</emp>
<emp>LEE</emp>
<emp>MEHTA</emp>
<emp>SPENSER</emp>

</Department>

v For each department that reports to department A00, create an empty XML
element named Mgr with an ID attribute equal to the MGRNO. The query

SELECT d.deptno, XML2CLOB(XMLELEMENT(NAME "Mgr",
XMLATTRIBUTES(d.mgrno)))
AS "Result" FROM department d
WHERE d.admrdept = ’A00’

produces the following result:
DEPTNO Result
A00 <Mgr ID="000010"/>
B01 <Mgr ID="000020"/>
C01 <Mgr ID="000030"/>
D01 <Mgr/>

v Produce an XML element named Emp for each employee, with nested
elements for the employee’s full name and the date the employee was
hired. The query

SELECT e.empno, XML2CLOB
(XMLELEMENT(NAME "Emp",
XMLELEMENT(NAME "name", e.firstnme || ’ ’ || e.lastname),
XMLELEMENT(NAME "hiredate", e.hiredate)))
AS "Result" FROM employee e
WHERE e.edlevel = 12

produces the following result (formatted here for convenience; the output
XML has no extraneous whitespace characters):

EMPNO Result
000290 <Emp>

<name>JOHN PARKER</name>
<hiredate>1980-05-30</hiredate>
</Emp>

000310 <Emp>
<name>MAUDE SETRIGHT</name>
<hiredate>1964-09-12</hiredate>
</Emp>

v Using the XMLATTRIBUTES function, along with the XML2CLOB and
XMLELEMENT functions, construct the XML attributes. The query

XML functions

Chapter 2. Language elements 217

SELECT XML2CLOB(XMLELEMENT(NAME "Emp:Exempt",
XMLATTRIBUTES(e.firstnme, e.lastname AS "name:last", e."midinit")))

AS "result"
FROM employee e
WHERE e.lastname=’GEYER’

produces the following result:
<Emp:Exempt

FIRSTNME="JOHN"
name:last="GEYER"
MIDINIT="B"

/>

Method invocation

method-invocation:

�

subject-expression..method-name
()

,

expression

Both system-generated observer and mutator methods, as well as user-defined
methods are invoked using the double-dot operator.

subject-expression
An expression with a static result type that is a user-defined structured
type.

method-name
The unqualified name of a method. The static type of subject-expression or
one of its supertypes must include a method with the specified name.

(expression,...)
The arguments of method-name are specified within parentheses. Empty
parentheses can be used to indicate that there are no arguments. The
method-name and the data types of the specified argument expressions are
used to resolve to the specific method, based on the static type of
subject-expression.

The double-dot operator used for method invocation is a high precedence left
to right infix operator. For example, the following two expressions are
equivalent:

a..b..c + x..y..z

and
((a..b)..c) + ((x..y)..z)

XML functions

218 SQL Reference, Volume 1

If a method has no parameters other than its subject, it can be invoked with
or without parentheses. For example, the following two expressions are
equivalent:

point1..x
point1..x()

Null subjects in method calls are handled as follows:
v If a system-generated mutator method is invoked with a null subject, an

error results (SQLSTATE 2202D)
v If any method other than a system-generated mutator is invoked with a

null subject, the method is not executed, and its result is null. This rule
includes user-defined methods with SELF AS RESULT.

When a database object (a package, view, or trigger, for example) is created,
the best fit method that exists for each of its method invocations is found.

Note: Methods of types defined WITH FUNCTION ACCESS can also be
invoked using the regular function notation. Function resolution
considers all functions, as well as methods with function access as
candidate functions. However, functions cannot be invoked using
method invocation. Method resolution considers all methods and does
not consider functions as candidate methods. Failure to resolve to an
appropriate function or method results in an error (SQLSTATE 42884).

Example:

v Use the double-dot operator to invoke a method called AREA. Assume the
existence of a table called RINGS, with a column CIRCLE_COL of
structured type CIRCLE. Also, assume that the method AREA has been
defined previously for the CIRCLE type as AREA() RETURNS DOUBLE.

SELECT CIRCLE_COL..AREA() FROM RINGS

Subtype treatment

subtype-treatment:

TREAT (expression AS data-type)

The subtype-treatment is used to cast a structured type expression into one of
its subtypes. The static type of expression must be a user-defined structured
type, and that type must be the same type as, or a supertype of, data-type. If
the type name in data-type is unqualified, the SQL path is used to resolve the
type reference. The static type of the result of subtype-treatment is data-type,
and the value of the subtype-treatment is the value of the expression. At run
time, if the dynamic type of the expression is not data-type or a subtype of
data-type, an error is returned (SQLSTATE 0D000).

Method invocation

Chapter 2. Language elements 219

Example:

v If an application knows that all column object instances in a column
CIRCLE_COL have the dynamic type COLOREDCIRCLE, use the following
query to invoke the method RGB on such objects. Assume the existence of a
table called RINGS, with a column CIRCLE_COL of structured type
CIRCLE. Also, assume that COLOREDCIRCLE is a subtype of CIRCLE and
that the method RGB has been defined previously for COLOREDCIRCLE as
RGB() RETURNS DOUBLE.

SELECT TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
FROM RINGS

At run time, if there are instances of dynamic type CIRCLE, an error is
raised (SQLSTATE 0D000). This error can be avoided by using the TYPE
predicate in a CASE expression, as follows:

SELECT (CASE
WHEN CIRCLE_COL IS OF (COLOREDCIRCLE)
THEN TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
ELSE NULL

END)
FROM RINGS

Sequence reference

sequence-reference:

nextval-expression
prevval-expression

nextval-expression:

NEXTVAL FOR sequence-name

prevval-expression:

PREVVAL FOR sequence-name

NEXTVAL FOR sequence-name
A NEXTVAL expression generates and returns the next value for the
sequence specified by sequence-name.

PREVVAL FOR sequence-name
A PREVVAL expression returns the most recently generated value for the
specified sequence for a previous statement within the current application
process. This value can be referenced repeatedly by using PREVVAL
expressions that specify the name of the sequence. There may be multiple
instances of PREVVAL expressions specifying the same sequence name
within a single statement; they all return the same value.

Subtype treatment

220 SQL Reference, Volume 1

A PREVVAL expression can only be used if a NEXTVAL expression
specifying the same sequence name has already been referenced in the
current application process, in either the current or a previous transaction
(SQLSTATE 51035).

Notes:

v A new value is generated for a sequence when a NEXTVAL expression
specifies the name of that sequence. However, if there are multiple instances
of a NEXTVAL expression specifying the same sequence name within a
query, the counter for the sequence is incremented only once for each row
of the result, and all instances of NEXTVAL return the same value for a row
of the result.

v The same sequence number can be used as a unique key value in two
separate tables by referencing the sequence number with a NEXTVAL
expression for the first row (this generates the sequence value), and a
PREVVAL expression for the other rows (the instance of PREVVAL refers to
the sequence value most recently generated in the current session), as
shown below:

INSERT INTO order(orderno, cutno)
VALUES (NEXTVAL FOR order_seq, 123456);

INSERT INTO line_item (orderno, partno, quantity)
VALUES (PREVVAL FOR order_seq, 987654, 1);

v NEXTVAL and PREVVAL expressions can be specified in the following
places:
– select-statement or SELECT INTO statement (within the select-clause,

provided that the statement does not contain a DISTINCT keyword, a
GROUP BY clause, an ORDER BY clause, a UNION keyword, an
INTERSECT keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)
– INSERT statement (within the select-clause of the fullselect)
– UPDATE statement (within the SET clause (either a searched or a

positioned UPDATE statement), except that NEXTVAL cannot be
specified in the select-clause of the fullselect of an expression in the SET
clause)

– SET Variable statement (except within the select-clause of the fullselect of
an expression; a NEXTVAL expression can be specified in a trigger, but a
PREVVAL expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an
expression)

– CREATE PROCEDURE statement (within the routine-body of an SQL
procedure)

– CREATE TRIGGER statement within the triggered-action (a NEXTVAL
expression may be specified, but a PREVVAL expression cannot)

Sequence reference

Chapter 2. Language elements 221

v NEXTVAL and PREVVAL expressions cannot be specified (SQLSTATE
428F9) in the following places:
– join condition of a full outer join
– DEFAULT value for a column in a CREATE or ALTER TABLE statement
– generated column definition in a CREATE OR ALTER TABLE statement
– summary table definition in a CREATE TABLE or ALTER TABLE

statement
– condition of a CHECK constraint
– CREATE TRIGGER statement (a NEXTVAL expression may be specified,

but a PREVVAL expression cannot)
– CREATE VIEW statement
– CREATE METHOD statement
– CREATE FUNCTION statement

v In addition, a NEXTVAL expression cannot be specified (SQLSTATE 428F9)
in the following places:
– CASE expression
– parameter list of an aggregate function
– subquery in a context other than those explicitly allowed above
– SELECT statement for which the outer SELECT contains a DISTINCT

operator
– join condition of a join
– SELECT statement for which the outer SELECT contains a GROUP BY

clause
– SELECT statement for which the outer SELECT is combined with

another SELECT statement using the UNION, INTERSECT, or EXCEPT
set operator

– nested table expression
– parameter list of a table function
– WHERE clause of the outer-most SELECT statement, or a DELETE or

UPDATE statement
– ORDER BY clause of the outer-most SELECT statement
– select-clause of the fullselect of an expression, in the SET clause of an

UPDATE statement
– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine

v When a value is generated for a sequence, that value is consumed, and the
next time that a value is requested, a new value will be generated. This is
true even when the statement containing the NEXTVAL expression fails or
is rolled back.
If an INSERT statement includes a NEXTVAL expression in the VALUES list
for the column, and if an error occurs at some point during the execution of

Sequence reference

222 SQL Reference, Volume 1

the INSERT (it could be a problem in generating the next sequence value,
or a problem with the value for another column), then an insertion failure
occurs (SQLSTATE 23505), and the value generated for the sequence is
considered to be consumed. In some cases, reissuing the same INSERT
statement might lead to success.
For example, consider an error that is the result of the existence of a unique
index for the column for which NEXTVAL was used and the sequence
value generated already exists in the index. It is possible that the next value
generated for the sequence is a value that does not exist in the index and so
the subsequent INSERT would succeed.

v If in generating a value for a sequence, the maximum value for the
sequence is exceeded (or the minimum value for a descending sequence)
and cycles are not permitted, then an error occurs (SQLSTATE 23522). In
this case, the user could ALTER the sequence to extend the range of
acceptable values, or enable cycles for the sequence, or DROP and CREATE
a new sequence with a different data type that has a larger range of values.
For example, a sequence may have been defined with a data type of
SMALLINT, and eventually the sequence runs out of assignable values.
DROP and re-create the sequence with the new definition to redefine the
sequence as INTEGER.

v A reference to a NEXTVAL expression in the select statement of a cursor
refers to a value that is generated for a row of the result table. A sequence
value is generated for a NEXTVAL expression for each row that is fetched
from the database. If blocking is done at the client, the values may have
been generated at the server prior to the processing of the FETCH
statement. This can occur when there is blocking of the rows of the result
table. If the client application does not explicitly FETCH all the rows that
the database has materialized, then the application will not see the results
of all the generated sequence values (for the materialized rows that were
not returned).

v A reference to a PREVVAL expression in the select statement of a cursor
refers to a value that was generated for the specified sequence prior to the
opening of the cursor. However, closing the cursor can affect the values
returned by PREVVAL for the specified sequence in subsequent statements,
or even for the same statement in the event that the cursor is reopened.
This would be the case when the select statement of the cursor included a
reference to NEXTVAL for the same sequence name.

Examples:

Assume that there is a table called ″order″, and that a sequence called
″order_seq″ is created as follows:

Sequence reference

Chapter 2. Language elements 223

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

Following are some examples of how to generate an ″order_seq″ sequence
number with a NEXTVAL expression:

INSERT INTO order(orderno, custno)
VALUES (NEXTVAL FOR order_seq, 123456);

or
UPDATE order

SET orderno = NEXTVAL FOR order_seq
WHERE custno = 123456;

or
VALUES NEXTVAL FOR order_seq INTO :hv_seq;

Related reference:

v “Identifiers” on page 65
v “TYPE predicate” on page 244
v “CHAR” on page 303
v “INTEGER” on page 384
v “Fullselect” on page 595
v “CREATE TABLE statement” in the SQL Reference, Volume 2

v “Methods” on page 178
v “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL

Reference, Volume 2

v “Casting between data types” on page 113
v “Assignments and comparisons” on page 117
v “Rules for result data types” on page 134
v “Rules for string conversions” on page 139

Sequence reference

224 SQL Reference, Volume 1

Predicates

Predicates

A predicate specifies a condition that is true, false, or unknown about a given
row or group.

The following rules apply to all types of predicates:
v All values specified in a predicate must be compatible.
v An expression used in a basic, quantified, IN, or BETWEEN predicate must

not result in a character string with a length attribute greater than 4 000, a
graphic string with a length attribute greater than 2 000, or a LOB string of
any size.

v The value of a host variable can be null (that is, the variable may have a
negative indicator variable).

v The code page conversion of operands of predicates involving two or more
operands, with the exception of LIKE, is done according to the rules for
string conversions.

v Use of a DATALINK value is limited to the NULL predicate.
v Use of a structured type value is limited to the NULL predicate and the

TYPE predicate.
v In a Unicode database, all predicates that accept a character or graphic

string will accept any string type for which conversion is supported.

A fullselect is a form of the SELECT statement that, when used in a predicate,
is also called a subquery.

Related reference:

v “Fullselect” on page 595
v “Rules for string conversions” on page 139

Predicates

Chapter 2. Language elements 225

Search conditions

search-condition:

NOT
predicate

SELECTIVITY numeric-constant
(search-condition)

�

� �

AND predicate
OR NOT SELECTIVITY numeric-constant

(search-condition)

A search condition specifies a condition that is “true,” “false,” or “unknown”
about a given row.

The result of a search condition is derived by application of the specified
logical operators (AND, OR, NOT) to the result of each specified predicate. If
logical operators are not specified, the result of the search condition is the
result of the specified predicate.

AND and OR are defined in Table 14, in which P and Q are any predicates:

Table 14. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, NOT is applied before AND, and
AND is applied before OR. The order in which operators at the same

Search conditions

226 SQL Reference, Volume 1

precedence level are evaluated is undefined to allow for optimization of
search conditions.

SELECTIVITY value
The SELECTIVITY clause is used to indicate to DB2 what the expected
selectivity percentage is for the predicate. SELECTIVITY can be specified
only when the predicate is a user-defined predicate.

A user-defined predicate is a predicate that consists of a user-defined
function invocation, in the context of a predicate specification that
matches the predicate specification on the PREDICATES clause of
CREATE FUNCTION. For example, if the function foo is defined with
PREDICATES WHEN=1..., then the following use of SELECTIVITY is
valid:

SELECT *
FROM STORES
WHERE foo(parm,parm) = 1 SELECTIVITY 0.004

The selectivity value must be a numeric literal value in the inclusive range
from 0 to 1 (SQLSTATE 42615). If SELECTIVITY is not specified, the
default value is 0.01 (that is, the user-defined predicate is expected to
filter out all but one percent of all the rows in the table). The
SELECTIVITY default can be changed for any given function by updating
its SELECTIVITY column in the SYSSTAT.FUNCTIONS view. An error will
be returned if the SELECTIVITY clause is specified for a non user-defined
predicate (SQLSTATE 428E5).

A user-defined function (UDF) can be applied as a user-defined predicate
and, hence, is potentially applicable for index exploitation if:
v the predicate specification is present in the CREATE FUNCTION

statement

1

1

32

2 or 3 2 or 3

MAJPROJ = 'MA2100' DEPTNO = 'D11' DEPTNO = 'B03' DEPTNO = 'E11'AND OR OR

MAJPROJ = 'MA2100' (DEPTNO = 'D11' DEPTNO = 'B03') DEPTNO = 'E11'AND OR OR

Figure 12. Search Conditions Evaluation Order

Search conditions

Chapter 2. Language elements 227

v the UDF is invoked in a WHERE clause being compared (syntactically)
in the same way as specified in the predicate specification

v there is no negation (NOT operator)

Examples:

In the following query, the within UDF specification in the WHERE clause
satisfies all three conditions and is considered a user-defined predicate.

SELECT *
FROM customers
WHERE within(location, :sanJose) = 1 SELECTIVITY 0.2

However, the presence of within in the following query is not
index-exploitable due to negation and is not considered a user-defined
predicate.

SELECT *
FROM customers
WHERE NOT(within(location, :sanJose) = 1) SELECTIVITY 0.3

In the next example, consider identifying customers and stores that are within
a certain distance of each other. The distance from one store to another is
computed by the radius of the city in which the customers live.

SELECT *
FROM customers, stores
WHERE distance(customers.loc, stores.loc) <

CityRadius(stores.loc) SELECTIVITY 0.02

In the above query, the predicate in the WHERE clause is considered a
user-defined predicate. The result produced by CityRadius is used as a search
argument to the range producer function.

However, since the result produced by CityRadius is used as a range producer
function, the above user-defined predicate will not be able to make use of the
index extension defined on the stores.loc column. Therefore, the UDF will
make use of only the index defined on the customers.loc column.

Related reference:

v “CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

Search conditions

228 SQL Reference, Volume 1

Basic predicate

�� expression =
(1)

<>
<
>

(1)
<=

(1)
>=

expression ��

Notes:

1 The following forms of the comparison operators are also supported in
basic and quantified predicates: ^=, ^<, ^>, !=, !<, and !>. In code pages
437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported.

All of these product-specific forms of the comparison operators are
intended only to support existing SQL that uses these operators, and are
not recommended for use when writing new SQL statements.

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown.
Otherwise the result is either true or false.

For values x and y:

Predicate Is True If and Only If...
x = y x is equal to y
x <> y x is not equal to y
x < y x is less than y
x > y x is greater than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y

Examples:
EMPNO=’528671’
SALARY < 20000
PRSTAFF <> :VAR1
SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

Basic predicate

Chapter 2. Language elements 229

Quantified predicate

��

�

expression1 = SOME (fullselect1)
(1) ANY

<> ALL
<
>
<=
>=

,

(expression2) = SOME (fullselect2)
ANY

��

Notes:

1 The following forms of the comparison operators are also supported in
basic and quantified predicates: ^=, ^<, ^>, !=, !<, and !>. In code pages
437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported.

All of these product-specific forms of the comparison operators are
intended only to support existing SQL that uses these operators, and are
not recommended for use when writing new SQL statements.

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the predicate operator
(SQLSTATE 428C4). The fullselect may return any number of rows.

When ALL is specified:
v The result of the predicate is true if the fullselect returns no values or if the

specified relationship is true for every value returned by the fullselect.
v The result is false if the specified relationship is false for at least one value

returned by the fullselect.
v The result is unknown if the specified relationship is not false for any

values returned by the fullselect and at least one comparison is unknown
because of the null value.

When SOME or ANY is specified:
v The result of the predicate is true if the specified relationship is true for

each value of at least one row returned by the fullselect.
v The result is false if the fullselect returns no rows or if the specified

relationship is false for at least one value of every row returned by the
fullselect.

v The result is unknown if the specified relationship is not true for any of the
rows and at least one comparison is unknown because of a null value.

Quantified predicate

230 SQL Reference, Volume 1

Examples: Use the following tables when referring to the following examples.

Example 1
SELECT COLA FROM TBLAB

WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at
least one of these values.

Example 2
SELECT COLA FROM TBLAB

WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater
than at least one of these values.

Example 3
SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is
greater than both these values.

Example 4
SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY
WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is
true for all rows in TBLAB.

Example 5
SELECT * FROM TBLAB

WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

TBL :AB TBL :XY
COLX

2
3

COLY

22
23

COLA

1
2
3
4
-

COLB

12
12
13
14
-

Figure 13.

Quantified predicate

Chapter 2. Language elements 231

The subselect returns all entries from TBLXY. The predicate is true for the
subselect, hence the result is as follows:
COLA COLB
----------- -----------

2 12
3 13

Example 6
SELECT * FROM TBLAB

WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true
for the subselect, hence the result is as follows:
COLA COLB
----------- -----------

2 12
3 13

Quantified predicate

232 SQL Reference, Volume 1

BETWEEN predicate

�� expression
NOT

BETWEEN expression AND expression ��

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:
value1 BETWEEN value2 AND value3

is equivalent to the search condition:
value1 >= value2 AND value1 <= value3

The BETWEEN predicate:
value1 NOT BETWEEN value2 AND value3

is equivalent to the search condition:
NOT(value1 BETWEEN value2 AND value3); that is,
value1 < value2 OR value1 > value3.

The first operand (expression) cannot include a function that is variant or has
an external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime
values, all values are converted to the data type of the datetime operand.

Examples:

Example 1
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2
SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above
$40,000.00.

BETWEEN predicate

Chapter 2. Language elements 233

EXISTS predicate

�� EXISTS (fullselect) ��

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and
v The result is true only if the number of rows specified by the fullselect is

not zero.
v The result is false only if the number of rows specified is zero
v The result cannot be unknown.

Example:
EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

EXISTS predicate

234 SQL Reference, Volume 1

IN predicate

��

�

�

expression1 IN (fullselect1)
NOT ,

(expression2)
expression2

,

(expression3) IN (fullselect2)
NOT

��

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the IN keyword (SQLSTATE
428C4). The fullselect may return any number of rows.
v An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:
expression = expression

v An IN predicate of the form:
expression IN (fullselect)

is equivalent to a quantified predicate of the form:
expression = ANY (fullselect)

v An IN predicate of the form:
expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:
expression <> ALL (fullselect)

v An IN predicate of the form:
expression IN (expressiona, expressionb, ..., expressionk)

is equivalent to:
expression = ANY (fullselect)

where fullselect in the values-clause form is:
VALUES (expressiona), (expressionb), ..., (expressionk)

v An IN predicate of the form:
(expressiona, expressionb,..., expressionk) IN (fullselect)

is equivalent to a quantified predicate of the form:

IN predicate

Chapter 2. Language elements 235

(expressiona, expressionb,..., expressionk) = ANY (fullselect)

The values for expression1 and expression2 or the column of fullselect1 in the IN
predicate must be compatible. Each expression3 value and its corresponding
column of fullselect2 in the IN predicate must be compatible. The rules for
result data types can be used to determine the attributes of the result used in
the comparison.

The values for the expressions in the IN predicate (including corresponding
columns of a fullselect) can have different code pages. If a conversion is
necessary, the code page is determined by applying rules for string
conversions to the IN list first, and then to the predicate, using the derived
code page for the IN list as the second operand.

Examples:

Example 1: The following evaluates to true if the value in the row under
evaluation in the DEPTNO column contains D01, B01, or C01:

DEPTNO IN (’D01’, ’B01’, ’C01’)

Example 2: The following evaluates to true only if the EMPNO (employee
number) on the left side matches the EMPNO of an employee in department
E11:

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = ’E11’)

Example 3: Given the following information, this example evaluates to true if
the specific value in the row of the COL_1 column matches any of the values
in the list:

Table 15. IN Predicate example

Expressions Type Code Page

COL_1 column 850
HV_2 host variable 437
HV_3 host variable 437
CON_1 constant 850

When evaluating the predicate:
COL_1 IN (:HV_2, :HV_3, CON_4)

the two host variables will be converted to code page 850, based on the rules
for string conversions.

IN predicate

236 SQL Reference, Volume 1

Example 4: The following evaluates to true if the specified year in EMENDATE
(the date an employee activity on a project ended) matches any of the values
specified in the list (the current year or the two previous years):

YEAR(EMENDATE) IN (YEAR(CURRENT DATE),
YEAR(CURRENT DATE - 1 YEAR),
YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left
side match MANAGER and DEPTNUMB respectively for any row of the ORG
table.

(ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

Related reference:

v “Rules for result data types” on page 134
v “Rules for string conversions” on page 139

IN predicate

Chapter 2. Language elements 237

LIKE predicate

�� match-expression
NOT

LIKE pattern-expression �

�
ESCAPE escape-expression

��

The LIKE predicate searches for strings that have a certain pattern. The
pattern is specified by a string in which the underscore and the percent sign
may have special meanings. Trailing blanks in a pattern are part of the
pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The values for match-expression, pattern-expression, and escape-expression are
compatible string expressions. There are slight differences in the types of
string expressions supported for each of the arguments. The valid types of
expressions are listed under the description of each argument.

None of the expressions can yield a distinct type. However, it can be a
function that casts a distinct type to its source type.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.

The expression can be specified by:
v A constant
v A special register
v A host variable (including a locator variable or a file reference variable)
v A scalar function
v A large object locator
v A column name
v An expression concatenating any of the above

pattern-expression
An expression that specifies the string that is to be matched.

The expression can be specified by:
v A constant
v A special register
v A host variable
v A scalar function whose operands are any of the above

LIKE predicate

238 SQL Reference, Volume 1

v An expression concatenating any of the above

with the following restrictions:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC, or DBCLOB. In addition it cannot be a BLOB
file reference variable.

v The actual length of pattern-expression cannot be more than 32 672 bytes.

A simple description of the use of the LIKE pattern is that the pattern is
used to specify the conformance criteria for values in the match-expression,
where:
v The underscore character (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents itself.

If the pattern-expression needs to include either the underscore or the
percent character, the escape-expression is used to specify a character to
precede either the underscore or the percent character in the pattern.

A rigorous description of the use of the LIKE pattern follows. Note that
this description ignores the use of the escape-expression; its use is covered
later.
v Let m denote the value of match-expression and let p denote the value of

pattern-expression. The string p is interpreted as a sequence of the
minimum number of substring specifiers so each character of p is part
of exactly one substring specifier. A substring specifier is an underscore,
a percent sign, or any non-empty sequence of characters other than an
underscore or a percent sign.
The result of the predicate is unknown if m or p is the null value.
Otherwise, the result is either true or false. The result is true if m and p
are both empty strings or there exists a partitioning of m into substrings
such that:
– A substring of m is a sequence of zero or more contiguous characters

and each character of m is part of exactly one substring.
– If the nth substring specifier is an underscore, the nth substring of m

is any single character.
– If the nth substring specifier is a percent sign, the nth substring of m

is any sequence of zero or more characters.
– If the nth substring specifier is neither an underscore nor a percent

sign, the nth substring of m is equal to that substring specifier and
has the same length as that substring specifier.

– The number of substrings of m is the same as the number of
substring specifiers.

LIKE predicate

Chapter 2. Language elements 239

Thus, if p is an empty string and m is not an empty string, the result is
false. Similarly, it follows that if m is an empty string and p is not an
empty string (except for a string containing only percent signs), the
result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT
(m LIKE p).

When the escape-expression is specified, the pattern-expression must not
contain the escape character identified by the escape-expression except
when immediately followed by the escape character, the underscore
character or the percent sign character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database then it
can contain mixed data. In this case, the pattern can include both SBCS
and MBCS characters. The special characters in the pattern are interpreted
as follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one MBCS character.
v A percent (either SBCS or DBCS) refers to a string of zero or more SBCS

or MBCS characters.

escape-expression
This optional argument is an expression that specifies a character to be
used to modify the special meaning of the underscore (_) and percent (%)
characters in the pattern-expression. This allows the LIKE predicate to be
used to match values that contain the actual percent and underscore
characters.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable
v a scalar function whose operands are any of the above
v an expression concatenating any of the above

with the restrictions that:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

v The result of the expression must be one SBCS or DBCS character or a
binary string containing exactly 1 byte (SQLSTATE 22019).

LIKE predicate

240 SQL Reference, Volume 1

When escape characters are present in the pattern string, an underscore,
percent sign, or escape character can represent a literal occurrence of itself.
This is true if the character in question is preceded by an odd number of
successive escape characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as
follows:
v Let S be such a sequence, and suppose that S is not part of a larger

sequence of successive escape characters. Suppose also that S contains a
total of n characters. Then the rules governing S depend on the value of
n:
– If n is odd, S must be followed by an underscore or percent sign

(SQLSTATE 22025). S and the character that follows it represent
(n-1)/2 literal occurrences of the escape character followed by a
literal occurrence of the underscore or percent sign.

– If n is even, S represents n/2 literal occurrences of the escape
character. Unlike the case where n is odd, S could end the pattern. If
it does not end the pattern, it can be followed by any character
(except, of course, an escape character, which would violate the
assumption that S is not part of a larger sequence of successive
escape characters). If S is followed by an underscore or percent sign,
that character has its special meaning.

Following is a illustration of the effect of successive occurrences of the
escape character (which, in this case, is the back slash (\)).

Pattern string Actual Pattern

\% A percent sign

\\% A back slash followed by zero or more arbitrary characters

\\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the
match-expression value.
v The match-expression value is never converted.
v If the code page of pattern-expression is different from the code page of

match-expression, the value of pattern-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

v If the code page of escape-expression is different from the code page of
match-expression, the value of escape-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

LIKE predicate

Chapter 2. Language elements 241

Notes:

v The number of trailing blanks is significant in both the match-expression and
the pattern-expression. If the strings are not the same length, the shorter
string is not padded with blank spaces. For example, the expression
’PADDED ’ LIKE ’PADDED’ would not result in a match.

v If the pattern specified in a LIKE predicate is a parameter marker, and a
fixed-length character host variable is used to replace the parameter marker,
the value specified for the host variable must have the correct length. If the
correct length is not specified, the select operation will not return the
intended results.
For example, if the host variable is defined as CHAR(10), and the value
WYSE% is assigned to that host variable, the host variable is padded with
blanks on assignment. The pattern used is:
’WYSE% ’

The database manager searches for all values that start with WYSE and that
end with five blank spaces. If you want to search only for values that start
with ’WYSE’, assign a value of ’WSYE%%%%%%’ to the host variable.

Examples:

v Search for the string ’SYSTEMS’ appearing anywhere within the
PROJNAME column in the PROJECT table.
SELECT PROJNAME FROM PROJECT
WHERE PROJECT.PROJNAME LIKE ’%SYSTEMS%’

v Search for a string with a first character of ’J’ that is exactly two characters
long in the FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE ’J_’

v Search for a string of any length, with a first character of ’J’, in the
FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE ’J%’

v In the CORP_SERVERS table, search for a string in the LA_SERVERS
column that matches the value in the CURRENT SERVER special register.

SELECT LA_SERVERS FROM CORP_SERVERS
WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

v Retrieve all strings that begin with the character sequence ’%_\’ in column
A of table T.

SELECT A FROM T
WHERE T.A LIKE ’\%_\\%’ ESCAPE ’\’

v Use the BLOB scalar function to obtain a one-byte escape character that is
compatible with the match and pattern data types (both BLOBs).

SELECT COLBLOB FROM TABLET
WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X’OE’)

LIKE predicate

242 SQL Reference, Volume 1

NULL predicate

�� expression IS
NOT

NULL ��

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the
expression is null, the result is true. If the value is not null, the result is false.
If NOT is specified, the result is reversed.

Examples:
PHONENO IS NULL

SALARY IS NOT NULL

NULL predicate

Chapter 2. Language elements 243

TYPE predicate

�� expression IS OF
NOT

IS
OF DYNAMIC TYPE

NOT

�

,

(typename)
ONLY

��

A TYPE predicate compares the type of an expression with one or more
user-defined structured types.

The dynamic type of an expression involving the dereferencing of a reference
type is the actual type of the referenced row from the target typed table or
view. This may differ from the target type of an expression involving the
reference which is called the static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The
result of the predicate is true if the dynamic type of the expression is a subtype
of one of the structured types specified by typename, otherwise the result is
false. If ONLY precedes any typename the proper subtypes of that type are not
considered.

If typename is not qualified, it is resolved using the SQL path. Each typename
must identify a user-defined type that is in the type hierarchy of the static
type of expression (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an
expression involving a reference type value. The static type for this form of
expression is the target type of the reference.

The syntax IS OF and OF DYNAMIC TYPE are equivalent alternatives for the
TYPE predicate. Similarly, IS NOT OF and NOT OF DYNAMIC TYPE are
equivalent alternatives.

Examples:

A table hierarchy exists with root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table, ACTIVITIES, includes a column
called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE.
The following is a type predicate that evaluates to true when a row
corresponding to WHO_RESPONSIBLE is a manager:

DEREF (WHO_RESPONSIBLE) IS OF (MGR)

TYPE predicate

244 SQL Reference, Volume 1

If a table contains a column EMPLOYEE of type EMP, EMPLOYEE may
contain values of type EMP as well as values of its subtypes like MGR. The
following predicate

EMPL IS OF (MGR)

returns true when EMPL is not null and is actually a manager.

Related reference:

v “DEREF” on page 335

TYPE predicate

Chapter 2. Language elements 245

TYPE predicate

246 SQL Reference, Volume 1

Chapter 3. Functions

Functions overview

A function is an operation that is denoted by a function name followed by a
pair of parentheses enclosing the specification of arguments (there may be no
arguments).

Built-in functions are provided with the database manager; they return a single
result value, and are identified as part of the SYSIBM schema. Built-in
functions include column functions (such as AVG), operator functions (such as
“+”), casting functions (such as DECIMAL), and others (such as SUBSTR).

User-defined functions are registered to a database in SYSCAT.ROUTINES
(using the CREATE FUNCTION statement). User-defined functions are never
part of the SYSIBM schema. One such set of functions is provided with the
database manager in a schema called SYSFUN, and another in a schema
called SYSPROC.

Functions are classified as aggregate (column) functions, scalar functions, row
functions, or table functions.
v The argument of an column function is a collection of like values. A column

function returns a single value (possibly null), and can be specified in an
SQL statement wherever an expression can be used.

v The arguments of a scalar function are individual scalar values, which can be
of different types and have different meanings. A scalar function returns a
single value (possibly null), and can be specified in an SQL statement
wherever an expression can be used.

v The argument of a row function is a structured type. A row function returns
a row of built-in data types and can only be specified as a transform
function for a structured type.

v The arguments of a table function are individual scalar values, which can be
of different types and have different meanings. A table function returns a
table to the SQL statement, and can be specified only within the FROM
clause of a SELECT statement.

The function name, combined with the schema, gives the fully qualified name
of a function. The combination of schema, function name, and input
parameters make up a function signature.

© Copyright IBM Corp. 1993 - 2002 247

In some cases, the input parameter type is specified as a specific built-in data
type, and in other cases, it is specified through a general variable like
any-numeric-type. If a particular data type is specified, an exact match will only
occur with the specified data type. If a general variable is used, each of the
data types associated with that variable results in an exact match.

Additional functions may be available, because user-defined functions can be
created in different schemas, using one of the function signatures as a source.
You can also create external functions in your applications.

Related concepts:

v “Aggregate functions” on page 269

Related reference:

v “Functions” on page 168
v “Subselect” on page 554
v “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Functions overview

248 SQL Reference, Volume 1

The following table summarizes information about the supported functions.
The function name, combined with the schema, gives the fully qualified name
of a function. The “Input parameters” column shows the expected data type
for each argument during function invocation. Many of the functions include
variations of the input parameters, allowing either different data types or
different numbers of arguments to be used. The combination of schema,
function name and input parameters makes up a function signature. The
“Returns” column shows the possible data types of values returned by the
function.

Table 16. Supported functions

Function name Schema Description

Input parameters Returns

ABS or ABSVAL
SYSIBM Returns the absolute value of the argument.

Any expression that returns a built-in numeric data type. Same data type and length
as the argument

ABS or ABSVAL

SYSFUN Returns the absolute value of the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

ACOS
SYSFUN Returns the arccosine of the argument as an angle expressed in

radians.

DOUBLE DOUBLE

ASCII

SYSFUN Returns the ASCII code value of the leftmost character of the argument
as an integer.

CHAR INTEGER

VARCHAR(4000) INTEGER

CLOB(1M) INTEGER

ASIN
SYSFUN Returns the arcsine of the argument as an angle, expressed in radians.

DOUBLE DOUBLE

ATAN
SYSFUN Returns the arctangent of the argument as an angle, expressed in

radians.

DOUBLE DOUBLE

ATAN2
SYSFUN Returns the arctangent of x and y coordinates, specified by the first and

second arguments respectively, as an angle, expressed in radians.

DOUBLE, DOUBLE DOUBLE

ATANH
SYSIBM Returns the hyperbolic arctangent of the argument, where the

argument is an angle expressed in radians.

DOUBLE DOUBLE

AVG
SYSIBM Returns the average of a set of numbers (column function).

numeric-type 4 numeric-type 1

Functions overview

Chapter 3. Functions 249

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

BIGINT

SYSIBM Returns a 64 bit integer representation of a number or character string
in the form of an integer constant.

numeric-type BIGINT

VARCHAR BIGINT

BLOB

SYSIBM Casts from source type to BLOB, with optional length.

string-type BLOB

string-type, INTEGER BLOB

CEIL or CEILING

SYSFUN Returns the smallest integer greater than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

CHAR

SYSIBM Returns a string representation of the source type.

character-type CHAR

character-type, INTEGER CHAR(integer)

datetime-type CHAR

datetime-type, keyword 2 CHAR

SMALLINT CHAR(6)

INTEGER CHAR(11)

BIGINT CHAR(20)

DECIMAL CHAR(2+precision)

DECIMAL, VARCHAR CHAR(2+precision)

CHAR
SYSFUN Returns a character string representation of a floating-point number.

DOUBLE CHAR(24)

CHR

SYSFUN Returns the character that has the ASCII code value specified by the
argument. The value of the argument should be between 0 and 255;
otherwise, the return value is null.

INTEGER CHAR(1)

CLOB SYSIBM Casts from source type to CLOB, with optional length.

character-type CLOB

character-type, INTEGER CLOB

COALESCE 3
SYSIBM Returns the first non-null argument in the set of arguments.

any-type, any-union-compatible-type, ... any-type

CONCAT or ||
SYSIBM Returns the concatenation of 2 string arguments.

string-type, compatible-string-type max string-type

Functions overview

250 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

CORRELATION or CORR
SYSIBM Returns the coefficient of correlation of a set of number pairs.

numeric-type, numeric-type DOUBLE

COS
SYSFUN Returns the cosine of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

COSH
SYSIBM Returns the hyperbolic cosine of the argument, where the argument is

an angle expressed in radians.

DOUBLE DOUBLE

COT
SYSFUN Returns the cotangent of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

COUNT
SYSIBM Returns the count of the number of rows in a set of rows or values

(column function).

any-builtin-type 4 INTEGER

COUNT_BIG

SYSIBM Returns the number of rows or values in a set of rows or values
(column function). Result can be greater than the maximum value of
integer.

any-builtin-type 4 DECIMAL(31,0)

COVARIANCE or COVAR
SYSIBM Returns the covariance of a set of number pairs.

numeric-type, numeric-type DOUBLE

DATE

SYSIBM Returns a date from a single input value.

DATE DATE

TIMESTAMP DATE

DOUBLE DATE

VARCHAR DATE

DAY

SYSIBM Returns the day part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

DAYNAME

SYSFUN Returns a mixed case character string containing the name of the day
(for example, Friday) for the day portion of the argument based on
what the locale was when db2start was issued.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

Functions overview

Chapter 3. Functions 251

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

DAYOFWEEK

SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Sunday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYOFWEEK_ISO

SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Monday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYOFYEAR

SYSFUN Returns the day of the year in the argument as an integer value in the
range 1-366.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYS

SYSIBM Returns an integer representation of a date.

VARCHAR INTEGER

TIMESTAMP INTEGER

DATE INTEGER

DBCLOB

SYSIBM Casts from source type to DBCLOB, with optional length.

graphic-type DBCLOB

graphic-type, INTEGER DBCLOB

DBPARTITIONNUM 3

SYSIBM Returns the database partition number of the row. The argument is a
column name within a table.

any-type INTEGER

DECIMAL or DEC

SYSIBM Returns decimal representation of a number, with optional precision
and scale.

numeric-type DECIMAL

numeric-type, INTEGER DECIMAL

numeric-type INTEGER, INTEGER DECIMAL

DECIMAL or DEC

SYSIBM Returns decimal representation of a character string, with optional
precision, scale, and decimal-character.

VARCHAR DECIMAL

VARCHAR, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER, VARCHAR DECIMAL

Functions overview

252 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

DECRYPT_BIN

SYSIBM Returns a value that is the result of decrypting encrypted data using a
password string.

VARCHAR FOR BIT DATA VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA, VARCHAR VARCHAR FOR BIT DATA

DECRYPT_CHAR

SYSIBM Returns a value that is the result of decrypting encrypted data using a
password string.

VARCHAR FOR BIT DATA VARCHAR

VARCHAR FOR BIT DATA, VARCHAR VARCHAR

DEGREES
SYSFUN Returns the number of degrees converted from the argument in

expressed in radians.

DOUBLE DOUBLE

DEREF
SYSIBM Returns an instance of the target type of the reference type argument.

REF(any-structured-type) with defined scope any-structured-type (same as
input target type)

DIFFERENCE

SYSFUN Returns the difference between the sounds of the words in the two
argument strings as determined using the SOUNDEX function. A value
of 4 means the strings sound the same.

VARCHAR(4000), VARCHAR(4000) INTEGER

DIGITS
SYSIBM Returns the character string representation of a number.

DECIMAL CHAR

DLCOMMENT
SYSIBM Returns the comment attribute of a datalink value.

DATALINK VARCHAR(254)

DLLINKTYPE
SYSIBM Returns the link type attribute of a datalink value.

DATALINK VARCHAR(4)

DLNEWCOPY
SYSIBM Returns a DATALINK value which has an attribute indicating that the

referenced file has changed.

DATALINK VARCHAR(254)

DLPREVIOUSCOPY
SYSIBM Returns a DATALINK value which has an attribute indicating that the

previous version of the file should be restored.

DATALINK VARCHAR(254)

DLREPLACECONTENT

SYSIBM Returns a DATALINK value. When the function is on the right hand
side of a SET clause in an UPDATE statement, or is in a VALUES
clause in an INSERT statement, the assignment of the returned value
results in replacing the content of a file by another file and then
creating a link to it.

DATALINK VARCHAR(254)

DLURLCOMPLETE
SYSIBM Returns the complete URL (including access token) from a DATALINK

value.

DATALINK VARCHAR

Functions overview

Chapter 3. Functions 253

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

DLURLCOMPLETEONLY
SYSIBM Returns the data location attribute from a DATALINK value with a

link type of URL.

DATALINK VARCHAR(254)

DLURLCOMPLETEWRITE
SYSIBM Returns the complete URL value from a DATALINK value with a link

type of URL.

DATALINK VARCHAR(254)

DLURLPATH
SYSIBM Returns the path and file name (including access token) of a datalink

value.

DATALINK VARCHAR

DLURLPATHONLY
SYSIBM Returns the path and file name (without any access token) of a

datalink value.

DATALINK VARCHAR

DLURLPATHWRITE
SYSIBM Returns the path and file name necessary to access a file within a given

server from a DATALINK value with a linktype of URL.

DATALINK VARCHAR(254)

DLURLSCHEME
SYSIBM Returns the scheme from the URL attribute of a datalink value.

DATALINK VARCHAR

DLURLSERVER
SYSIBM Returns the server from the URL attribute of a datalink value.

DATALINK VARCHAR

DLVALUE

SYSIBM Builds a datalink value from a data-location argument, link type
argument and optional comment-string argument.

VARCHAR DATALINK

VARCHAR, VARCHAR DATALINK

VARCHAR, VARCHAR, VARCHAR DATALINK

DOUBLE or
DOUBLE_PRECISION

SYSIBM Returns the floating-point representation of a number.

numeric-type DOUBLE

DOUBLE

SYSFUN Returns the floating-point number corresponding to the character
string representation of a number. Leading and trailing blanks in
argument are ignored.

VARCHAR DOUBLE

ENCRYPT

SYSIBM Returns a value that is the result of encrypting a data string
expression.

VARCHAR VARCHAR FOR BIT DATA

VARCHAR, VARCHAR VARCHAR FOR BIT DATA

VARCHAR, VARCHAR, VARCHAR VARCHAR FOR BIT DATA

EVENT_MON_STATE
SYSIBM Returns the operational state of particular event monitor.

VARCHAR INTEGER

Functions overview

254 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

EXP
SYSFUN Returns the exponential function of the argument.

DOUBLE DOUBLE

FLOAT SYSIBM Same as DOUBLE.

FLOOR

SYSFUN Returns the largest integer less than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

GETHINT
SYSIBM Returns the password hint if one is found.

VARCHAR or CLOB VARCHAR

GENERATE_UNIQUE
SYSIBM Returns a bit data character string that is unique compared to any

other execution of the same function.

no argument CHAR(13) FOR BIT DATA

GET_ROUTINE_SAR

SYSFUN Returns the information necessary to install an identical routine on
another database server running at the same level and operating
system.

BLOB(3M), CHAR(2), VARCHAR(257) BLOB(3M)

GRAPHIC

SYSIBM Cast from source type to GRAPHIC, with optional length.

graphic-type GRAPHIC

graphic-type, INTEGER GRAPHIC

GROUPING

SYSIBM Used with grouping-sets and super-groups to indicate sub-total rows
generated by a grouping set (column function). The value returned is:

1 The value of the argument in the returned row is a null
value and the row was generated for a grouping set. This
generated row provides a sub-total for a grouping set.

0 otherwise.

any-type SMALLINT

HASHEDVALUE 3

SYSIBM Returns the partitioning map index (0 to 4095) of the row. The
argument is a column name within a table.

any-type INTEGER

HEX
SYSIBM Returns the hexadecimal representation of a value.

any-builtin-type VARCHAR

HOUR

SYSIBM Returns the hour part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

Functions overview

Chapter 3. Functions 255

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

IDENTITY_VAL_LOCAL
SYSIBM Returns the most recently assigned value for an identity column.

DECIMAL

INSERT

SYSFUN Returns a string where argument3 bytes have been deleted from
argument1 beginning at argument2 and where argument4 has been
inserted into argument1 beginning at argument2.

VARCHAR(4000), INTEGER, INTEGER, VARCHAR(4000) VARCHAR(4000)

CLOB(1M), INTEGER, INTEGER, CLOB(1M) CLOB(1M)

BLOB(1M), INTEGER, INTEGER, BLOB(1M) BLOB(1M)

INTEGER or INT

SYSIBM Returns the integer representation of a number.

numeric-type INTEGER

VARCHAR INTEGER

JULIAN_DAY

SYSFUN Returns an integer value representing the number of days from
January 1, 4712 B.C. (the start of the Julian date calendar) to the date
value specified in the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

LCASE or LOWER

SYSIBM Returns a string in which all the characters have been converted to
lower case characters.

CHAR CHAR

VARCHAR VARCHAR

LCASE

SYSFUN Returns a string in which all the characters have been converted to
lower case characters. LCASE will only handle characters in the
invariant set. Therefore, LCASE(UCASE(string)) will not necessarily
return the same result as LCASE(string).

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

LEFT

SYSFUN Returns a string consisting of the leftmost argument2 bytes in
argument1.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

LENGTH
SYSIBM Returns the length of the operand in bytes (except for double byte

string types which return the length in characters).

any-builtin-type INTEGER

LN
SYSFUN Returns the natural logarithm of the argument (same as LOG).

DOUBLE DOUBLE

Functions overview

256 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

LOCATE

SYSFUN Returns the starting position of the first occurrence of argument1 within
argument2. If the optional third argument is specified, it indicates the
character position in argument2 at which the search is to begin. If
argument1 is not found within argument2, the value 0 is returned.

VARCHAR(4000), VARCHAR(4000) INTEGER

VARCHAR(4000), VARCHAR(4000), INTEGER INTEGER

CLOB(1M), CLOB(1M) INTEGER

CLOB(1M), CLOB(1M), INTEGER INTEGER

BLOB(1M), BLOB(1M) INTEGER

BLOB(1M), BLOB(1M), INTEGER INTEGER

LOG
SYSFUN Returns the natural logarithm of the argument (same as LN).

DOUBLE DOUBLE

LOG10
SYSFUN Returns the base 10 logarithm of the argument.

DOUBLE DOUBLE

LONG_VARCHAR
SYSIBM Returns a long string.

character-type LONG VARCHAR

LONG_VARGRAPHIC
SYSIBM Casts from source type to LONG_VARGRAPHIC.

graphic-type LONG VARGRAPHIC

LTRIM

SYSIBM Returns the characters of the argument with leading blanks removed.

CHAR VARCHAR

VARCHAR VARCHAR

GRAPHIC VARGRAPHIC

VARGRAPHIC VARGRAPHIC

LTRIM

SYSFUN Returns the characters of the argument with leading blanks removed.

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

MAX
SYSIBM Returns the maximum value in a set of values (column function).

any-builtin-type 5 same as input type

MICROSECOND

SYSIBM Returns the microsecond (time-unit) part of a value.

VARCHAR INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

Functions overview

Chapter 3. Functions 257

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

MIDNIGHT_SECONDS

SYSFUN Returns an integer value in the range 0 to 86 400 representing the
number of seconds between midnight and time value specified in the
argument.

VARCHAR(26) INTEGER

TIME INTEGER

TIMESTAMP INTEGER

MIN
SYSIBM Returns the minimum value in a set of values (column function).

any-builtin-type 5 same as input type

MINUTE

SYSIBM Returns the minute part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MOD

SYSFUN Returns the remainder (modulus) of argument1 divided by argument2.
The result is negative only if argument1 is negative.

SMALLINT, SMALLINT SMALLINT

INTEGER, INTEGER INTEGER

BIGINT, BIGINT BIGINT

MONTH

SYSIBM Returns the month part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MONTHNAME

SYSFUN Returns a mixed case character string containing the name of month
(for example, January) for the month portion of the argument that is a
date or timestamp, based on what the locale was when the database
was started.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

MQPUBLISH
MQDB2 Publishes data to an MQSeries location.

VARCHAR(4000) INTEGER

MQREAD
MQDB2 Returns a message from an MQSeries location.

string-type VARCHAR(4000)

MQREADALL

MQDB2 Returns a table with messages and message metadata from an
MQSeries location.

See “MQREADALL” on page 495.

Functions overview

258 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

MQRECEIVE
MQDB2 Returns a message from an MQSeries location and removes the

message from the associated queue.

string-type VARCHAR(4000)

MQRECEIVEALL

MQDB2 Returns a table containing the messages and message metadata from
an MQSeries location and removes the messages from the associated
queue.

See “MQRECEIVEALL” on page 499

MQSEND
MQDB2 Sends data to an MQSeries location.

VARCHAR(4000) INTEGER

MQSUBSCRIBE
MQDB2 Subscribes to MQSeries messages published on a specific topic.

string-type INTEGER

MQUNSUBSCRIBE
MQDB2 Unsubscribes to MQSeries messages published on a specific topic.

string-type INTEGER

MULTIPLY_ALT

SYSIBM Returns the product of two arguments as a decimal value. This
function is useful when the sum of the argument precisions is greater
than 31.

exact-numeric-type, exact-numeric-type DECIMAL

NULLIF 3

SYSIBM Returns NULL if the arguments are equal, else returns the first
argument.

any-type 5, any-comparable-type5 any-type

POSSTR
SYSIBM Returns the position at which one string is contained in another.

string-type, compatible-string-type INTEGER

POWER

SYSFUN Returns the value of argument1 to the power of argument2.

INTEGER, INTEGER INTEGER

BIGINT, BIGINT BIGINT

DOUBLE, INTEGER DOUBLE

DOUBLE, DOUBLE DOUBLE

PUT_ROUTINE_SAR

SYSFUN Passes the information necessary to create and define an SQL routine
at the database server.

BLOB(3M)

BLOB(3M), VARCHAR(128), INTEGER

QUARTER

SYSFUN Returns an integer value in the range 1 to 4 representing the quarter of
the year for the date specified in the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

Functions overview

Chapter 3. Functions 259

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

RADIANS
SYSFUN Returns the number of radians converted from argument which is

expressed in degrees.

DOUBLE DOUBLE

RAISE_ERROR3

SYSIBM Raises an error in the SQLCA. The sqlstate returned is indicated by
argument1. The second argument contains any text to be returned.

VARCHAR, VARCHAR any-type 6

RAND

SYSFUN Returns a random floating point value between 0 and 1 using the
argument as the optional seed value.

no argument required DOUBLE

INTEGER DOUBLE

REAL
SYSIBM Returns the single-precision floating-point representation of a number.

numeric-type REAL

REC2XML
SYSIBM Returns a string formatted with XML tags and containing column

names and column data.

DECIMAL, VARCHAR, VARCHAR, any-type7 VARCHAR

REGR_AVGX
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_AVGY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_COUNT
SYSIBM Returns the number of non-null number pairs used to fit the regression

line.

numeric-type, numeric-type INTEGER

REGR_INTERCEPT or
REGR_ICPT

SYSIBM Returns the y-intercept of the regression line.

numeric-type, numeric-type DOUBLE

REGR_R2
SYSIBM Returns the coefficient of determination for the regression.

numeric-type, numeric-type DOUBLE

REGR_SLOPE
SYSIBM Returns the slope of the line.

numeric-type, numeric-type DOUBLE

REGR_SXX
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_SXY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_SYY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

Functions overview

260 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

REPEAT

SYSFUN Returns a character string composed of argument1 repeated argument2
times.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

REPLACE

SYSFUN Replaces all occurrences of argument2 in argument1 with argument3.

VARCHAR(4000), VARCHAR(4000), VARCHAR(4000) VARCHAR(4000)

CLOB(1M), CLOB(1M), CLOB(1M) CLOB(1M)

BLOB(1M), BLOB(1M), BLOB(1M) BLOB(1M)

RIGHT

SYSFUN Returns a string consisting of the rightmost argument2 bytes in
argument1.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

ROUND

SYSFUN Returns the first argument rounded to argument2 places right of the
decimal point. If argument2 is negative, argument1 is rounded to the
absolute value of argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

BIGINT, INTEGER BIGINT

DOUBLE, INTEGER DOUBLE

RTRIM

SYSIBM Returns the characters of the argument with trailing blanks removed.

CHAR VARCHAR

VARCHAR VARCHAR

GRAPHIC VARGRAPHIC

VARGRAPHIC VARGRAPHIC

RTRIM

SYSFUN Returns the characters of the argument with trailing blanks removed.

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

SECOND

SYSIBM Returns the second (time-unit) part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

Functions overview

Chapter 3. Functions 261

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

SIGN

SYSFUN Returns an indicator of the sign of the argument. If the argument is
less than zero, -1 is returned. If argument equals zero, 0 is returned. If
argument is greater than zero, 1 is returned.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

SIN
SYSFUN Returns the sine of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

SINH
SYSIBM Returns the hyperbolic sine of the argument, where the argument is an

angle expressed in radians.

DOUBLE DOUBLE

SMALLINT

SYSIBM Returns the small integer representation of a number.

numeric-type SMALLINT

VARCHAR SMALLINT

SOUNDEX

SYSFUN Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other
strings. See also DIFFERENCE.

VARCHAR(4000) CHAR(4)

SPACE
SYSFUN Returns a character string consisting of argument1 blanks.

INTEGER VARCHAR(4000)

SQLCACHE_SNAPSHOT
SYSFUN Returns a table of the snapshot of the db2 dynamic SQL statement

cache (table function).

See “SQLCACHE_SNAPSHOT” on page 544.

SQRT
SYSFUN Returns the square root of the argument.

DOUBLE DOUBLE

STDDEV
SYSIBM Returns the standard deviation of a set of numbers (column function).

DOUBLE DOUBLE

SUBSTR

SYSIBM Returns a substring of a string argument1 starting at argument2 for
argument3 characters. If argument3 is not specified, the remainder of the
string is assumed.

string-type, INTEGER string-type

string-type, INTEGER, INTEGER string-type

SUM
SYSIBM Returns the sum of a set of numbers (column function).

numeric-type 4 max-numeric-type 1

Functions overview

262 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

TABLE_NAME

SYSIBM Returns an unqualified name of a table or view based on the object
name given in argument1 and the optional schema name given in
argument2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

TABLE_SCHEMA

SYSIBM Returns the schema name portion of the two part table or view name
given by the object name in argument1 and the optional schema name
in argument2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

TAN
SYSFUN Returns the tangent of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

TANH
SYSIBM Returns the hyperbolic tangent of the argument, where the argument is

an angle expressed in radians.

DOUBLE DOUBLE

TIME

SYSIBM Returns a time from a value.

TIME TIME

TIMESTAMP TIME

VARCHAR TIME

TIMESTAMP

SYSIBM Returns a timestamp from a value or a pair of values.

TIMESTAMP TIMESTAMP

VARCHAR TIMESTAMP

VARCHAR, VARCHAR TIMESTAMP

VARCHAR, TIME TIMESTAMP

DATE, VARCHAR TIMESTAMP

DATE, TIME TIMESTAMP

TIMESTAMP_FORMAT
SYSIBM Returns a timestamp from a character string (argument1) that has been

interpreted using a format template (argument2).

VARCHAR, VARCHAR TIMESTAMP

TIMESTAMP_ISO

SYSFUN Returns a timestamp value based on a date, time, or timestamp
argument. If the argument is a date, it inserts zero for all the time
elements. If the argument is a time, it inserts the value of CURRENT
DATE for the date elements and zero for the fractional time element.

DATE TIMESTAMP

TIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR(26) TIMESTAMP

Functions overview

Chapter 3. Functions 263

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

TIMESTAMPDIFF

SYSFUN Returns an estimated number of intervals of type argument1 based on
the difference between two timestamps. The second argument is the
result of subtracting two timestamp types and converting the result to
CHAR. Valid values of interval (argument1) are:
1 Fractions of a second
2 Seconds
4 Minutes
8 Hours
16 Days
32 Weeks
64 Months
128 Quarters
256 Years

INTEGER, CHAR(22) INTEGER

TO_CHAR
SYSIBM Returns a character representation of a timestamp.

Same as VARCHAR_FORMAT. Same as
VARCHAR_FORMAT.

TO_DATE
SYSIBM Returns a timestamp from a character string.

Same as TIMESTAMP_FORMAT. Same as
TIMESTAMP_FORMAT.

TRANSLATE

SYSIBM Returns a string in which one or more characters may have been
translated into other characters.

CHAR CHAR

VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR, VARCHAR VARCHAR

GRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC VARGRAPHIC

GRAPHIC, VARGRAPHIC, VARGRAPHIC,
VARGRAPHIC

GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC,
VARGRAPHIC

VARGRAPHIC

TRUNC or TRUNCATE

SYSFUN Returns argument1 truncated to argument2 places right of the decimal
point. If argument2 is negative, argument1 is truncated to the absolute
value of argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

BIGINT, INTEGER BIGINT

DOUBLE, INTEGER DOUBLE

Functions overview

264 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

TYPE_ID 3

SYSIBM Returns the internal data type identifier of the dynamic data type of
the argument. Note that the result of this function is not portable
across databases.

any-structured-type INTEGER

TYPE_NAME 3

SYSIBM Returns the unqualified name of the dynamic data type of the
argument.

any-structured-type VARCHAR(18)

TYPE_SCHEMA 3
SYSIBM Returns the schema name of the dynamic type of the argument.

any-structured-type VARCHAR(128)

UCASE or UPPER

SYSIBM Returns a string in which all the characters have been converted to
upper case characters.

CHAR CHAR

VARCHAR VARCHAR

UCASE
SYSFUN Returns a string in which all the characters have been converted to

upper case characters.

VARCHAR VARCHAR

VALUE 3 SYSIBM Same as COALESCE.

VARCHAR

SYSIBM Returns a VARCHAR representation of the first argument. If a second
argument is present, it specifies the length of the result.

character-type VARCHAR

character-type, INTEGER VARCHAR

datetime-type VARCHAR

VARCHAR_FORMAT

SYSIBM Returns a character representation of a timestamp (argument1)
formatted as indicated by a format template (argument2).

TIMESTAMP, VARCHAR VARCHAR

VARCHAR, VARCHAR VARCHAR

VARGRAPHIC

SYSIBM Returns a VARGRAPHIC representation of the first argument. If a
second argument is present, it specifies the length of the result.

graphic-type VARGRAPHIC

graphic-type, INTEGER VARGRAPHIC

VARCHAR VARGRAPHIC

VARIANCE or VAR
SYSIBM Returns the variance of a set of numbers (column function).

DOUBLE DOUBLE

WEEK

SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-54.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

Functions overview

Chapter 3. Functions 265

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

WEEK_ISO

SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-53. The first day of a week is Monday. Week 1 is the
first week of the year to contain a Thursday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

YEAR

SYSIBM Returns the year part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

“+”
SYSIBM Adds two numeric operands.

numeric-type, numeric-type max numeric-type

“+”
SYSIBM Unary plus operator.

numeric-type numeric-type

“+”

SYSIBM Datetime plus operator.

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

DECIMAL(8,0), DATE DATE

DECIMAL(6,0), TIME TIME

DECIMAL(20,6), TIMESTAMP TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“−”
SYSIBM Subtracts two numeric operands.

numeric-type, numeric-type max numeric-type

“−”
SYSIBM Unary minus operator.

numeric-type numeric-type 1

Functions overview

266 SQL Reference, Volume 1

Table 16. Supported functions (continued)

Function name Schema Description

Input parameters Returns

“−”

SYSIBM Datetime minus operator.

DATE, DATE DECIMAL(8,0)

TIME, TIME DECIMAL(6,0)

TIMESTAMP, TIMESTAMP DECIMAL(20,6)

DATE, VARCHAR DECIMAL(8,0)

TIME, VARCHAR DECIMAL(6,0)

TIMESTAMP, VARCHAR DECIMAL(20,6)

VARCHAR, DATE DECIMAL(8,0)

VARCHAR, TIME DECIMAL(6,0)

VARCHAR, TIMESTAMP DECIMAL(20,6)

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“*”
SYSIBM Multiplies two numeric operands.

numeric-type, numeric-type max numeric-type

“⁄”
SYSIBM Divides two numeric operands.

numeric-type, numeric-type max numeric-type

“\” SYSIBM Same as CONCAT.

Notes
v References to string data types that are not qualified by a length should be assumed to support the maximum

length for the data type
v References to a DECIMAL data type without precision and scale should be assumed to allow any supported

precision and scale.

Functions overview

Chapter 3. Functions 267

Key to Table
any-builtin-type Any data type that is not a distinct type.
any-type Any type defined to the database.
any-structured-type

Any user-defined structured type defined to the database.
any-comparable-type

Any type that is comparable with other argument types as defined in “Assignments and
comparisons” on page 117.

any-union-compatible-type
Any type that is compatible with other argument types as defined in “Rules for result data
types” on page 134.

character-type Any of the character string types: CHAR, VARCHAR, LONG VARCHAR, CLOB.
compatible-string-type

A string type that comes from the same grouping as the other argument (for example, if one
argument is a character-type the other must also be a character-type).

datetime-type Any of the datetime types: DATE, TIME, TIMESTAMP.
exact-numeric-type

Any of the exact numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL
graphic-type Any of the double byte character string types: GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, DBCLOB.
labeled-duration-code

As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or
minus operator, labeled-durations as defined in “Labeled durations” on page 195 can be used.
For a source function that does not use the plus or minus operator character as the name, the
following values must be used for the labeled-duration-code argument when invoking the
function.
1 YEAR or YEARS
2 MONTH or MONTHS
3 DAY or DAYS
4 HOUR or HOURS
5 MINUTE or MINUTES
6 SECOND or SECONDS
7 MICROSECOND or MICROSECONDS

LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.
max-numeric-type The maximum numeric type of the arguments where maximum is defined as the rightmost

numeric-type.
max-string-type The maximum string type of the arguments where maximum is defined as the rightmost

character-type or graphic-type. If arguments are BLOB, the max-string-type is BLOB.
numeric-type Any of the numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE.
string-type Any type from character type, graphic-type or BLOB.

Table Footnotes
1 When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL,

the result type is DOUBLE.
2 Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a

sourced function.
3 This function cannot be used as a source function.
4 The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, the use

of user-defined structured types, long string types or a DATALINK type is not supported.
5 The use of user-defined structured types, long string types or a DATALINK type is not supported.
6 The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a

particular type, will return a type appropriate to its invocation within a CASE expression.
7 The use of graphic-type, LOB-type, long string types and DATALINK types is not supported.

Functions overview

268 SQL Reference, Volume 1

Aggregate functions

The argument of a column function is a set of values derived from an
expression. The expression can include columns, but cannot include a
scalar-fullselect or another column function (SQLSTATE 42607). The scope of
the set is a group or an intermediate result table.

If a GROUP BY clause is specified in a query, and the intermediate result of
the FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then
the column functions are not applied; the result of the query is the empty set;
the SQLCODE is set to +100; and the SQLSTATE is set to ’02000’.

If a GROUP BY clause is not specified in a query, and the intermediate result
of the FROM, WHERE, and HAVING clauses is the empty set, then the
column functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of
distinct values of JOBCODE for employees in department D01:

SELECT COUNT(DISTINCT JOBCODE)
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = ’D01’

The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, duplicate values are eliminated. If ALL is
implicitly or explicitly specified, duplicate values are not eliminated.

Expressions can be used in column functions. For example:
SELECT MAX(BONUS + 1000)

INTO :TOP_SALESREP_BONUS
FROM EMPLOYEE
WHERE COMM > 5000

Column functions can be qualified with a schema name (for example,
SYSIBM.COUNT(*)).

Related concepts:

v “Queries” on page 16

Aggregate functions

Chapter 3. Functions 269

AVG

�� AVG (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The AVG function returns the average of a set of numbers.

The argument values must be numbers (built-in types only) and their sum
must be within the range of the data type of the result, except for a decimal
result data type. For decimal results, their sum must be within the range
supported by a decimal data type having a precision of 31 and a scale
identical to the scale of the argument values. The result can be null.

The data type of the result is the same as the data type of the argument
values, except that:
v The result is a large integer if the argument values are small integers.
v The result is double-precision floating point if the argument values are

single-precision floating point.

If the data type of the argument values is decimal with precision p and scale
s, the precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the average value of the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples:
v Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to

the average staffing level (PRSTAFF) of projects in department (DEPTNO)
’D11’.

SELECT AVG(PRSTAFF)
INTO :AVERAGE
FROM PROJECT
WHERE DEPTNO = ’D11’

AVG

270 SQL Reference, Volume 1

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample
table.

v Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2))
to the average of each unique staffing level value (PRSTAFF) of projects in
department (DEPTNO) ’D11’.

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = ’D11’

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the
sample table.

AVG

Chapter 3. Functions 271

CORRELATION

�� CORRELATION
CORR

(expression1 , expression2) ��

The schema is SYSIBM.

The CORRELATION function returns the coefficient of correlation of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null. When not null, the result is between −1 and 1.

The function is applied to the set of (expression1, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expression1 or expression2 is null.

If the function is applied to an empty set, or if either STDDEV(expression1) or
STDDEV(expression2) is equal to zero, the result is a null value. Otherwise, the
result is the correlation coefficient for the value pairs in the set. The result is
equivalent to the following expression:

COVARIANCE(expression1,expression2)/
(STDDEV(expression1)*
STDDEV(expression2))

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable CORRLN

(double-precision floating point) to the correlation between salary and
bonus for those employees in department (WORKDEPT) ’A00’.

SELECT CORRELATION(SALARY, BONUS)
INTO :CORRLN
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’

CORRLN is set to approximately 9.99853953399538E-001 when using the
sample table.

CORRELATION

272 SQL Reference, Volume 1

COUNT

�� COUNT (
ALL

expression
DISTINCT

*

) ��

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows
or values.

The data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows
in the set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of
values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of non-null
values in the set, including duplicates.

Examples:
v Using the EMPLOYEE table, set the host variable FEMALE (int) to the

number of rows where the value of the SEX column is ’F’.
SELECT COUNT(*)

INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = ’F’

Results in FEMALE being set to 13 when using the sample table.
v Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int)

to the number of departments (WORKDEPT) that have at least one female
as a member.

COUNT

Chapter 3. Functions 273

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM EMPLOYEE
WHERE SEX = ’F’

Results in FEMALE_IN_DEPT being set to 5 when using the sample table.
(There is at least one female in departments A00, C01, D11, D21, and E11.)

COUNT

274 SQL Reference, Volume 1

COUNT_BIG

�� COUNT_BIG (
ALL

expression
DISTINCT

*

) ��

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of
rows or values. It is similar to COUNT except that the result can be greater
than the maximum value of integer.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a decimal with precision 31 and scale 0. The
result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of
rows in the set. A row that includes only NULL values is included in the
count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a
set of values. The function is applied to the set of values derived from the
argument values by the elimination of null values. The result is the number of
non-null values in the set, including duplicates.

Examples:
v Refer to COUNT examples and substitute COUNT_BIG for occurrences of

COUNT. The results are the same except for the data type of the result.
v Some applications may require the use of COUNT but need to support

values larger than the largest integer. This can be achieved by use of
sourced user-defined functions and setting the SQL path. The following
series of statements shows how to create a sourced function to support
COUNT(*) based on COUNT_BIG and returning a decimal value with a
precision of 15. The SQL path is set such that the sourced function based on
COUNT_BIG is used in subsequent statements such as the query shown.

COUNT_BIG

Chapter 3. Functions 275

CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)
SOURCE SYSIBM.COUNT_BIG();

SET CURRENT FUNCTION PATH RICK, SYSTEM PATH;
SELECT COUNT(*) FROM EMPLOYEE;

Note how the sourced function is defined with no parameters to support
COUNT(*). This only works if you name the function COUNT and do not
qualify the function with the schema name when it is used. To get the same
effect as COUNT(*) with a name other than COUNT, invoke the function
with no parameters. Thus, if RICK.COUNT had been defined as
RICK.MYCOUNT instead, the query would have to be written as follows:

SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify
the type of the column. The following statements created a sourced function
that will take any CHAR column as a argument and use COUNT_BIG to
perform the counting.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE SYSIBM.COUNT_BIG(CHAR());

SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

COUNT_BIG

276 SQL Reference, Volume 1

COVARIANCE

�� COVARIANCE
COVAR

(expression1 , expression2) ��

The schema is SYSIBM.

The COVARIANCE function returns the (population) covariance of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of (expression1,expression2) pairs derived from
the argument values by the elimination of all pairs for which either expression1
or expression2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the covariance of the value pairs in the set. The result is
equivalent to the following:
1. Let avgexp1 be the result of AVG(expression1) and let avgexp2 be the result

of AVG(expression2).
2. The result of COVARIANCE(expression1, expression2) is AVG((expression1 -

avgexp1) * (expression2 - avgexp2)

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable COVARNCE

(double-precision floating point) to the covariance between salary and
bonus for those employees in department (WORKDEPT) ’A00’.

SELECT COVARIANCE(SALARY, BONUS)
INTO :COVARNCE
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’

COVARNCE is set to approximately 1.68888888888889E+006 when using the
sample table.

COVARIANCE

Chapter 3. Functions 277

GROUPING

�� GROUPING (expression) ��

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups, the GROUPING
function returns a value that indicates whether or not a row returned in a
GROUP BY answer set is a row generated by a grouping set that excludes the
column represented by expression.

The argument can be of any type, but must be an item of a GROUP BY
clause.

The result of the function is a small integer. It is set to one of the following
values:

1 The value of expression in the returned row is a null value, and the
row was generated by the super-group. This generated row can be
used to provide sub-total values for the GROUP BY expression.

0 The value is other than the above.

Example:

The following query:
SELECT SALES_DATE, SALES_PERSON,

SUM(SALES) AS UNITS_SOLD,
GROUPING(SALES_DATE) AS DATE_GROUP,
GROUPING(SALES_PERSON) AS SALES_GROUP

FROM SALES
GROUP BY CUBE (SALES_DATE, SALES_PERSON)
ORDER BY SALES_DATE, SALES_PERSON

results in:
SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP
---------- --------------- ----------- ----------- -----------
12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1

GROUPING

278 SQL Reference, Volume 1

03/31/1996 GOUNOT 3 0 0
03/31/1996 LEE 27 0 0
03/31/1996 LUCCHESSI 1 0 0
03/31/1996 - 31 0 1
04/01/1996 GOUNOT 14 0 0
04/01/1996 LEE 25 0 0
04/01/1996 LUCCHESSI 4 0 0
04/01/1996 - 43 0 1
- GOUNOT 50 1 0
- LEE 91 1 0
- LUCCHESSI 14 1 0
- - 155 1 1

An application can recognize a SALES_DATE sub-total row by the fact that
the value of DATE_GROUP is 0 and the value of SALES_GROUP is 1. A
SALES_PERSON sub-total row can be recognized by the fact that the value of
DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row
can be recognized by the value 1 for both DATE_GROUP and SALES_GROUP.

Related reference:

v “Subselect” on page 554

GROUPING

Chapter 3. Functions 279

MAX

�� MAX (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length and code page of the result are the same as the data
type, length and code page of the argument values. The result is considered to
be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:
v Using the EMPLOYEE table, set the host variable MAX_SALARY

(decimal(7,2)) to the maximum monthly salary (SALARY/12) value.
SELECT MAX(SALARY) / 12

INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.
v Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the

project name (PROJNAME) that comes last in the collating sequence.
SELECT MAX(PROJNAME)

INTO :LAST_PROJ
FROM PROJECT

MAX

280 SQL Reference, Volume 1

Results in LAST_PROJ being set to ’WELD LINE PLANNING’ when using
the sample table.

v Similar to the previous example, set the host variable LAST_PROJ (char(40))
to the project name that comes last in the collating sequence when a project
name is concatenated with the host variable PROJSUPP. PROJSUPP is
'_Support'; it has a char(8) data type.

SELECT MAX(PROJNAME CONCAT PROJSUPP)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING_SUPPORT'
when using the sample table.

MAX

Chapter 3. Functions 281

MIN

�� MIN (
ALL

DISTINCT
expression) ��

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length, and code page of the result are the same as the data
type, length, and code page of the argument values. The result is considered
to be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If this function is applied to an empty set, the result of the function is a null
value. Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:
v Using the EMPLOYEE table, set the host variable COMM_SPREAD

(decimal(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) ’D11’.

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = ’D11’

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when
using the sample table.

v Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10))
to the estimated ending date (PRENDATE) of the first project scheduled to
be completed.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

MIN

282 SQL Reference, Volume 1

Results in FIRST_FINISHED being set to ’1982-09-15’ when using the
sample table.

MIN

Chapter 3. Functions 283

Regression functions

�� REGR_AVGX
REGR_AVGY
REGR_COUNT

REGR_INTERCEPT
REGR_ICPT

REGR_R2
REGR_SLOPE
REGR_SXX
REGR_SXY
REGR_SYY

(expression1 , expression2) ��

The schema is SYSIBM.

The regression functions support the fitting of an ordinary-least-squares
regression line of the form y = a * x + b to a set of number pairs. The first
element of each pair (expression1) is interpreted as a value of the dependent
variable (i.e., a ″y value″). The second element of each pair (expression2) is
interpreted as a value of the independent variable (i.e., an ″x value″).

The function REGR_COUNT returns the number of non-null number pairs
used to fit the regression line (see below).

The function REGR_INTERCEPT (the short form is REGR_ICPT) returns the
y-intercept of the regression line (″b″ in the above equation)

The function REGR_R2 returns the coefficient of determination (also called
″R-squared″ or ″goodness-of-fit″) for the regression.

The function REGR_SLOPE returns the slope of the line (the parameter ″a″ in
the above equation).

The functions REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SYY, and
REGR_SXY return quantities that can be used to compute various diagnostic
statistics needed for the evaluation of the quality and statistical validity of the
regression model (see below).

The argument values must be numbers.

The data type of the result of REGR_COUNT is integer. For the remaining
functions, the data type of the result is double-precision floating point. The
result can be null. When not null, the result of REGR_R2 is between 0 and 1
and the result of both REGR_SXX and REGR_SYY is non-negative.

Regression functions

284 SQL Reference, Volume 1

Each function is applied to the set of (expression1, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expression1 or expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT
returns the number of non-null pairs in the set, and the remaining functions
return results that are defined as follows:
REGR_SLOPE(expression1,expression2) =
COVARIANCE(expression1,expression2)/VARIANCE(expression2)

REGR_INTERCEPT(expression1, expression2) =
AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

REGR_R2(expression1, expression2) =
POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0
REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the
regression line either has infinite slope or is undefined. In this case, the
functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null
value, and the remaining functions return values as defined above. If the set is
empty, REGR_COUNT returns zero and the remaining functions return a null
value.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

The regression functions are all computed simultaneously during a single pass
through the data. In general, it is more efficient to use the regression functions
to compute the statistics needed for a regression analysis than to perform the
equivalent computations using ordinary column functions such as AVERAGE,
VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can
be computed in terms of the above functions. For example:

Adjusted R2
1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))

Regression functions

Chapter 3. Functions 285

Standard error
SQRT((REGR_SYY-
(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))

Total sum of squares
REGR_SYY

Regression sum of squares
POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares
(Total sum of squares)-(Regression sum of squares)

t statistic for slope
REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept
REGR_INTERCEPT/((Standard error) *
SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

Example:
v Using the EMPLOYEE table, compute an ordinary-least-squares regression

line that expresses the bonus of an employee in department (WORKDEPT)
’A00’ as a linear function of the employee’s salary. Set the host variables
SLOPE, ICPT, RSQR (double-precision floating point) to the slope, intercept,
and coefficient of determination of the regression line, respectively. Also set
the host variables AVGSAL and AVGBONUS to the average salary and
average bonus, respectively, of the employees in department ’A00’, and set
the host variable CNT (integer) to the number of employees in department
’A00’ for whom both salary and bonus data are available. Store the
remaining regression statistics in host variables SXX, SYY, and SXY.
SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),
REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),
REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
REGR_SXY(BONUS,SALARY)
INTO :SLOPE, :ICPT,
:RSQR, :CNT,
:AVGSAL, :AVGBONUS,
:SXX, :SYY,
:SXY
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’

When using the sample table, the host variables are set to the following
approximate values:
SLOPE: +1.71002671916749E-002
ICPT: +1.00871888623260E+002
RSQR: +9.99707928128685E-001
CNT: 3

Regression functions

286 SQL Reference, Volume 1

AVGSAL: +4.28333333333333E+004
AVGBONUS: +8.33333333333333E+002
SXX: +2.96291666666667E+008
SYY: +8.66666666666667E+004
SXY: +5.06666666666667E+006

Regression functions

Chapter 3. Functions 287

STDDEV

�� STDDEV (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The STDDEV function returns the standard deviation of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable DEV (double-precision

floating point) to the standard deviation of the salaries for those employees
in department (WORKDEPT) ’A00’.

SELECT STDDEV(SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’

Results in DEV being set to approximately 9938.00 when using the sample
table.

STDDEV

288 SQL Reference, Volume 1

SUM

�� SUM (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum
must be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument
values except that:
v The result is a large integer if the argument values are small integers.
v The result is double-precision floating point if the argument values are

single-precision floating point.

If the data type of the argument values is decimal, the precision of the result
is 31 and the scale is the same as the scale of the argument values. The result
can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are also eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the sum of the values in the set.

Example:
v Using the EMPLOYEE table, set the host variable JOB_BONUS

(decimal(9,2)) to the total bonus (BONUS) paid to clerks (JOB=’CLERK’).
SELECT SUM(BONUS)

INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = ’CLERK’

Results in JOB_BONUS being set to 2800 when using the sample table.

SUM

Chapter 3. Functions 289

VARIANCE

�� VARIANCE
VAR

(
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The VARIANCE function returns the variance of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable VARNCE

(double-precision floating point) to the variance of the salaries for those
employees in department (WORKDEPT) ’A00’.

SELECT VARIANCE(SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’

Results in VARNCE being set to approximately 98763888.88 when using the
sample table.

VARIANCE

290 SQL Reference, Volume 1

Scalar functions

A scalar function can be used wherever an expression can be used. However,
the restrictions that apply to the use of expressions and column functions also
apply when an expression or column function is used within a scalar function.
For example, the argument of a scalar function can be a column function only
if a column function is allowed in the context in which the scalar function is
used.

The restrictions on the use of column functions do not apply to scalar
functions, because a scalar function is applied to a single value rather than to
a set of values.

The result of the following SELECT statement has as many rows as there are
employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = ’D01’

Scalar functions can be qualified with a schema name (for example,
SYSIBM.CHAR(123)).

In a Unicode database, all scalar functions that accept a character or graphic
string will accept any string types for which conversion is supported.

Scalar functions

Chapter 3. Functions 291

ABS or ABSVAL

�� ABS
ABSVAL

(expression) ��

The schema is SYSIBM.

This function was first available in FixPak 2 of Version 7.1. The SYSFUN
version of the ABS (or ABSVAL) function continues to be available.

Returns the absolute value of the argument. The argument can be any built-in
numeric data type.

The result has the same data type and length attribute as the argument. The
result can be null; if the argument is null, the result is the null value. If the
argument is the maximum negative value for SMALLINT, INTEGER or
BIGINT, the result is an overflow error.

Example:
ABS(-51234)

returns an INTEGER with a value of 51234.

ABS or ABSVAL

292 SQL Reference, Volume 1

ACOS

�� ACOS (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ACOS function continues
to be available.)

Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Example:

Assume that the host variable ACOSINE is a DECIMAL(10,9) host variable
with a value of 0.070737202.

SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1

This statement returns the approximate value 1.49.

ACOS

Chapter 3. Functions 293

ASCII

�� ASCII (expression) ��

The schema is SYSFUN.

Returns the ASCII code value of the leftmost character of the argument as an
integer.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes. LONG VARCHAR is converted to CLOB for processing by the
function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

ASCII

294 SQL Reference, Volume 1

ASIN

�� ASIN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ASIN function continues
to be available.)

Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

ASIN

Chapter 3. Functions 295

ATAN

�� ATAN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ATAN function continues
to be available.)

Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

ATAN

296 SQL Reference, Volume 1

ATAN2

�� ATAN2 (expression , expression) ��

The schema is SYSIBM. (The SYSFUN version of the ATAN2 function
continues to be available.)

Returns the arctangent of x and y coordinates as an angle expressed in
radians. The x and y coordinates are specified by the first and second
arguments, respectively.

The first and the second arguments can be of any built-in numeric data type.
Both are converted to a double-precision floating-point number for processing
by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

ATAN2

Chapter 3. Functions 297

ATANH

�� ATANH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic arctangent of the argument, where the argument is an
angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

ATANH

298 SQL Reference, Volume 1

BIGINT

�� BIGINT (numeric-expression
character-expression
datetime-expression

) ��

The schema is SYSIBM.

The BIGINT function returns a 64-bit integer representation of a number,
character string, date, time, or timestamp in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a big integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a big
integer column or variable.

datetime-expression
An expression that is of one of the following data types:
v DATE. The result is a BIGINT value representing the date as yyyymmdd.
v TIME. The result is a BIGINT value representing the time as hhmmss.
v TIMESTAMP. The result is a BIGINT value representing the timestamp

as yyyymmddhhmmss. The microseconds portion of the timestamp value
is not included in the result.

The result of the function is a big integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:
v From ORDERS_HISTORY table, count the number of orders and return the

result as a big integer value.
SELECT BIGINT (COUNT_BIG(*))

FROM ORDERS_HISTORY

BIGINT

Chapter 3. Functions 299

v Using the EMPLOYEE table, select the EMPNO column in big integer form
for further processing in the application.

SELECT BIGINT (EMPNO) FROM EMPLOYEE

v Assume that the column RECEIVED (timestamp) has an internal value
equivalent to ’1988-12-22-14.07.21.136421’.

BIGINT(RECEIVED)

results in the value 19 881 222 140 721.
v Assume that the column STARTTIME (time) has an internal value

equivalent to ’12:03:04’.
BIGINT(STARTTIME)

results in the value 120 304.

BIGINT

300 SQL Reference, Volume 1

BLOB

�� BLOB (string-expression
, integer

) ��

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression
A string-expression whose value can be a character string, graphic string, or
a binary string.

integer
An integer value specifying the length attribute of the resulting BLOB
data type. If integer is not specified, the length attribute of the result is the
same as the length of the input, except where the input is graphic. In this
case, the length attribute of the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Given a table with a BLOB column named TOPOGRAPHIC_MAP and a

VARCHAR column named MAP_NAME, locate any maps that contain the
string ’Pellow Island’ and return a single binary string with the map name
concatenated in front of the actual map.

SELECT BLOB(MAP_NAME || ’: ’) || TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE BLOB(’%Pellow Island%’)

BLOB

Chapter 3. Functions 301

CEILING or CEIL

�� CEILING (expression)
CEIL

��

The schema is SYSIBM. (The SYSFUN version of the CEILING or CEIL
function continues to be available.)

Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. The result of the function
has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data
type of DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or the database is
configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

CEILING or CEIL

302 SQL Reference, Volume 1

CHAR

Datetime to Character:

�� CHAR (datetime-expression
, ISO

USA
EUR
JIS
LOCAL

) ��

Character to Character:

�� CHAR (character-expression
, integer

) ��

Integer to Character:

�� CHAR (integer-expression) ��

Decimal to Character:

�� CHAR (decimal-expression
, decimal-character

) ��

Floating-point to Character:

�� CHAR (floating-point-expression)
, decimal-character

��

The schema is SYSIBM. The SYSFUN.CHAR(floating-point-expression) signature
continues to be available. In this case, the decimal character is locale sensitive,
and therefore returns either a period or a comma, depending on the locale of
the database server.

The CHAR function returns a fixed-length character string representation of:
v A datetime value, if the first argument is a date, time, or timestamp
v A character string, if the first argument is any type of character string
v An integer number, if the first argument is a SMALLINT, INTEGER, or

BIGINT
v A decimal number, if the first argument is a decimal number
v A double-precision floating-point number, if the first argument is a

DOUBLE or REAL.

CHAR

Chapter 3. Functions 303

The first argument must be of a built-in data type.

Note: The CAST expression can also be used to return a string-expression.

The result of the function is a fixed-length character string. If the first
argument can be null, the result can be null. If the first argument is null, the
result is the null value.

Datetime to Character

datetime-expression
An expression that is one of the following three data types

date The result is the character string representation of the date
in the format specified by the second argument. The
length of the result is 10. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the character string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

timestamp
The second argument is not applicable and must not be
specified (SQLSTATE 42815). The result is the character
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

Character to Character

character-expression
An expression that returns a value that is CHAR, VARCHAR,
LONG VARCHAR, or CLOB data type.

integer
the length attribute for the resulting fixed length character string.
The value must be between 0 and 254.

If the length of the character-expression is less than the length
attribute of the result, the result is padded with blanks up to the
length of the result. If the length of the character-expression is greater
than the length attribute of the result, truncation is performed. A

CHAR

304 SQL Reference, Volume 1

warning is returned (SQLSTATE 01004) unless the truncated characters
were all blanks and the character-expression was not a long string
(LONG VARCHAR or CLOB).

Integer to Character

integer-expression
An expression that returns a value that is an integer data type
(either SMALLINT, INTEGER or BIGINT).

The result is the character string representation of the argument in the
form of an SQL integer constant. The result consists of n characters
that are the significant digits that represent the value of the argument
with a preceding minus sign if the argument is negative. It is left
justified.
v If the first argument is a small integer:

The length of the result is 6. If the number of characters in the
result is less than 6, then the result is padded on the right with
blanks to length 6.

v If the first argument is a large integer:
The length of the result is 11. If the number of characters in the
result is less than 11, then the result is padded on the right with
blanks to length 11.

v If the first argument is a big integer:
The length of the result is 20. If the number of characters in the
result is less than 20, then the result is padded on the right with
blanks to length 20.

The code page of the string is the code page of the database at the
application server.

Decimal to Character

decimal-expression
An expression that returns a value that is a decimal data type. If a
different precision and scale is desired, the DECIMAL scalar
function can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit
the decimal digits in the result character string. The character
cannot be a digit, plus (’+’), minus (’-’) or blank (SQLSTATE
42815). The default is the period (’.’) character.

The result is the fixed-length character-string representation of the
argument. The result includes a decimal character and p digits, where
p is the precision of the decimal-expression with a preceding minus sign

CHAR

Chapter 3. Functions 305

if the argument is negative. The length of the result is 2+p, where p is
the precision of the decimal-expression. This means that a positive value
will always include one trailing blank.

The code page of the string is the code page of the database at the
application server.

Floating-point to Character

floating-point-expression
An expression that returns a value that is a floating-point data
type (DOUBLE or REAL).

decimal-character
Specifies the single-byte character constant that is used to delimit
the decimal digits in the result character string. The character
cannot be a digit, plus (+), minus (−), or blank character
(SQLSTATE 42815). The default is the period (.) character.

The result is the fixed-length character-string representation of the
argument in the form of a floating-point constant. The length of the
result is 24. If the argument is negative, the first character of the result
is a minus sign. Otherwise, the first character is a digit. If the
argument value is zero, the result is 0E0. Otherwise, the result
includes the smallest number of characters that can represent the
value of the argument such that the mantissa consists of a single digit
other than zero followed by the decimal-character and a sequence of
digits. If the number of characters in the result is less than 24, the
result is padded on the right with blanks to length 24.

The code page of the string is the code page of the database at the
application server.

Examples:
v Assume the column PRSTDATE has an internal value equivalent to

1988-12-25.
CHAR(PRSTDATE, USA)

Results in the value ‘12/25/1988’.
v Assume the column STARTING has an internal value equivalent to 17:12:30,

the host variable HOUR_DUR (decimal(6,0)) is a time duration with a value
of 050000. (that is, 5 hours).

CHAR(STARTING, USA)

Results in the value ’5:12 PM’.
CHAR(STARTING + :HOUR_DUR, USA)

CHAR

306 SQL Reference, Volume 1

Results in the value ’10:12 PM’.
v Assume the column RECEIVED (timestamp) has an internal value

equivalent to the combination of the PRSTDATE and STARTING columns.
CHAR(RECEIVED)

Results in the value ‘1988-12-25-17.12.30.000000’.
v Use the CHAR function to make the type fixed length character and reduce

the length of the displayed results to 10 characters for the LASTNAME
column (defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is
returned.

v Use the CHAR function to return the values for EDLEVEL (defined as
smallint) as a fixed length character string.

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value ’18 ’ (18
followed by four blanks).

v Assume that STAFF has a SALARY column defined as decimal with
precision of 9 and scale of 2. The current value is 18357.50 and it is to be
displayed with a comma as the decimal character (18357,50).

CHAR(SALARY, ’,’)

returns the value ’00018357,50’.
v Assume the same SALARY column subtracted from 20000.25 is to be

displayed with the default decimal character.
CHAR(20000.25 - SALARY)

returns the value ’-0001642.75’.
v Assume a host variable, SEASONS_TICKETS, has an integer data type and

a 10000 value.
CHAR(DECIMAL(:SEASONS_TICKETS,7,2))

Results in the character value ’10000.00 ’.
v Assume a host variable, DOUBLE_NUM has a double data type and a

value of -987.654321E-35.
CHAR(:DOUBLE_NUM)

Results in the character value of ’-9.87654321E-33 ’. Because the
result data type is CHAR(24), there are 9 trailing blanks in the result.

CHAR

Chapter 3. Functions 307

Related reference:

v “Expressions” on page 187

CHAR

308 SQL Reference, Volume 1

CHR

�� CHR (expression) ��

The schema is SYSFUN.

Returns the character that has the ASCII code value specified by the
argument.

The argument can be either INTEGER or SMALLINT. The value of the
argument should be between 0 and 255; otherwise, the return value is null.

The result of the function is CHAR(1). The result can be null; if the argument
is null, the result is the null value.

CHR

Chapter 3. Functions 309

CLOB

�� CLOB (character-string-expression
, integer

) ��

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type.

character-string-expression
An expression that returns a value that is a character string.

integer
An integer value specifying the length attribute of the resulting CLOB
data type. The value must be between 0 and 2 147 483 647. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a CLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

CLOB

310 SQL Reference, Volume 1

COALESCE

�� �
(1)

COALESCE (expression , expression) ��

Notes:

1 VALUE is a synonym for COALESCE.

The schema is SYSIBM.

COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be
null only if all the arguments can be null, and the result is null only if all the
arguments are null. The selected argument is converted, if necessary, to the
attributes of the result.

The arguments must be compatible. They can be of either a built-in or
user-defined data type. (This function cannot be used as a source function
when creating a user-defined function. Because this function accepts any
compatible data types as arguments, it is not necessary to create additional
signatures to support user-defined distinct types.)

Examples:
v When selecting all the values from all the rows in the DEPARTMENT table,

if the department manager (MGRNO) is missing (that is, null), then return a
value of ’ABSENT’.

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, ’ABSENT’), ADMRDEPT
FROM DEPARTMENT

v When selecting the employee number (EMPNO) and salary (SALARY) from
all the rows in the EMPLOYEE table, if the salary is missing (that is, null),
then return a value of zero.

SELECT EMPNO, COALESCE(SALARY, 0)
FROM EMPLOYEE

Related reference:

v “Rules for result data types” on page 134

COALESCE

Chapter 3. Functions 311

CONCAT

��
(1)

CONCAT (expression1 , expression2) ��

Notes:

1 || may be used as a synonym for CONCAT.

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must
be compatible types.

The result of the function is a string. Its length is the sum of the lengths of the
two arguments. If either argument can be null, the result can be null; if the
argument is null, the result is the null value.

Related reference:

v “Expressions” on page 187

CONCAT

312 SQL Reference, Volume 1

COS

�� COS (expression) ��

The schema is SYSIBM. (The SYSFUN version of the COS function continues
to be available.)

Returns the cosine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

COS

Chapter 3. Functions 313

COSH

�� COSH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic cosine of the argument, where the argument is an
angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

COSH

314 SQL Reference, Volume 1

COT

�� COT (expression) ��

The schema is SYSIBM. (The SYSFUN version of the COT function continues
to be available.)

Returns the cotangent of the argument, where the argument is an angle
expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

COT

Chapter 3. Functions 315

DATE

�� DATE (expression) ��

The schema is SYSIBM.

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or
equal to 3 652 059, a valid string representation of a date or timestamp, or a
string of length 7 that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG
VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string
representation of a date or a timestamp.

If the argument is a string of length 7, it must represent a valid date in the
form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the date part of the value.

v If the argument is a number:
– The result is the date that is n-1 days after January 1, 0001, where n is

the integral part of the number.
v If the argument is a string with a length of 7:

– The result is the date represented by the string.

Examples:

Assume that the column RECEIVED (timestamp) has an internal value
equivalent to ‘1988-12-25-17.12.30.000000’.
v This example results in an internal representation of ‘1988-12-25’.

DATE(RECEIVED)

v This example results in an internal representation of ‘1988-12-25’.
DATE(’1988-12-25’)

v This example results in an internal representation of ‘1988-12-25’.

DATE

316 SQL Reference, Volume 1

DATE(’25.12.1988’)

v This example results in an internal representation of ‘0001-02-04’.
DATE(35)

DATE

Chapter 3. Functions 317

DAY

�� DAY (expression) ��

The schema is SYSIBM.

The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration,
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the day part of the value, which is an integer between 1

and 31.
v If the argument is a date duration or timestamp duration:

– The result is the day part of the value, which is an integer between −99
and 99. A nonzero result has the same sign as the argument.

Examples:
v Using the PROJECT table, set the host variable END_DAY (smallint) to the

day that the WELD LINE PLANNING project (PROJNAME) is scheduled to
stop (PRENDATE).

SELECT DAY(PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = ’WELD LINE PLANNING’

Results in END_DAY being set to 15 when using the sample table.
v Assume that the column DATE1 (date) has an internal value equivalent to

2000-03-15 and the column DATE2 (date) has an internal value equivalent
to 1999-12-31.

DAY(DATE1 - DATE2)

Results in the value 15.

DAY

318 SQL Reference, Volume 1

DAYNAME

�� DAYNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (e.g.
Friday) for the day portion of the argument based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

DAYNAME

Chapter 3. Functions 319

DAYOFWEEK

�� DAYOFWEEK (expression) ��

Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFWEEK

320 SQL Reference, Volume 1

DAYOFWEEK_ISO

�� DAYOFWEEK_ISO (expression) ��

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Monday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFWEEK_ISO

Chapter 3. Functions 321

DAYOFYEAR

�� DAYOFYEAR (expression) ��

The schema is SYSFUN.

Returns the day of the year in the argument as an integer value in the range
1-366.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFYEAR

322 SQL Reference, Volume 1

DAYS

�� DAYS (expression) ��

The schema is SYSIBM.

The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D,
where D is the date that would occur if the DATE function were applied to
the argument.

Examples:
v Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to

the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS
FROM PROJECT
WHERE PROJNO = ’IF2000’

Results in EDUCATION_DAYS being set to 396.
v Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the

sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21’.

SELECT SUM(DAYS(PRENDATE) − DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = ’E21’

Results in TOTAL_DAYS being set to 1584 when using the sample table.

DAYS

Chapter 3. Functions 323

DBCLOB

�� DBCLOB (graphic-expression
, integer

) ��

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string
type.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting DBCLOB
data type. The value must be between 0 and 1 073 741 823. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a DBCLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

DBCLOB

324 SQL Reference, Volume 1

DBPARTITIONNUM

�� DBPARTITIONNUM (column-name) ��

The schema is SYSIBM.

The DBPARTITIONNUM function returns the partition number of the row.
For example, if used in a SELECT clause, it returns the partition number for
each row of the table that was used to form the result of the SELECT
statement.

The partition number returned on transition variables and tables is derived
from the current transition values of the partitioning key columns. For
example, in a before insert trigger, the function will return the projected
partition number given the current values of the new transition variables.
However, the values of the partitioning key columns may be modified by a
subsequent before insert trigger. Thus, the final partition number of the row
when it is inserted into the database may differ from the projected value.

The argument must be the qualified or unqualified name of a column in a
table. The column can have any data type. (This function cannot be used as a
source function when creating a user-defined function. Because it accepts any
data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.) If column-name references a column in a
view, the expression in the view for the column must reference a column of
the underlying base table, and the view must be deletable. A nested or
common table expression follows the same rules as a view.

The specific row (and table) for which the partition number is returned by the
DBPARTITIONNUM function is determined from the context of the SQL
statement that uses the function.

The data type of the result is INTEGER and is never null. Since row-level
information is returned, the results are the same, regardless of which column
is specified for the table. If there is no db2nodes.cfg file, the result is 0.

The DBPARTITIONNUM function cannot be used on replicated tables, within
check constraints, or in the definition of generated columns (SQLSTATE
42881).

For compatibility with versions earlier than Version 8, the keyword
NODENUMBER can be substituted for DBPARTITIONNUM.

Examples:

DBPARTITIONNUM

Chapter 3. Functions 325

v Count the number of rows where the row for an EMPLOYEE is on a
different partition from the employee’s department description in
DEPARTMENT.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPTNO=E.WORKDEPT
AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

v Join the EMPLOYEE and DEPARTMENT tables where the rows of the two
tables are on the same partition.

SELECT * FROM DEPARTMENT D, EMPLOYEE E
WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

v Log the employee number and the projected partition number of the new
row into a table called EMPINSERTLOG1 for any insertion of employees by
creating a before trigger on the table EMPLOYEE.

CREATE TRIGGER EMPINSLOGTRIG1
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG1
VALUES(NEWTABLE.EMPNO, DBPARTITIONNUM
(NEWTABLE.EMPNO))

Related reference:

v “CREATE VIEW statement” in the SQL Reference, Volume 2

DBPARTITIONNUM

326 SQL Reference, Volume 1

DECIMAL

Numeric to Decimal:

�� DECIMAL
DEC

(numeric-expression �

�
, precision-integer

, scale-integer

) ��

Character to Decimal:

�� DECIMAL
DEC

(character-expression �

�
, precision-integer

, scale-integer
, decimal-character

) ��

Datetime to Decimal:

�� DECIMAL
DEC

(datetime-expression �

�
, precision-integer

, scale-integer

) ��

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer number
v A character string representation of a floating-point number
v A datetime value if the argument is a date, time, or timestamp

The result of the function is a decimal number with precision p and scale s,
where p and s are the second and third arguments, respectively. If the first
argument can be null, the result can be null; if the first argument is null, the
result is the null value.

Numeric to Decimal

DECIMAL

Chapter 3. Functions 327

numeric-expression
An expression that returns a value of any numeric data type.

precision-integer
An integer constant with a value in the range of 1 to 31.

The default for precision-integer depends on the data type of
numeric-expression:
v 15 for floating-point and decimal
v 19 for big integer
v 11 for large integer
v 5 for small integer.

scale-integer
An integer constant in the range of 0 to the precision-integer value.
The default is zero.

The result is the same number that would occur if the first argument
were assigned to a decimal column or variable with precision p and
scale s, where p and s are the second and third arguments,
respectively. An error occurs if the number of significant decimal
digits required to represent the whole part of the number is greater
than p−s.

Character to Decimal

character-expression
An expression that returns a value that is a character string with a
length not greater than the maximum length of a character
constant (4 000 bytes). It cannot have a CLOB or LONG
VARCHAR data type. Leading and trailing blanks are eliminated
from the string. The resulting substring must conform to the rules
for forming an SQL integer or decimal constant (SQLSTATE
22018).

The character-expression is converted to the database code page if
required to match the code page of the constant decimal-character.

precision-integer
An integer constant with a value in the range 1 to 31 that specifies
the precision of the result. If not specified, the default is 15.

scale-integer
An integer constant with a value in the range 0 to precision-integer
that specifies the scale of the result. If not specified, the default is
0.

decimal-character
Specifies the single-byte character constant used to delimit the

DECIMAL

328 SQL Reference, Volume 1

decimal digits in character-expression from the whole part of the
number. The character cannot be a digit, plus (+), minus (−), or
blank, and it can appear at most once in character-expression
(SQLSTATE 42815).

The result is a decimal number with precision p and scale s, where p
and s are the second and third arguments, respectively. Digits are
truncated from the end of the decimal number if the number of digits
to the right of the decimal character is greater than the scale. An error
occurs if the number of significant digits to the left of the decimal
character (the whole part of the number) in character-expression is
greater than p−s (SQLSTATE 22003). The default decimal character is
not valid in the substring if a different value for the decimal-character
argument is specified (SQLSTATE 22018).

Datetime to Decimal

datetime-expression
An expression that is of one of the following data types:
v DATE. The result is a DECIMAL(8,0) value representing the

date as yyyymmdd.
v TIME. The result is a DECIMAL(6,0) value representing the

time as hhmmss.
v TIMESTAMP. The result is a DECIMAL(20,6) value representing

the timestamp as yyyymmddhhmmss.nnnnnn.

This function allows the user to specify a precision, or a precision and
a scale. However, a scale cannot be specified without specifying a
precision. The default value for (precision,scale) is (8,0) for DATE,
(6,0) for TIME, and (20,6) for TIMESTAMP.

The result is a decimal number with precision p and scale s, where p
and s are the second and third arguments, respectively. Digits are
truncated from the end if the number of digits to the right of the
decimal character is greater than the scale. An error occurs if the
number of significant digits to the left of the decimal character (the
whole part of the number) in datetime-expression is greater than p−s
(SQLSTATE 22003).

Examples:
v Use the DECIMAL function in order to force a DECIMAL data type (with a

precision of 5 and a scale of 2) to be returned in a select-list for the
EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The
EMPNO column should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

DECIMAL

Chapter 3. Functions 329

v Assume the host variable PERIOD is of type INTEGER. Then, in order to
use its value as a date duration it must be ″cast″ as decimal(8,0).

SELECT PRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

v Assume that updates to the SALARY column are input through a window
as a character string using comma as a decimal character (for example, the
user inputs 21400,50). Once validated by the application, it is assigned to
the host variable newsalary which is defined as CHAR(10).

UPDATE STAFF
SET SALARY = DECIMAL(:newsalary, 9, 2, ’,’)
WHERE ID = :empid;

The value of newsalary becomes 21400.50.
v Add the default decimal character (.) to a value.

DECIMAL(’21400,50’, 9, 2, ’.’)

This fails because a period (.) is specified as the decimal character, but a
comma (,) appears in the first argument as a delimiter.

v Assume that the column STARTING (time) has an internal value equivalent
to ’12:10:00’.

DECIMAL(STARTING)

results in the value 121 000.
v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to ’1988-12-22-14.07.21.136421’.
DECIMAL(RECEIVED)

results in the value 19 881 222 140 721.136421.
v The following table shows the decimal result and resulting precision and

scale for various datetime input values.

DECIMAL(arguments) Precision and
Scale

Result

DECIMAL(2000-03-21) (8,0) 20000321

DECIMAL(2000-03-21, 10) (10,0) 20000321

DECIMAL(2000-03-21, 12, 2) (12,2) 20000321.00

DECIMAL(12:02:21) (6,0) 120221

DECIMAL(12:02:21, 10) (10,0) 120221

DECIMAL(12:02:21, 10, 2) (10,2) 120221.00

DECIMAL(2000-03-21-
12.02.21.123456)

(20, 6) 20000321120221.123456

DECIMAL

330 SQL Reference, Volume 1

DECIMAL(arguments) Precision and
Scale

Result

DECIMAL(2000-03-21-
12.02.21.123456, 23)

(23, 6) 20000321120221.123456

DECIMAL(2000-03-21-
12.02.21.123456, 23, 4)

(23, 4) 20000321120221.1234

DECIMAL

Chapter 3. Functions 331

DECRYPT_BIN and DECRYPT_CHAR

�� DECRYPT_BIN
DECRYPT_CHAR

(encrypted-data)
, password-string-expression

��

The schema is SYSIBM.

The DECRYPT_BIN and DECRYPT_CHAR functions both return a value that
is the result of decrypting encrypted-data. The password used for decryption is
either the password-string-expression value or the ENCRYPTION PASSWORD
value assigned by the SET ENCRYPTION PASSWORD statement. The
DECRYPT_BIN and DECRYPT_CHAR functions can only decrypt values that
are encrypted using the ENCRYPT function (SQLSTATE 428FE).

encrypted-data
An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR
BIT DATA value as a complete, encrypted data string. The data string
must have been encrypted using the ENCRYPT function.

password-string-expression
An expression that returns a CHAR or VARCHAR value with at least 6
bytes and no more than 127 bytes (SQLSTATE 428FC). This expression
must be the same password used to encrypt the data or decryption will
result in an error (SQLSTATE 428FD). If the value of the password
argument is null or not provided, the data will be encrypted using the
ENCRYPTION PASSWORD value, which must have been set for the
session (SQLSTATE 51039).

The result of the DECRYPT_BIN function is VARCHAR FOR BIT DATA. The
result of the DECRYPT_CHAR function is VARCHAR. If the encrypted-data
included a hint, the hint is not returned by the function. The length attribute
of the result is the length of the data type of the encrypted-data minus 8 bytes.
The actual length of the value returned by the function will match the length
of the original string that was encrypted. If the encrypted-data includes bytes
beyond the encrypted string, these bytes are not returned by the function.

If the first argument can be null, the result can be null. If the first argument is
null, the result is the null value.

If the data is decrypted on a different system that uses a code page different
from the code page in which the data was encrypted, then expansion may
occur when converting the decrypted value to the database code page. In such
situations, the encrypted-data value should be cast to a VARCHAR string with
a larger number of bytes.

Examples:

DECRYPT_BIN and DECRYPT_CHAR

332 SQL Reference, Volume 1

Example 1: This example uses the ENCRYPTION PASSWORD value to hold
the encryption password.

SET ENCRYPTION PASSWORD = ’Ben123’;
INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’);
SELECT DECRYPT_CHAR(SSN)

FROM EMP;

This returns the value ’289-46-8832’.

Example 2: This example explicitly passes the encryption password.
INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’,’Ben123’,’’);
SELECT DECRYPT(SSN,’Ben123’)

FROM EMP;

This example returns the value ’289-46-8832’.

Related reference:

v “SET ENCRYPTION PASSWORD statement” in the SQL Reference, Volume 2

v “ENCRYPT” on page 359
v “GETHINT” on page 366

DECRYPT_BIN and DECRYPT_CHAR

Chapter 3. Functions 333

DEGREES

�� DEGREES (expression) ��

The schema is SYSFUN.

Returns the number of degrees converted from the argument expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

DEGREES

334 SQL Reference, Volume 1

DEREF

�� DEREF (expression) ��

The DEREF function returns an instance of the target type of the argument.

The argument can be any value with a reference data type that has a defined
scope (SQLSTATE 428DT).

The static data type of the result is the target type of the argument. The
dynamic data type of the result is a subtype of the target type of the
argument. The result can be null. The result is the null value if expression is a
null value or if expression is a reference that has no matching OID in the target
table.

The result is an instance of the subtype of the target type of the reference. The
result is determined by finding the row of the target table or target view of
the reference that has an object identifier that matches the reference value. The
type of this row determines the dynamic type of the result. Since the type of
the result can be based on a row of a subtable or subview of the target table
or target view, the authorization ID of the statement must have SELECT
privilege on the target table and all of its subtables or the target view and all
of its subviews (SQLSTATE 42501).

Examples:

Assume that EMPLOYEE is a table of type EMP, and that its object identifier
column is named EMPID. Then the following query returns an object of type
EMP (or one of its subtypes), for each row of the EMPLOYEE table (and its
subtables). This query requires SELECT privilege on EMPLOYEE and all its
subtables.

SELECT DEREF(EMPID) FROM EMPLOYEE

Related reference:

v “TYPE_NAME” on page 481

DEREF

Chapter 3. Functions 335

DIFFERENCE

�� DIFFERENCE (expression , expression) ��

The schema is SYSFUN.

Returns a value from 0 to 4 representing the difference between the sounds of
two strings based on applying the SOUNDEX function to the strings. A value
of 4 is the best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR
up to 4 000 bytes.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:
VALUES (DIFFERENCE(’CONSTRAINT’,’CONSTANT’),SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONSTANT’)),
(DIFFERENCE(’CONSTRAINT’,’CONTRITE’),SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONTRITE’))

This example returns the following.
1 2 3
----------- ---- ----
4 C523 C523
2 C523 C536

In the first row, the words have the same result from SOUNDEX while in the
second row the words have only some similarity.

DIFFERENCE

336 SQL Reference, Volume 1

DIGITS

�� DIGITS (expression) ��

The schema is SYSIBM.

The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,
INTEGER, BIGINT or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal character. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the
string is:
v 5 if the argument is a small integer
v 10 if the argument is a large integer
v 19 if the argument is a big integer
v p if the argument is a decimal number with a precision of p.

Examples:
v Assume that a table called TABLEX contains an INTEGER column called

INTCOL containing 10-digit numbers. List all distinct four digit
combinations of the first four digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

v Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of
its values is -6.28. Then, for this value:

DIGITS(COLUMNX)

returns the value '000628'.

The result is a string of length six (the precision of the column) with
leading zeros padding the string out to this length. Neither sign nor
decimal point appear in the result.

DIGITS

Chapter 3. Functions 337

DLCOMMENT

�� DLCOMMENT (datalink-expression) ��

The schema is SYSIBM.

The DLCOMMENT function returns the comment value, if it exists, from a
DATALINK value.

The argument must be an expression that results in a value with data type of
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:
v Prepare a statement to select the date, the description, and the comment

(from the link in the ARTICLES column) from the HOCKEY_GOALS table.
The rows to be selected are those for goals scored by either of the Richard
brothers (Maurice or Henri).

stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)
FROM HOCKEY_GOALS
WHERE BY_PLAYER = ’Maurice Richard’
OR BY_PLAYER = ’Henri Richard’ ";

EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

v Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’)

then the following function operating on that value:
DLCOMMENT(COLA)

will return the value:
A comment

DLCOMMENT

338 SQL Reference, Volume 1

DLLINKTYPE

�� DLLINKTYPE (datalink-expression) ��

The schema is SYSIBM.

The DLLINKTYPE function returns the linktype value from a DATALINK
value.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(4). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

then the following function operating on that value:
DLLINKTYPE(COLA)

will return the value:
URL

DLLINKTYPE

Chapter 3. Functions 339

DLNEWCOPY

�� DLNEWCOPY (data-location , has-token) ��

The schema is SYSIBM.

The DLNEWCOPY function returns a DATALINK value which has an
attribute indicating that the referenced file has changed. If such a value is
assigned to a DATALINK column as a result of an SQL UPDATE statement,
DB2 is notified that an update to the linked file has completed. If the
DATALINK column is defined with RECOVERY YES, the new version of the
linked file is archived asynchronously. If such a value is assigned to a
DATALINK column as a result of an SQL INSERT statement, an error
(SQLSTATE 428D1) is returned.

data-location
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value. The value may have been
obtained earlier by a SELECT statement through the
DLURLCOMPLETEWRITE function.

has-token
An INTEGER value that indicates whether the data location contains a
write token.

0 The data location does not contain a write token.

1 The data location contains a write token.

An error occurs if the value is neither 0 nor 1 (SQLSTATE 42815), or the
token embedded in the data location is not valid (SQLSTATE 428D1).

The result of the function is a DATALINK value without the write token.
Neither data-location nor has-token can be null.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be in the data
location to complete the SQL UPDATE statement (SQLSTATE 428D1). On the
other hand, for WRITE PERMISSION ADMIN NOT REQUIRING TOKEN
FOR UPDATE, the write token is not required, but is allowed in the data
location.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be the same as the
one used to open the specified file, if it was opened (SQLSTATE 428D1).

DLNEWCOPY

340 SQL Reference, Volume 1

For any WRITE PERMISSION ADMIN column, even if the write token has
expired, the token is still considered valid as long as the same token is used to
open the specified file for write access.

In a case where no file update has taken place, or the DATALINK file is
linked with other options, such as WRITE PERMISSION BLOCKED/FS or NO
LINK CONTROL, this function will behave like DLVALUE.

Examples:
v Given a DATALINK value that was inserted into column COLA (defined

with WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE) in
table TBLA using the scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

Use the scalar function DLURLCOMPLETEWRITE to fetch the value:
SELECT DLURLCOMPLETEWRITE(COLA)

FROM TBLA
WHERE ...

It returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b

where **************** represents the write token.

Use the above value to locate and update the content of the file. Issue the
following SQL UPDATE statement to indicate that the file has been
successfully changed:

UPDATE TBLA
SET COLA = DLNEWCOPY(’http://dlfs.almaden.ibm.com/x/y/********

********;a.b’, 1)
WHERE ...

where **************** represents the same write token used to modify
the file referenced by the URL value. Note that if COLA is defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE,
the write token is not required in the above example.

v The value of the second argument (has-token) can be substituted by the
following CASE statement. Assume the URL value is contained in a
variable named url_file. Issue the following SQL UPDATE statement to
indicate that the file has been successfully changed:

EXEC SQL UPDATE TBLA
SET COLA = DLNEWCOPY(:url_file,

(CASE
WHEN LENGTH(:url_file) = LENGTH(DLURLCOMPLETEONLY(COLA))

DLNEWCOPY

Chapter 3. Functions 341

THEN 0
ELSE 1
END))

WHERE ...

DLNEWCOPY

342 SQL Reference, Volume 1

DLPREVIOUSCOPY

�� DLPREVIOUSCOPY (data-location , has-token) ��

The schema is SYSIBM.

The DLPREVIOUSCOPY function returns a DATALINK value which has an
attribute indicating that the previous version of the file should be restored. If
such a value is assigned to a DATALINK column as a result of an SQL
UPDATE statement, it triggers DB2 to restore the linked file from the
previously committed version. If such a value is assigned to a DATALINK
column as a result of an SQL INSERT statement, an error (SQLSTATE 428D1)
is returned.

data-location
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value. The value may have been
obtained earlier by a SELECT statement through the
DLURLCOMPLETEWRITE function.

has-token
An INTEGER value that indicates whether the data location contains a
write token.

0 The data location does not contain a write token.

1 The data location contains a write token.

An error occurs if the value is neither 0 nor 1 (SQLSTATE 42815), or the
token embedded in the data location is not valid (SQLSTATE 428D1).

The result of the function is a DATALINK value without the write token.
Neither data-location nor has-token can be null.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be in the data
location to complete the SQL UPDATE statement (SQLSTATE 428D1). On the
other hand, for WRITE PERMISSION ADMIN NOT REQUIRING TOKEN
FOR UPDATE, the write token is not required, but is allowed in the data
location.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be the same as the
one used to open the specified file, if it was opened (SQLSTATE 428D1).

DLPREVIOUSCOPY

Chapter 3. Functions 343

For any WRITE PERMISSION ADMIN column, even if the write token has
expired, the token is still considered valid as long as the same token is used to
open the specified file for write access.

Examples:
v Given a DATALINK value that was inserted into column COLA (defined

with WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE
and RECOVERY YES) in table TBLA using the scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

Use the scalar function DLURLCOMPLETEWRITE to fetch the value:
SELECT DLURLCOMPLETEWRITE(COLA)

FROM TBLA
WHERE ...

It returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b

where **************** represents the write token.

Use the above value to locate and update the content of the file. Issue the
following SQL UPDATE statement to back out the file changes and restore
to the previous committed version:

UPDATE TBLA
SET COLA = DLPREVIOUSCOPY(’http://dlfs.almaden.ibm.com/x/y/********

********;a.b’, 1)
WHERE ...

where **************** represents the same write token used to modify
the file referenced by the URL value. Note that if COLA is defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE,
the write token is not required in the above example.

v The value of the second argument (has-token) can be substituted by the
following CASE statement. Assume the URL value is contained in a
variable named url_file. Issue the following SQL UPDATE statement to back
out the file changes and restore to the previous committed version:

EXEC SQL UPDATE TBLA
SET COLA = DLPREVIOUSCOPY(:url_file,

(CASE
WHEN LENGTH(:url_file) = LENGTH(DLURLCOMPLETEONLY(COLA))
THEN 0
ELSE 1
END))

WHERE ...

DLPREVIOUSCOPY

344 SQL Reference, Volume 1

DLREPLACECONTENT

�� DLREPLACECONTENT (data-location-target , data-location-source)
, comment-string

��

The schema is SYSIBM.

The DLREPLACECONTENT function returns a DATALINK value. When the
function is on the right hand side of a SET clause in an UPDATE statement, or
is in a VALUES clause in an INSERT statement, the assignment of the
returned value results in replacing the content of a file by another file and
then creating a link to it. The actual file replacement process is done during
commit processing of the current transaction.

data-location-target
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value.

data-location-source
A VARCHAR expression that specifies the data location of a file in URL
format. As a result of an assignment in an UPDATE or an INSERT
statement, this file is renamed to the name of the file that is pointed to by
data-location-target; the ownership and permission attributes of the target
file are retained.

There is a restriction that data-location-source can only be one of the
following:
v A zero-length value
v A NULL value
v The value of data-location-target plus a suffix string. The suffix string can

be up to 20 characters in length. The characters of the suffix string must
belong to the URL character set. Moreover, the string cannot contain a
“\” character under the UNC scheme, or the “/” character under other
valid schemes (SQLSTATE 428D1).

comment-string
An optional VARCHAR value that contains a comment or additional
location information.

The result of the function is a DATALINK value. If any argument can be null,
the result can be null; if data-location-target is null, the result is the null value.

If data-location-source is null, a zero-length string, or exactly the same as
data-location-target, the effect of DLREPLACECONTENT is the same as
DLVALUE.

Example:

DLREPLACECONTENT

Chapter 3. Functions 345

v Replace the content of a linked file by another file. Given a DATALINK
value that was inserted into column PICT_FILE in table TBLA using the
following INSERT statement:

EXEC SQL INSERT INTO TBLA (PICT_ID, PICT_FILE)
VALUES(1000, DLVALUE(’HTTP://HOSTA.COM/dlfs/image-data/pict1.gif’));

Replace the content of this file with another file by issuing the following
SQL UPDATE statement:

EXEC SQL UPDATE TBLA
SET PICT_FILE =

DLREPLACECONTENT(’HTTP://HOSTA.COM/dlfs/image-data/pict1.gif’,
’HTTP://HOSTA.COM/dlfs/image-data/pict1.gif.new’)

WHERE PICT_ID = 1000;

DLREPLACECONTENT

346 SQL Reference, Volume 1

DLURLCOMPLETE

�� DLURLCOMPLETE (datalink-expression) ��

The DLURLCOMPLETE function returns the data location attribute from a
DATALINK value with a link type of URL. When datalink-expression is a
DATALINK column defined with the attribute READ PERMISSION DB, the
value includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

the following function operating on that value:
DLURLCOMPLETE(COLA)

returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b

where **************** represents the access token.

DLURLCOMPLETE

Chapter 3. Functions 347

DLURLCOMPLETEONLY

�� DLURLCOMPLETEONLY (datalink-expression) ��

The schema is SYSIBM.

The DLURLCOMPLETEONLY function returns the data location attribute
from a DATALINK value with a link type of URL. The value returned never
includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:
v Given a DATALINK value that was inserted into a DATALINK column

COLA (defined with READ PERMISSION DB) in table TBLA using the
scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

the following function operating on that value:
DLURLCOMPLETEONLY(COLA)

returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/a.b

DLURLCOMPLETEONLY

348 SQL Reference, Volume 1

DLURLCOMPLETEWRITE

�� DLURLCOMPLETEWRITE (datalink-expression) ��

The schema is SYSIBM.

The DLURLCOMPLETEWRITE function returns the complete URL value from
a DATALINK value with a link type of URL. If the DATALINK value
produced from datalink-expression comes from a DATALINK column defined
with WRITE PERMISSION ADMIN, a write token is included in the return
value. The returned value can be used to locate and update the linked file.

If the DATALINK column is defined with another WRITE PERMISSION
option (not ADMIN) or NO LINK CONTROL, DLURLCOMPLETEWRITE
returns just the URL value without a write token. If the file reference is
derived from a DATALINK column defined with WRITE PERMISSION FS, a
token is not required to write to the file, because write permission is
controlled by the file system; if the file reference is derived from a DATALINK
column defined with WRITE PERMISSION BLOCKED, the file cannot be
written to at all.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:
v Given a DATALINK value that was inserted into a DATALINK column

COLA (defined with WRITE PERMISSION ADMIN) in table TBLA using
the scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

the following function operating on that value:
DLURLCOMPLETEWRITE(COLA)

returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b

where **************** represents the write token. If COLA is not defined
with WRITE PERMISSION ADMIN, the write token will not be present.

DLURLCOMPLETEWRITE

Chapter 3. Functions 349

DLURLPATH

�� DLURLPATH (datalink-expression) ��

The schema is SYSIBM.

The DLURLPATH function returns the path and file name necessary to access
a file within a given server from a DATALINK value with a linktype of URL.
When datalink-expression is a DATALINK column defined with the attribute
READ PERMISSION DB, the value includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

then the following function operating on that value:
DLURLPATH(COLA)

will return the value:
/x/y/****************;a.b

(where **************** represents the access token)

DLURLPATH

350 SQL Reference, Volume 1

DLURLPATHONLY

�� DLURLPATHONLY (datalink-expression) ��

The schema is SYSIBM.

The DLURLPATHONLY function returns the path and file name necessary to
access a file within a given server from a DATALINK value with a linktype of
URL. The value returned NEVER includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

then the following function operating on that value:
DLURLPATHONLY(COLA)

will return the value:
/x/y/a.b

DLURLPATHONLY

Chapter 3. Functions 351

DLURLPATHWRITE

�� DLURLPATHWRITE (datalink-expression) ��

The schema is SYSIBM.

The DLURLPATHWRITE function returns the path and file name necessary to
access a file within a given server from a DATALINK value with a linktype of
URL. The value returned includes a write token if the DATALINK value
produced from datalink_expression comes from a DATALINK column defined
with WRITE PERMISSION ADMIN.

If the DATALINK column is defined with other WRITE PERMISSION options
(not ADMIN) or NO LINK CONTROL, DLURLPATHWRITE returns the path
and file name without a write token. If the file reference is derived from a
DATALINK column defined with WRITE PERMISSION FS, a token is not
required to write to the file, because write permission is controlled by the file
system; if the file reference is derived from a DATALINK column defined
with WRITE PERMISSION BLOCKED, the file cannot be written to at all.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:
v Given a DATALINK value that was inserted into a DATALINK column

COLA (defined with WRITE PERMISSION ADMIN) in table TBLA using
the scalar function:

DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

the following function operating on that value:
DLURLPATHWRITE(COLA)

returns:
/x/y/****************;a.b

where **************** represents the write token. If COLA is not defined
with WRITE PERMISSION ADMIN, the write token will not be present.

DLURLPATHWRITE

352 SQL Reference, Volume 1

DLURLSCHEME

�� DLURLSCHEME (datalink-expression) ��

The schema is SYSIBM.

The DLURLSCHEME function returns the scheme from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(20). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

then the following function operating on that value:
DLURLSCHEME(COLA)

will return the value:
HTTP

DLURLSCHEME

Chapter 3. Functions 353

DLURLSERVER

�� DLURLSERVER (datalink-expression) ��

The schema is SYSIBM.

The DLURLSERVER function returns the file server from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’a comment’)

then the following function operating on that value:
DLURLSERVER(COLA)

will return the value:
DLFS.ALMADEN.IBM.COM

DLURLSERVER

354 SQL Reference, Volume 1

DLVALUE

�� DLVALUE (data-location
, linktype-string

, comment-string

) ��

The schema is SYSIBM.

The DLVALUE function returns a DATALINK value. When the function is on
the right hand side of a SET clause in an UPDATE statement or is in a
VALUES clause in an INSERT statement, it usually also creates a link to a file.
However, if only a comment is specified (in which case the data-location is a
zero-length string), the DATALINK value is created with empty linkage
attributes so there is no file link.

data-location
If the link type is URL, then this is an expression that yields a varying
length character string containing a complete URL value.

linktype-string
An optional VARCHAR expression that specifies the link type of the
DATALINK value. The only valid value is ’URL’ (SQLSTATE 428D1).

comment-string
An optional VARCHAR(254) value that provides a comment or additional
location information. The length of data-location plus comment-string must
not exceed 200 bytes.

The result of the function is a DATALINK value. If any argument of the
DLVALUE function can be null, the result can be null; If the data-location is
null, the result is the null value.

When defining a DATALINK value using this function, consider the
maximum length of the target of the value. For example, if a column is
defined as DATALINK(200), then the maximum length of the data-location plus
the comment is 200 bytes.

Example:
v Insert a row into the table. The URL values for the first two links are

contained in the variables named url_article and url_snapshot. The variable
named url_snapshot_comment contains a comment to accompany the
snapshot link. There is, as yet, no link for the movie, only a comment in the
variable named url_movie_comment.

EXEC SQL
INSERT INTO HOCKEY_GOALS

VALUES(’Maurice Richard’,
’Montreal Canadien’,

DLVALUE

Chapter 3. Functions 355

’?’,
’Boston Bruins,
’1952-04-24’,
’Winning goal in game 7 of Stanley Cup final’,
DLVALUE(:url_article),
DLVALUE(:url_snapshot, ’URL’, :url_snapshot_comment),
DLVALUE(’’, ’URL’, :url_movie_comment));

DLVALUE

356 SQL Reference, Volume 1

DOUBLE

Numeric to Double:

�� DOUBLE (numeric-expression)
FLOAT
DOUBLE_PRECISION

��

Character String to Double:

�� DOUBLE (string-expression) ��

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is
SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:
v number if the argument is a numeric expression
v character string representation of a number if the argument is a string

expression.

Numeric to Double

numeric-expression
The argument is an expression that returns a value of any built-in
numeric data type.

The result of the function is a double-precision floating-point
number. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the same number that would occur if the argument
were assigned to a double-precision floating-point column or
variable.

Character String to Double

string-expression
The argument can be of type CHAR or VARCHAR in the form of
a numeric constant. Leading and trailing blanks in argument are
ignored.

The result of the function is a double-precision floating-point
number. The result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the string was
considered a constant and assigned to a double-precision
floating-point column or variable.

DOUBLE

Chapter 3. Functions 357

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. To eliminate the possibility of
out-of-range results, DOUBLE is applied to SALARY so that the division is
carried out in floating point:

SELECT EMPNO, DOUBLE(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

DOUBLE

358 SQL Reference, Volume 1

ENCRYPT

�� ENCRYPT �

� (data-string-expression)
, password-string-expression

, hint-string-expression

��

The schema is SYSIBM.

The ENCRYPT function returns a value that is the result of encrypting
data-string-expression. The password used for encryption is either the
password-string-expression value or the ENCRYPTION PASSWORD value (as
assigned using the SET ENCRYPTION PASSWORD statement).

data-string-expression
An expression that returns a CHAR or VARCHAR value to be encrypted.
The length attribute for the data type of data-string-expression is limited to
32663 without a hint-string-expression argument and 32631 when the
hint-string-expression argument is specified (SQLSTATE 42815).

password-string-expression
An expression that returns a CHAR or VARCHAR value with at least 6
bytes and no more than 127 bytes (SQLSTATE 428FC). The value
represents the password used to encrypt the data-string-expression. If the
value of the password argument is null or not provided, the data will be
encrypted using the ENCRYPTION PASSWORD value, which must have
been set for the session (SQLSTATE 51039).

hint-string-expression
An expression that returns a CHAR or VARCHAR value up to 32 bytes
that will help data owners remember passwords (for example, ’Ocean’ as
a hint to remember ’Pacific’). If a hint value is given, the hint is embedded
into the result and can be retrieved using the GETHINT function. If this
argument is null or not provided, no hint will be embedded in the result.

The result data type of the function is VARCHAR FOR BIT DATA.

The length attribute of the result is:
v When the optional hint parameter is specified, the length attribute of the

non-encrypted data + 8 bytes + the number of bytes to the next 8 byte
boundary + 32 bytes for the hint length.

v With no hint parameter, the length attribute of the non-encrypted data + 8
bytes + the number of bytes to the next 8 byte boundary.

If the first argument can be null, the result can be null; if the first argument is
null, the result is the null value.

ENCRYPT

Chapter 3. Functions 359

Notice that the encrypted result is longer than the data-string-expression value.
Therefore, when assigning encrypted values, ensure that the target is declared
with sufficient size to contain the entire encrypted value.

Notes:

v Encryption Algorithm: The internal encryption algorithm used is RC2 block
cipher with padding, the 128-bit secret key is derived from the password
using a MD2 message digest.

v Encryption Passwords and Data: It is the user’s responsibility to perform
password management. Once the data is encrypted only the password used
to encrypt it can be used to decrypt it (SQLSTATE 428FD). Be careful when
using CHAR variables to set password values as they may be padded with
blanks. The encrypted result may contain null terminator and other
non-printable characters.

v Table Column Definition: When defining columns and types to contain
encrypted data, always calculate the length attribute as follows.
For encrypted data with no hint:
Maximum length of the non-encrypted data + 8 bytes + the number of
bytes to the next 8 byte boundary = encrypted data column length.
For encrypted data with an embedded hint:
Maximum length of the non-encrypted data + 8 bytes + the number of
bytes to the next 8 byte boundary + 32 bytes for the hint length =
encrypted data column length.
Any assignment or cast to a length shorter than the suggested data length
may result in failed decryption in the future and lost data. Blanks are valid
encrypted data values that may be truncated when stored in a column that
is too short.
Some sample column length calculations:

Maximum length of non-encrypted data 6 bytes
8 bytes 8 bytes
Number of bytes to the next 8 byte boundary 2 bytes

Encrypted data column length 16 bytes

Maximum length of non-encrypted data 32 bytes
8 bytes 8 bytes
Number of bytes to the next 8 byte boundary 8 bytes

Encrypted data column length 48 bytes

v Administration of encrypted data: Encrypted data can only be decrypted on
servers that support the decryption functions that correspond to the
ENCRYPT function. Hence, replication of columns with encrypted data
should only be done to servers that support the DECRYPT_BIN or
DECRYPT_CHAR function.

ENCRYPT

360 SQL Reference, Volume 1

Examples:

Example 1: This example uses the ENCRYPTION PASSWORD value to hold
the encryption password.

SET ENCRYPTION PASSWORD = ’Ben123’;
INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’);

Example 2: This example explicitly passes the encryption password.
INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,’Ben123’);

Example 3: The hint ’Ocean’ is stored to help the user remember the
encryption password of ’Pacific’.

INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,’Pacific’,’Ocean’);

Related reference:

v “DECRYPT_BIN and DECRYPT_CHAR” on page 332
v “GETHINT” on page 366

ENCRYPT

Chapter 3. Functions 361

EVENT_MON_STATE

�� EVENT_MON_STATE (string-expression) ��

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event
monitor.

The argument is a string expression with a resulting type of CHAR or
VARCHAR and a value that is the name of an event monitor. If the named
event monitor does not exist in the SYSCAT.EVENTMONITORS catalog table,
SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:
v

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:
v The following example selects all of the defined event monitors, and

indicates whether each is active or inactive:
SELECT EVMONNAME,

CASE
WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN ’Inactive’
WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN ’Active’

END
FROM SYSCAT.EVENTMONITORS

EVENT_MON_STATE

362 SQL Reference, Volume 1

EXP

�� EXP (expression) ��

The schema is SYSFUN.

Returns the exponential function of the argument.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

EXP

Chapter 3. Functions 363

FLOAT

�� FLOAT (numeric-expression) ��

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of a number.
FLOAT is a synonym for DOUBLE.

Related reference:

v “DOUBLE” on page 357

FLOAT

364 SQL Reference, Volume 1

FLOOR

�� FLOOR (expression) ��

The schema is SYSIBM. (The SYSFUN version of the FLOOR function
continues to be available.)

Returns the largest integer value less than or equal to the argument.

The result of the function has the same data type and length attribute as the
argument except that the scale is 0 if the argument is DECIMAL. For example,
an argument with a data type of DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or the database is
configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

FLOOR

Chapter 3. Functions 365

GETHINT

�� GETHINT (encrypted-data) ��

The schema is SYSIBM.

The GETHINT function will return the password hint if one is found in the
encrypted-data. A password hint is a phrase that will help data owners
remember passwords (For example, ’Ocean’ as a hint to remember ’Pacific’).

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR
BIT DATA value that is a complete, encrypted data string. The data string
must have been encrypted using the ENCRYPT function (SQLSTATE
428FE).

The result of the function is VARCHAR(32). The result can be null; if the hint
parameter was not added to the encrypted-data by the ENCRYPT function or
the first argument is null, the result is the null value.

Example:

In this example the hint ’Ocean’ is stored to help the user remember the
encryption password ’Pacific’.

INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’, ’Pacific’,’Ocean’);
SELECT GETHINT(SSN)

FROM EMP;

The value returned is ’Ocean’.

Related reference:

v “DECRYPT_BIN and DECRYPT_CHAR” on page 332
v “ENCRYPT” on page 359

GETHINT

366 SQL Reference, Volume 1

GENERATE_UNIQUE

�� GENERATE_UNIQUE () ��

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes
long (CHAR(13) FOR BIT DATA) that is unique compared to any other
execution of the same function. (The system clock is used to generate the
internal Universal Time, Coordinated (UTC) timestamp along with the
partition number on which the function executes. Adjustments that move the
actual system clock backward could result in duplicate values.) The function
is defined as not-deterministic.

There are no arguments to this function (the empty parentheses must be
specified).

The result of the function is a unique value that includes the internal form of
the Universal Time, Coordinated (UTC) and the partition number where the
function was processed. The result cannot be null.

The result of this function can be used to provide unique values in a table.
Each successive value will be greater than the previous value, providing a
sequence that can be used within a table. The value includes the partition
number where the function executed so that a table partitioned across
multiple partitions also has unique values in some sequence. The sequence is
based on the time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP
in that a unique value is generated for each row of a multiple row insert
statement or an insert statement with a fullselect.

The timestamp value that is part of the result of this function can be
determined using the TIMESTAMP scalar function with the result of
GENERATE_UNIQUE as an argument.

Examples:
v Create a table that includes a column that is unique for each row. Populate

this column using the GENERATE_UNIQUE function. Notice that the
UNIQUE_ID column has ″FOR BIT DATA″ specified to identify the column
as a bit data character string.

CREATE TABLE EMP_UPDATE
(UNIQUE_ID CHAR(13) FOR BIT DATA,
EMPNO CHAR(6),
TEXT VARCHAR(1000))

GENERATE_UNIQUE

Chapter 3. Functions 367

INSERT INTO EMP_UPDATE
VALUES (GENERATE_UNIQUE(), ’000020’, ’Update entry...’),
(GENERATE_UNIQUE(), ’000050’, ’Update entry...’)

This table will have a unique identifier for each row provided that the
UNIQUE_ID column is always set using GENERATE_UNIQUE. This can be
done by introducing a trigger on the table.

CREATE TRIGGER EMP_UPDATE_UNIQUE
NO CASCADE BEFORE INSERT ON EMP_UPDATE
REFERENCING NEW AS NEW_UPD
FOR EACH ROW MODE DB2SQL
SNEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued
without the first column as follows.

INSERT INTO EMP_UPDATE (EMPNO, TEXT)
VALUES (’000020’, ’Update entry 1...’),
(’000050’, ’Update entry 2...’)

The timestamp (in UTC) for when a row was added to EMP_UPDATE can
be returned using:

SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT
FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to
record when a row is inserted.

GENERATE_UNIQUE

368 SQL Reference, Volume 1

GRAPHIC

�� GRAPHIC (graphic-expression
, integer

) ��

The schema is SYSIBM.

The GRAPHIC function returns a fixed-length graphic string representation of:
v A graphic string, if the first argument is any type of graphic string
v A datetime value (Unicode database only), if the first argument is a date,

time, or timestamp.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting GRAPHIC
data type. The value must be between 1 and 127. If integer is not specified,
the length of the result is the same as the length of the first argument.

The result of the function is a GRAPHIC. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Datetime to Graphic:

�� GRAPHIC (datetime-expression
, ISO

USA
EUR
JIS
LOCAL

) ��

Datetime to Graphic

datetime-expression
An expression that is one of the following three data types

date The result is the graphic string representation of the date
in the format specified by the second argument. The
length of the result is 10. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the graphic string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

GRAPHIC

Chapter 3. Functions 369

timestamp
The second argument is not applicable and must not be
specified (SQLSTATE 42815). The result is the graphic
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

GRAPHIC

370 SQL Reference, Volume 1

HASHEDVALUE

�� HASHEDVALUE (column-name) ��

The schema is SYSIBM.

The HASHEDVALUE function returns the partitioning map index of the row
obtained by applying the partitioning function on the partitioning key value
of the row. For example, if used in a SELECT clause, it returns the partitioning
map index for each row of the table that was used to form the result of the
SELECT statement.

The partitioning map index returned on transition variables and tables is
derived from the current transition values of the partitioning key columns.
For example, in a before insert trigger, the function will return the projected
partitioning map index given the current values of the new transition
variables. However, the values of the partitioning key columns may be
modified by a subsequent before insert trigger. Thus, the final partitioning
map index of the row when it is inserted into the database may differ from
the projected value.

The argument must be the qualified or unqualified name of a column in a
table. The column can have any data type. (This function cannot be used as a
source function when creating a user-defined function. Because it accepts any
data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.) If column-name references a column of a
view the expression in the view for the column must reference a column of
the underlying base table and the view must be deletable. A nested or
common table expression follows the same rules as a view.

The specific row (and table) for which the partitioning map index is returned
by the HASHEDVALUE function is determined from the context of the SQL
statement that uses the function.

The data type of the result is INTEGER in the range 0 to 4095. For a table
with no partitioning key, the result is always 0. A null value is never returned.
Since row-level information is returned, the results are the same, regardless of
which column is specified for the table.

The HASHEDVALUE function cannot be used on replicated tables, within
check constraints, or in the definition of generated columns (SQLSTATE
42881).

For compatibility with versions earlier than Version 8, the function name
PARTITION can be substituted for HASHEDVALUE.

HASHEDVALUE

Chapter 3. Functions 371

Example:
v List the employee numbers (EMPNO) from the EMPLOYEE table for all

rows with a partitioning map index of 100.
SELECT EMPNO FROM EMPLOYEE

WHERE HASHEDVALUE(PHONENO) = 100

v Log the employee number and the projected partitioning map index of the
new row into a table called EMPINSERTLOG2 for any insertion of
employees by creating a before trigger on the table EMPLOYEE.

CREATE TRIGGER EMPINSLOGTRIG2
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG2

VALUES(NEWTABLE.EMPNO, HASHEDVALUE(NEWTABLE.EMPNO))

Related reference:

v “CREATE VIEW statement” in the SQL Reference, Volume 2

HASHEDVALUE

372 SQL Reference, Volume 1

HEX

�� HEX (expression) ��

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a
character string.

The argument can be an expression that is a value of any built-in data type
with a maximum length of 16 336 bytes.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first
byte of the argument, the next two represent the second byte of the argument,
and so forth. If the argument is a datetime value or a numeric value the result
is the hexadecimal representation of the internal form of the argument. The
hexadecimal representation that is returned may be different depending on
the application server where the function is executed. Cases where differences
would be evident include:
v Character string arguments when the HEX function is performed on an

ASCII client with an EBCDIC server or on an EBCDIC client with an ASCII
server.

v Numeric arguments (in some cases) when the HEX function is performed
where client and server systems have different byte orderings for numeric
values.

The type and length of the result vary based on the type and length of
character string arguments.
v Character string

– Fixed length not greater than 127
- Result is a character string of fixed length twice the defined length of

the argument.
– Fixed length greater than 127

- Result is a character string of varying length twice the defined length
of the argument.

– Varying length
- Result is a character string of varying length with maximum length

twice the defined maximum length of the argument.

HEX

Chapter 3. Functions 373

v Graphic string
– Fixed length not greater than 63

- Result is a character string of fixed length four times the defined
length of the argument.

v Fixed length greater than 63
– Result is a character string of varying length four times the defined

length of the argument.
v Varying length

– Result is a character string of varying length with maximum length four
times the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following
examples.
v Using the DEPARTMENT table set the host variable HEX_MGRNO

(char(12)) to the hexadecimal representation of the manager number
(MGRNO) for the ‘PLANNING’ department (DEPTNAME).

SELECT HEX(MGRNO)
INTO :HEX_MGRNO
FROM DEPARTMENT
WHERE DEPTNAME = ’PLANNING’

HEX_MGRNO will be set to ’303030303230’ when using the sample table
(character value is ’000020’).

v Suppose COL_1 is a column with a data type of char(1) and a value of 'B'.
The hexadecimal representation of the letter 'B' is X'42'. HEX(COL_1)
returns a two-character string '42'.

v Suppose COL_3 is a column with a data type of decimal(6,2) and a value of
40.1. An eight-character string '0004010C' is the result of applying the HEX
function to the internal representation of the decimal value, 40.1.

HEX

374 SQL Reference, Volume 1

HOUR

�� HOUR (expression) ��

The schema is SYSIBM.

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the hour part of the value, which is an integer between 0

and 24.
v If the argument is a time duration or timestamp duration:

– The result is the hour part of the value, which is an integer between −99
and 99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the
afternoon.

SELECT * FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

HOUR

Chapter 3. Functions 375

IDENTITY_VAL_LOCAL

�� IDENTITY_VAL_LOCAL () ��

The schema is SYSIBM.

The IDENTITY_VAL_LOCAL function is a non-deterministic function that
returns the most recently assigned value for an identity column, where the
assignment occurred as a result of a single row INSERT statement using a
VALUES clause. The function has no input parameters.

The result is a DECIMAL(31,0), regardless of the actual data type of the
corresponding identity column.

The value returned by the function is the value assigned to the identity
column of the table identified in the most recent single row INSERT
statement. The INSERT statement must contain a VALUES clause on a table
containing an identity column. The INSERT statement must also be issued at
the same level; that is, the value must available locally at the level it was
assigned, until it is replaced by the next assigned value. (A new level is
initiated each time a trigger or routine is invoked.)

The assigned value is either a value supplied by the user (if the identity
column is defined as GENERATED BY DEFAULT), or an identity value
generated by DB2.

The function returns a null value in the following situations:
v When a single row INSERT statement with a VALUES clause has not been

issued at the current processing level for a table containing an identity
column.

v When a COMMIT or ROLLBACK of a unit of work has occurred since the
most recent INSERT statement that assigned a value. (Unless automatic
commit is turned off, interfaces that automatically commit after each
statement will return a null value when the function is invoked in separate
statements.)

The result of the function is not affected by the following:
v A single row INSERT statement with a VALUES clause for a table without

an identity column.
v A multiple row INSERT statement with a VALUES clause.
v An INSERT statement with a fullselect.
v A ROLLBACK TO SAVEPOINT statement.

Notes:

IDENTITY_VAL_LOCAL

376 SQL Reference, Volume 1

v Expressions in the VALUES clause of an INSERT statement are evaluated
prior to the assignments for the target columns of the INSERT statement.
Thus, an invocation of an IDENTITY_VAL_LOCAL function inside the
VALUES clause of an INSERT statement will use the most recently assigned
value for an identity column from a previous INSERT statement. The
function returns the null value if no previous single row INSERT statement
with a VALUES clause for a table containing an identity column has been
executed within the same level as the IDENTITY_VAL_LOCAL function.

v The identity column value of the table for which the trigger is defined can
be determined within a trigger, by referencing the trigger transition variable
for the identity column.

v The result of invoking the IDENTITY_VAL_LOCAL function from within
the trigger condition of an insert trigger is a null value.

v It is possible that multiple before or after insert triggers exist for a table. In
this case, each trigger is processed separately, and identity values assigned
by one triggered action are not available to other triggered actions using the
IDENTITY_VAL_LOCAL function. This is true even though the multiple
triggered actions are conceptually defined at the same level.

v It is not generally recommended to use the IDENTITY_VAL_LOCAL
function in the body of a before insert trigger. The result of invoking the
IDENTITY_VAL_LOCAL function from within the triggered action of a
before insert trigger is the null value. The value for the identity column of
the table for which the trigger is defined cannot be obtained by invoking
the IDENTITY_VAL_LOCAL function within the triggered action of a
before insert trigger. However, the value for the identity column can be
obtained in the triggered action, by referencing the trigger transition
variable for the identity column.

v The result of invoking the IDENTITY_VAL_LOCAL function from within
the triggered action of an after insert trigger is the value assigned to an
identity column of the table identified in the most recent single row
INSERT statement invoked in the same triggered action that had a VALUES
clause for a table containing an identity column. (This applies to both FOR
EACH ROW and FOR EACH STATEMENT after insert triggers.) If a single
row INSERT statement with a VALUES clause for a table containing an
identity column was not executed within the same triggered action, prior to
the invocation of the IDENTITY_VAL_LOCAL function, then the function
returns a null value.

v Since the results of the IDENTITY_VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function within the SELECT statement of a cursor can vary for each FETCH
statement.

v The assigned value is the value actually assigned to the identity column
(that is, the value that would be returned on a subsequent SELECT
statement). This value is not necessarily the value provided in the VALUES

IDENTITY_VAL_LOCAL

Chapter 3. Functions 377

clause of the INSERT statement, or a value generated by DB2. The assigned
value could be a value specified in a SET transition variable statement,
within the body of a before insert trigger, for a trigger transition variable
associated with the identity column.

v The value returned by the function is unpredictable following a failed
single row INSERT with a VALUES clause into a table with an identity
column. The value may be the value that would have been returned from
the function had it been invoked prior to the failed INSERT, or it may be
the value that would have been assigned had the INSERT succeeded. The
actual value returned depends on the point of failure and is therefore
unpredictable.

Examples:

Example 1: Set the variable IVAR to the value assigned to the identity column
in the EMPLOYEE table. If this insert is the first into the EMPLOYEE table,
then IVAR would have a value of 1.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT)

Example 2: An IDENTITY_VAL_LOCAL function invoked in an INSERT
statement returns the value associated with the previous single row INSERT
statement, with a VALUES clause for a table with an identity column. Assume
for this example that there are two tables, T1 and T2. Both T1 and T2 have an
identity column named C1. DB2 generates values in sequence, starting with 1,
for the C1 column in table T1, and values in sequence, starting with 10, for
the C1 column in table T2.

CREATE TABLE T1
(C1 INTEGER GENERATED ALWAYS AS IDENTITY,
C2 INTEGER)

CREATE TABLE T2
(C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY

(START WITH 10),
C2 INTEGER)

INSERT INTO T1 (C2) VALUES (5)

INSERT INTO T1 (C2) VALUES (6)

SELECT * FROM T1

which gives a result of:

IDENTITY_VAL_LOCAL

378 SQL Reference, Volume 1

C1 C2
----------- ----------

1 5
2 6

and now, declaring the function for the variable IVAR:
VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2
in IVAR, because that was the value most recently assigned by DB2. The
following INSERT statement inserts a single row into T2, where column C2
gets a value of 2 from the IDENTITY_VAL_LOCAL function.

INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL())

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(),15,0)

returning a result of:
C1 C2
----------------- ----------

10. 2

Invoking the IDENTITY_VAL_LOCAL function after this insert results in a
value of 10, which is the value generated by DB2 for column C1 of T2.

In a nested environment involving a trigger, use the IDENTITY_VAL_LOCAL
function to retrieve the identity value assigned at a particular level, even
though there might have been identity values assigned at lower levels.
Assume that there are three tables, EMPLOYEE, EMP_ACT, and ACCT_LOG.
There is an after insert trigger defined on EMPLOYEE that results in
additional inserts into the EMP_ACT and ACCT_LOG tables.

CREATE TABLE EMPLOYEE
(EMPNO SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1000),
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT);

CREATE TABLE EMP_ACT
(ACNT_NUM SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1),
EMPNO SMALLINT);

CREATE TABLE ACCT_LOG
(ID SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 100),
ACNT_NUM SMALLINT,
EMPNO SMALLINT);

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL

IDENTITY_VAL_LOCAL

Chapter 3. Functions 379

BEGIN ATOMIC
INSERT INTO EMP_ACT (EMPNO)
VALUES (NEW_EMP.EMPNO);
INSERT INTO ACCT_LOG (ACNT_NUM EMPNO)
VALUES (IDENTITY_VAL_LOCAL(), NEW_EMP.EMPNO);

END

The first triggered INSERT statement inserts a row into the EMP_ACT table.
This INSERT statement uses a trigger transition variable for the EMPNO
column of the EMPLOYEE table, to indicate that the identity value for the
EMPNO column of the EMPLOYEE table is to be copied to the EMPNO
column of the EMP_ACT table. The IDENTITY_VAL_LOCAL function could
not be used to obtain the value assigned to the EMPNO column of the
EMPLOYEE table. This is because an INSERT statement has not been issued
at this level of the nesting, and as such, if the IDENTITY_VAL_LOCAL
function were invoked in the VALUES clause of the INSERT for EMP_ACT,
then it would return a null value. This INSERT statement for the EMP_ACT
table also results in the generation of a new identity column value for the
ACNT_NUM column.

A second triggered INSERT statement inserts a row into the ACCT_LOG table.
This statement invokes the IDENTITY_VAL_LOCAL function to indicate that
the identity value assigned to the ACNT_NUM column of the EMP_ACT table
in the previous INSERT statement in the triggered action is to be copied to the
ACNT_NUM column of the ACCT_LOG table. The EMPNO column is
assigned the same value as the EMPNO column of EMPLOYEE table.

From the invoking application (that is, the level at which the INSERT to
EMPLOYEE is issued), set the variable IVAR to the value assigned to the
EMPNO column of the EMPLOYEE table by the original INSERT statement.

INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO)
VALUES (’Rupert’, 989.99, 50);

The contents of the three tables after processing the original INSERT statement
and all of the triggered actions are:

SELECT EMPNO, SUBSTR(NAME,10) AS NAME, SALARY, DEPTNO
FROM EMPLOYEE;

EMPNO NAME SALARY DEPTNO
----------- ----------- ---------------------------------- -----------

1000 Rupert 989.99 50

SELECT ACNT_NUM, EMPNO
FROM EMP_ACT;

ACNT_NUM EMPNO
----------- -----------

1 1000

IDENTITY_VAL_LOCAL

380 SQL Reference, Volume 1

SELECT * FROM ACCT_LOG;

ID ACNT_NUM EMPNO
----------- ----------- -----------

100 1 1000

The result of the IDENTITY_VAL_LOCAL function is the most recently
assigned value for an identity column at the same nesting level. After
processing the original INSERT statement and all of the triggered actions, the
IDENTITY_VAL_LOCAL function returns a value of 1000, because this is the
value assigned to the EMPNO column of the EMPLOYEE table. The following
VALUES statement results in setting IVAR to 1000. The insert into the
EMP_ACT table (which occurred after the insert into the EMPLOYEE table
and at a lower nesting level) has no affect on what is returned by this
invocation of the IDENTITY_VAL_LOCAL function.

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

Related samples:

v “fnuse.out -- HOW TO USE BUILT-IN SQL FUNCTIONS (C)”
v “fnuse.sqc -- How to use built-in SQL functions (C)”
v “fnuse.out -- HOW TO USE FUNCTIONS (C++)”
v “fnuse.sqC -- How to use built-in SQL functions (C++)”

IDENTITY_VAL_LOCAL

Chapter 3. Functions 381

INSERT

�� INSERT (expression1 , expression2 , expression3 , expression4) ��

The schema is SYSFUN.

Returns a string where expression3 bytes have been deleted from expression1
beginning at expression2 and where expression4 has been inserted into
expression1 beginning at expression2. If the length of the result string exceeds
the maximum for the return type, an error occurs (SQLSTATE 38552).

The first argument is a character string or a binary string type. The second
and third arguments must be a numeric value with a data type of SMALLINT
or INTEGER. If the first argument is a character string, then the fourth
argument must also be a character string. If the first argument is a binary
string, then the fourth argument must be a binary string. For a VARCHAR the
maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. For the first and fourth arguments, CHAR
is converted to VARCHAR and LONG VARCHAR to CLOB(1M), for second
and third arguments SMALLINT is converted to INTEGER for processing by
the function.

The result is based on the argument types as follows:
v VARCHAR(4000) if both the first and fourth arguments are VARCHAR (not

exceeding 4 000 bytes) or CHAR
v CLOB(1M) if either the first or fourth argument is CLOB or LONG

VARCHAR
v BLOB(1M) if both first and fourth arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v Delete one character from the word ’DINING’ and insert ’VID’, both

beginning at the third character.
VALUES CHAR(INSERT(’DINING’, 3, 1, ’VID’), 10)

This example returns the following:
1

DIVIDING

INSERT

382 SQL Reference, Volume 1

As mentioned, the output of the INSERT function is VARCHAR(4000). In
this example, the function CHAR has been used to limit the output of
INSERT to 10 bytes. The starting location of a particular string can be found
using the LOCATE function.

Related reference:

v “LOCATE” on page 393

INSERT

Chapter 3. Functions 383

INTEGER

�� INTEGER
INT

(numeric-expression
character-expression
date-expression
time-expression

) ��

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number,
character string, date, or time in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
large integer column or variable.

date-expression
An expression that returns a value of the DATE data type. The result is an
INTEGER value representing the date as yyyymmdd.

time-expression
An expression that returns a value of the TIME data type. The result is an
INTEGER value representing the time as hhmmss.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:
v Using the EMPLOYEE table, select a list containing salary (SALARY)

divided by education level (EDLEVEL). Truncate any decimal in the

INTEGER

384 SQL Reference, Volume 1

calculation. The list should also contain the values used in the calculation
and employee number (EMPNO). The list should be in descending order of
the calculated value.

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

v Using the EMPLOYEE table, select the EMPNO column in integer form for
further processing in the application.

SELECT INTEGER(EMPNO) FROM EMPLOYEE

v Assume that the column BIRTHDATE (date) has an internal value
equivalent to ’1964-07-20’.

INTEGER(BIRTHDATE)

results in the value 19 640 720.
v Assume that the column STARTTIME (time) has an internal value

equivalent to ’12:03:04’.
INTEGER(STARTTIME)

results in the value 120 304.

INTEGER

Chapter 3. Functions 385

JULIAN_DAY

�� JULIAN_DAY (expression) ��

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1,4712
B.C. (the start of Julian date calendar) to the date value specified in the
argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

JULIAN_DAY

386 SQL Reference, Volume 1

LCASE or LOWER

�� LCASE (string-expression)
LOWER

��

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The LCASE or LOWER function returns a string in which all the SBCS
characters have been converted to lowercase characters (that is, the characters
A-Z will be translated to the characters a-z, and characters with diacritical
marks will be translated to their lower case equivalents if they exist. For
example, in code page 850, É maps to é). Since not all characters are
translated, LCASE(UCASE(string-expression)) does not necessarily return the
same result as LCASE(string-expression).

The argument must be an expression whose value is a CHAR or VARCHAR
data type.

The result of the function has the same data type and length attribute of the
argument. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

Notes:

This function has been extended to recognize the lowercase and uppercase
properties of a Unicode character. In a Unicode database, all Unicode
characters correctly convert to lowercase.

Example:

Ensure that the characters in the value of column JOB in the EMPLOYEE table
are returned in lowercase characters.

SELECT LCASE(JOB)
FROM EMPLOYEE WHERE EMPNO = ’000020’;

The result is the value ’manager’.

Related reference:

v “LCASE (SYSFUN schema)” on page 388

LCASE or LOWER

Chapter 3. Functions 387

LCASE (SYSFUN schema)

�� LCASE (expression) ��

The schema is SYSFUN.

Returns a string in which all the characters A-Z have been converted to the
characters a-z (characters with diacritical marks are not converted). Note that
LCASE(UCASE(string)) will therefore not necessarily return the same result as
LCASE(string).

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR

The result can be null; if the argument is null, the result is the null value.

LCASE (SYSFUN schema)

388 SQL Reference, Volume 1

LEFT

�� LEFT (expression1 , expression2) ��

The schema is SYSFUN.

Returns a string consisting of the leftmost expression2 bytes in expression1. The
expression1 value is effectively padded on the right with the necessary number
of blank characters so that the specified substring of expression1 always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument must be of data
type INTEGER or SMALLINT.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR
v BLOB(1M) if the argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

LEFT

Chapter 3. Functions 389

LENGTH

�� LENGTH (expression) ��

The schema is SYSIBM.

The LENGTH function returns the length of a value.

The argument can be an expression that returns a value of any built-in data
type.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of
strings includes blanks but does not include the length control field of
varying-length strings. The length of a varying-length string is the actual
length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length
of all other values is the number of bytes used to represent the value:
v 2 for small integer
v 4 for large integer
v (p/2)+1 for decimal numbers with precision p

v The length of the string for binary strings
v The length of the string for character strings
v 4 for single-precision floating-point
v 8 for double-precision floating-point
v 4 for date
v 3 for time
v 10 for timestamp

Examples:
v Assume the host variable ADDRESS is a varying length character string

with a value of '895 Don Mills Road'.
LENGTH(:ADDRESS)

Returns the value 18.
v Assume that START_DATE is a column of type DATE.

LENGTH(START_DATE)

LENGTH

390 SQL Reference, Volume 1

Returns the value 4.
v This example returns the value 10.

LENGTH(CHAR(START_DATE, EUR))

LENGTH

Chapter 3. Functions 391

LN

�� LN (expression) ��

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LOG).

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LN

392 SQL Reference, Volume 1

LOCATE

�� LOCATE (expression1 , expression2)
, expression3

��

The schema is SYSFUN.

Returns the starting position of the first occurrence of expression1 within
expression2. If the optional expression3 is specified, it indicates the character
position in expression2 at which the search is to begin. If expression1 is not
found within expression2, the value 0 is returned.

If the first argument is a character string, then the second argument must be a
character string. For a VARCHAR the maximum length is 4 000 bytes and for
a CLOB the maximum length is 1 048 576 bytes. If the first argument is a
binary string, then the second argument must be a binary string with a
maximum length of 1 048 576 bytes. The third argument must be is INTEGER
or SMALLINT.

The result of the function is INTEGER. The result can be null; if any argument
is null, the result is the null value.

Example:
v Find the location of the letter ’N’ (first occurrence) in the word ’DINING’.

VALUES LOCATE (’N’, ’DINING’)

This example returns the following:
1

3

LOCATE

Chapter 3. Functions 393

LOG

�� LOG (expression) ��

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LN).

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LOG

394 SQL Reference, Volume 1

LOG10

�� LOG10 (expression) ��

The schema is SYSFUN.

Returns the base 10 logarithm of the argument.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LOG10

Chapter 3. Functions 395

LONG_VARCHAR

�� LONG_VARCHAR (character-string-expression) ��

The schema is SYSIBM.

The LONG_VARCHAR function returns a LONG VARCHAR representation of
a character string data type.

character-string-expression
An expression that returns a value that is a character string with a
maximum length of 32 700 bytes.

The result of the function is a LONG VARCHAR. If the argument can be null,
the result can be null; if the argument is null, the result is the null value.

LONG_VARCHAR

396 SQL Reference, Volume 1

LONG_VARGRAPHIC

�� LONG_VARGRAPHIC (graphic-expression) ��

The schema is SYSIBM.

The LONG_VARGRAPHIC function returns a LONG VARGRAPHIC
representation of a double-byte character string.

graphic-expression
An expression that returns a value that is a graphic string with a maximum
length of 16 350 double byte characters.

The result of the function is a LONG VARGRAPHIC. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

LONG_VARGRAPHIC

Chapter 3. Functions 397

LTRIM

�� LTRIM (string-expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The LTRIM function removes blanks from the beginning of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type.
v If the argument is a graphic string in a DBCS or EUC database, then the

leading double byte blanks are removed.
v If the argument is a graphic string in a Unicode database, then the leading

UCS-2 blanks are removed.
v Otherwise, the leading single byte blanks are removed.

The result data type of the function is:
v VARCHAR if the data type of string-expression is VARCHAR or CHAR
v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:

Assume that host variable HELLO is defined as CHAR(9) and has a value of ’
Hello’.

VALUES LTRIM(:HELLO)

The result is ’Hello’.

Related reference:

LTRIM

398 SQL Reference, Volume 1

v “LTRIM (SYSFUN schema)” on page 400

LTRIM

Chapter 3. Functions 399

LTRIM (SYSFUN schema)

�� LTRIM (expression) ��

The schema is SYSFUN.

Returns the characters of the argument with leading blanks removed.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

LTRIM (SYSFUN schema)

400 SQL Reference, Volume 1

MICROSECOND

�� MICROSECOND (expression) ��

The schema is SYSIBM.

The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration or a valid character
string representation of a timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp or a valid string representation of a

timestamp:
– The integer ranges from 0 through 999 999.

v If the argument is a duration:
– The result reflects the microsecond part of the value which is an integer

between −999 999 through 999 999. A nonzero result has the same sign as
the argument.

Example:
v Assume a table TABLEA contains two columns, TS1 and TS2, of type

TIMESTAMP. Select all rows in which the microseconds portion of TS1 is
not zero and the seconds portion of TS1 and TS2 are identical.

SELECT * FROM TABLEA
WHERE MICROSECOND(TS1) <> 0

AND
SECOND(TS1) = SECOND(TS2)

MICROSECOND

Chapter 3. Functions 401

MIDNIGHT_SECONDS

�� MIDNIGHT_SECONDS (expression) ��

The schema is SYSFUN.

Returns an integer value in the range 0 to 86 400 representing the number of
seconds between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string
representation of a time or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Examples:
v Find the number of seconds between midnight and 00:10:10, and midnight

and 13:10:10.
VALUES (MIDNIGHT_SECONDS(’00:10:10’), MIDNIGHT_SECONDS(’13:10:10’))

This example returns the following:
1 2
----------- -----------

610 47410

Since a minute is 60 seconds, there are 610 seconds between midnight and
the specified time. The same follows for the second example. There are 3600
seconds in an hour, and 60 seconds in a minute, resulting in 47410 seconds
between the specified time and midnight.

v Find the number of seconds between midnight and 24:00:00, and midnight
and 00:00:00.

VALUES (MIDNIGHT_SECONDS(’24:00:00’), MIDNIGHT_SECONDS(’00:00:00’))

This example returns the following:
1 2
----------- -----------

86400 0

Note that these two values represent the same point in time, but return
different MIDNIGHT_SECONDS values.

MIDNIGHT_SECONDS

402 SQL Reference, Volume 1

MINUTE

�� MINUTE (expression) ��

The schema is SYSIBM.

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the minute part of the value, which is an integer between 0

and 59.
v If the argument is a time duration or timestamp duration:

– The result is the minute part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Example:
v Using the CL_SCHED sample table, select all classes with a duration less

than 50 minutes.
SELECT * FROM CL_SCHED

WHERE HOUR(ENDING - STARTING) = 0
AND

MINUTE(ENDING - STARTING) < 50

MINUTE

Chapter 3. Functions 403

MOD

�� MOD (expression , expression) ��

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument.
The result is negative only if first argument is negative.

The result of the function is:
v SMALLINT if both arguments are SMALLINT
v INTEGER if one argument is INTEGER and the other is INTEGER or

SMALLINT
v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MOD

404 SQL Reference, Volume 1

MONTH

�� MONTH (expression) ��

The schema is SYSIBM.

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or a valid string representation of a

date or timestamp:
– The result is the month part of the value, which is an integer between 1

and 12.
v If the argument is a date duration or timestamp duration:

– The result is the month part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Example:
v Select all rows from the EMPLOYEE table for people who were born

(BIRTHDATE) in DECEMBER.
SELECT * FROM EMPLOYEE

WHERE MONTH(BIRTHDATE) = 12

MONTH

Chapter 3. Functions 405

MONTHNAME

�� MONTHNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of month (e.g.
January) for the month portion of the argument, based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

MONTHNAME

406 SQL Reference, Volume 1

MQPUBLISH

�� MQPUBLISH (
publisher-service ,

service-policy ,

msg-data �

�
, topic

(1)
, correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also
specified.

The schema is DB2MQ.

The MQPUBLISH function publishes data to MQSeries. This function requires
the installation of either MQSeries Publish/Subscribe or MQSeries Integrator.
For more details, visit http://www.ibm.com/software/MQSeries.

The MQPUBLISH function publishes the data contained in msg-data to the
MQSeries publisher specified in publisher-service, and using the quality of
service policy defined by service-policy. An optional topic for the message can
be specified, and an optional user-defined message correlation identifier may
also be specified. The function returns a value of ’1’ if successful or a ’0’ if
unsuccessful.

publisher-service
A string containing the logical MQSeries destination where the message is
to be sent. If specified, the publisher-service must refer to a publisher
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
publisher-service is not specified, the DB2.DEFAULT.PUBLISHER will be
used. The maximum size of publisher-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in
handling of this message. If specified, the service-policy must refer to a
Policy defined in the AMT.XML repository file. A Service Policy defines a
set of quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for

MQPUBLISH

Chapter 3. Functions 407

further details. If service-policy is not specified, the default
DB2.DEFAULT.POLICY will be used. The maximum size of service-policy is
48 bytes.

msg-data
A string expression containing the data to be sent via MQSeries. The
maximum size if the string of type VARCHAR is 4000 bytes. If the string
is a CLOB, it can be up to 1MB in size.

topic
A string expression containing the topic for the message publication. If no
topic is specified, none will be associated with the message. The
maximum size of topic is 40 bytes. Multiple topics can be specified in one
string (up to 40 characters long). Each topic must be separated by a colon.
For example, ″t1:t2:the third topic″ indicates that the message is associated
with all three topics: t1, t2, and ″the third topic″.

correl-id
An optional string expression containing a correlation identifier to be
associated with this message. The correl-id is often specified in request and
reply scenarios to associate requests with replies. If not specified, no
correlation ID will be added to the message. The maximum size of
correl-id is 24 bytes.

Examples

Example 1: This example publishes the string ″Testing 123″ to the default
publisher service (DB2.DEFAULT.PUBLISHER) using the default policy
(DB2.DEFAULT.POLICY). No correlation identifier or topic is specified for the
message.

VALUES MQPUBLISH(’Testing 123’)

Example 2: This example publishes the string ″Testing 345″ to the publisher
service ″MYPUBLISHER″ under the topic ″TESTS″. The default policy is used
and no correlation identifier is specified.

VALUES MQPUBLISH(’MYPUBLISHER’,’Testing 345’, ’TESTS’)

Example 3: This example publishes the string ″Testing 678″ to the publisher
service ″MYPUBLISHER″ using the policy ″MYPOLICY″ with a correlation
identifier of ″TEST1″. The message is published with topic ″TESTS″.

VALUES MQPUBLISH(’MYPUBLISHER’,’MYPOLICY’,’Testing 678’,’TESTS’,’TEST1’)

Example 4: This example publishes the string ″Testing 901″ to the publisher
service ″MYPUBLISHER″ under the topic ″TESTS″ using the default policy
(DB2.DEFAULT.POLICY) and no correlation identifier.

VALUES MQPUBLISH(’Testing 901’,’TESTS’)

MQPUBLISH

408 SQL Reference, Volume 1

All examples return the value ’1’ if successful.

MQPUBLISH

Chapter 3. Functions 409

MQREAD

�� MQREAD (
receive-service

, service-policy

) ��

The schema is MQDB2.

The MQREAD function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy defined in
service-policy. Executing this operation does not remove the message from the
queue associated with receive-service, but instead returns the message at the
head of the queue. The result of the function is VARCHAR(4000). If no
messages are available to be returned, the result is the null value.

receive-service
A string containing the logical MQSeries destination from where the
message is to be received. If specified, the receive-service must refer to a
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from where a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling
this message. If specified, the service-policy must refer to a Policy defined
in the AMT.XML repository file. A Service Policy defines a set of quality
of service options that should be applied to this messaging operation.
These options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

Examples:

Example 1: This example reads the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREAD()

Example 2: This example reads the message at the head of the queue specified
by the service ″MYSERVICE″ using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREAD(’MYSERVICE’)

MQREAD

410 SQL Reference, Volume 1

Example 3: This example reads the message at the head of the queue specified
by the service ″MYSERVICE″, and using the policy ″MYPOLICY″.

VALUES MQREAD(’MYSERVICE’,’MYPOLICY’)

All of these examples return the contents of the message as a
VARCHAR(4000) if successful. If no messages are available, the result is the
null value.

MQREAD

Chapter 3. Functions 411

MQREADCLOB

�� MQREADCLOB (
receive-service

, service-policy

) ��

The schema is DB2MQ.

The MQREADCLOB function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy defined in
service-policy. Executing this operation does not remove the message from the
queue associated with receive-service, but instead returns the message at the
head of the queue. The return value is a CLOB of 1MB maximum length,
containing the message. If no messages are available to be returned, a NULL
is returned.

receive-service
A string containing the logical MQSeries destination from where the
message is to be received. If specified, the receive-service must refer to a
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from where a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling
this message. If specified, the service-policy must refer to a Policy defined
in the AMT.XML repository file. A Service Policy defines a set of quality
of service options that should be applied to this messaging operation.
These options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

Examples:

Example 1: This example reads the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREADCLOB()

Example 2: This example reads the message at the head of the queue specified
by the service ″MYSERVICE″ using the default policy
(DB2.DEFAULT.POLICY).

MQREADCLOB

412 SQL Reference, Volume 1

VALUES MQREADCLOB(’MYSERVICE’)

Example 3: This example reads the message at the head of the queue specified
by the service ″MYSERVICE″, and using the policy ″MYPOLICY″.

VALUES MQREADCLOB(’MYSERVICE’,’MYPOLICY’)

All of these examples return the contents of the message as a CLOB with a
maximum size of 1MB, if successful. If no messages are available, then a
NULL is returned.

MQREADCLOB

Chapter 3. Functions 413

MQRECEIVE

�� MQRECEIVE ()
receive-service

, service-policy
, correl-id

��

The schema is MQDB2.

The MQRECEIVE function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy service-policy.
Performing this operation removes the message from the queue associated
with receive-service. If the correl-id is specified, then the first message with a
matching correlation identifier will be returned. If correl-id is not specified,
then the message at the head of the queue will be returned. The result of the
function is VARCHAR(4000). If no messages are available to be returned, the
result is the null value.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a Service
Point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, the DB2.DEFAULT.SERVICE is used. The
maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in the
handling of this message. If specified, service-policy must refer to a policy
defined in the AMT XML repository file. (A service policy defines a set of
quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details.) If service-policy is not specified, the default
DB2.DEFAULT.POLICY is used. The maximum size of service-policy is 48
bytes.

correl-id
A string containing an optional correlation identifier to be associated with
this message. The correl-id is often specified in request and reply scenarios
to associate requests with replies. If not specified, no correlation id will be
specified. The maximum size of correl-id is 24 bytes.

Examples:

MQRECEIVE

414 SQL Reference, Volume 1

Example 1: This example receives the message at the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default
policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVE()

Example 2: This example receives the message at the head of the queue
specified by the service ″MYSERVICE″ using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVE(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue
specified by the service ″MYSERVICE″ using the policy ″MYPOLICY″.

VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation id that
matches ’1234’ from the head of the queue specified by the service
″MYSERVICE″ using the policy ″MYPOLICY″.

VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’,’1234’)

All these examples return the contents of the message as a VARCHAR(4000) if
successful. If no messages are available, a NULL will be returned.

MQRECEIVE

Chapter 3. Functions 415

MQRECEIVECLOB

�� MQRECEIVECLOB �

� ()
receive-service

, service-policy
, correl-id

��

The schema is DB2MQ.

The MQRECEIVECLOB function returns a message from the MQSeries
location specified by receive-service, using the quality of service policy
service-policy. Performing this operation removes the message from the queue
associated with receive-service. If the correl-id is specified, then the first message
with a matching correlation identifier will be returned. If correl-id is not
specified, then the message at the head of the queue will be returned. The
return value is a CLOB with a maximum length of 1MB containing the
message. If no messages are available to be returned, a NULL is returned.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a Service
Point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, the DB2.DEFAULT.SERVICE is used. The
maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in the
handling of this message. If specified, the service-policy must refer to a
policy defined in the AMT.XML repository file. (A service policy defines a
set of quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details.) If service-policy is not specified, the default
DB2.DEFAULT.POLICY is used. The maximum size of service-policy is 48
bytes.

correl-id
A string containing an optional correlation identifier to be associated with
this message. The correl-id is often specified in request and reply scenarios
to associate requests with replies. If not specified, no correlation id will be
used. The maximum size of correl-id is 24 bytes.

MQRECEIVECLOB

416 SQL Reference, Volume 1

Examples:

Example 1: This example receives the message at the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default
policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB()

Example 2: This example receives the message at the head of the queue
specified by the service ″MYSERVICE″ using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue
specified by the service ″MYSERVICE″ using the policy ″MYPOLICY″.

VALUES MQRECEIVECLOB(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation ID that
matches ’1234’ from the head of the queue specified by the service
″MYSERVICE″ using the policy ″MYPOLICY″.

VALUES MQRECEIVECLOB(’MYSERVICE’,MYPOLICY’,’1234’)

All these examples return the contents of the message as a CLOB with a
maximum size of 1MB, if successful. If no messages are available, a NULL
will be returned.

MQRECEIVECLOB

Chapter 3. Functions 417

MQSEND

�� MQSEND (
send-service ,

service-policy ,

msg-data �

�
(1)

, correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also
specified.

The schema is DB2MQ.

The MQSEND function sends the data contained in msg-data to the MQSeries
location specified by send-service, using the quality of service policy defined by
service-policy. An optional user defined message correlation identifier may be
specified by correl-id. The function returns a value of ’1’ if successful or a ’0’ if
unsuccessful.

msg-data
A string expression containing the data to be sent via MQSeries. The
maximum size is 4000 bytes if the data is of type VARCHAR, and 1MB if
the data is of type CLOB.

send-service
A string containing the logical MQSeries destination where the message is
to be sent. If specified, the send-service refers to a service point defined in
the AMT.XML repository file. A service point is a logical end-point from
which a message may be sent or received. Service point definitions
include the name of the MQSeries Queue Manager and Queue. See the
MQSeries Application Messaging Interface manual for further details. If
send-service is not specified, the value of DB2.DEFAULT.SERVICE is used.
The maximum size of send-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling of
this message. If specified, the service-policy must refer to a service policy
defined in the AMT XML repository file. A Service Policy defines a set of
quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details. If service-policy is not specified, a default value of
DB2.DEFAULT.POLICY will be used. The maximum size of service-policy is
48 bytes.

MQSEND

418 SQL Reference, Volume 1

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation ID will be
sent. The maximum size of correl-id is 24 bytes.

Examples:

Example 1: This example sends the string ″Testing 123″ to the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY),
with no correlation identifier.

VALUES MQSEND(’Testing 123’)

Example 2: This example sends the string ″Testing 345″ to the service
″MYSERVICE″, using the policy ″MYPOLICY″, with no correlation identifier.

VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 345’)

Example 3: This example sends the string ″Testing 678″ to the service
″MYSERVICE″, using the policy ″MYPOLICY″, with correlation identifier
″TEST3″.

VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 678’,’TEST3’)

Example 4: This example sends the string ″Testing 901″ to the service
″MYSERVICE″, using the default policy (DB2.DEFAULT.POLICY), and no
correlation identifier.

VALUES MQSEND(’MYSERVICE’,’Testing 901’)

All examples return a scalar value of ’1’ if successful.

MQSEND

Chapter 3. Functions 419

MQSUBSCRIBE

�� MQSUBSCRIBE (
subscriber-service ,

service-policy ,

topic) ��

The schema is MQDB2.

The MQSUBSCRIBE function is used to register interest in MQSeries messages
published on a specified topic. The subscriber-service specifies a logical
destination for messages that match the specified topic. Messages that match
topic will be placed on the queue defined by subscriber-service and can be read
or received through a subsequent call to MQREAD, MQRECEIVE,
MQREADALL, or MQRECEIVEALL. This function requires the installation
and configuration of an MQSeries based publish and subscribe system, such
as MQSeries Integrator or MQSeries Publish/Subscribe. For more details, visit
http://www.ibm.com/software/MQSeries.

The function returns a value of ’1’ if successful or a ’0’ if unsuccessful.
Successfully executing this function will cause the publish and subscribe
server to forward messages matching the topic to the service point defined by
subscriber-service.

subscriber-service
A string containing the logical MQSeries subscription point to where
messages matching topic will be sent. If specified, the subscriber-service
must refer to a Subscribers Service Point defined in the AMT.XML
repository file. Service points definitions include the name of the
MQSeries Queue Manager and Queue. See the MQSeries Application
Messaging Interface manual for further details. If subscriber-service is not
specified, then the DB2.DEFAULT.SUBSCRIBER will be used instead. The
maximum size of subscriber-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in
handling the message. If specified, the service-policy must refer to a Policy
defined in the AMT.XML repository file. A Service Policy defines a set of
quality of service options to be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used instead. The maximum size of service-policy is 48 bytes.

topic
A string defining the types of messages to receive. Only messages
published with the specified topics will be received by this subscription.
Multiple subscriptions may coexist. The maximum size of topic is 40

MQSUBSCRIBE

420 SQL Reference, Volume 1

bytes. Multiple topics can be specified in one string (up to 40 bytes long).
Each topic must be separated by a colon. For example, ″t1:t2:the third
topic″ indicates that the message is associated with all three topics: t1, t2,
and ″the third topic″.

Examples:

Example 1: This example registers an interest in messages containing the topic
″Weather″. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the subscriber and the default service-policy
(DB2.DEFAULT.POLICY) specifies the quality of service.

VALUES MQSUBSCRIBE(’Weather’)

Example 2: This example demonstrates a subscriber registering interest in
messages containing ″Stocks″. The subscriber registers as
″PORTFOLIO-UPDATES″ with policy ″BASIC-POLICY″.

VALUES MQSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

All examples return a scalar value of ’1’ if successful.

MQSUBSCRIBE

Chapter 3. Functions 421

MQUNSUBSCRIBE

�� MQUNSUBSCRIBE (
subscriber-service ,

service-policy ,

topic) ��

The schema is MQDB2.

The MQUNSUBSCRIBE function is used to unregister an existing message
subscription. The subscriber-service, service-policy, and topic are used to identify
which subscription is canceled. This function requires the installation and
configuration of an MQSeries based publish and subscribe system, such as
MQSeries Integrator or MQSeries Publish/Subscribe. For more details, visit
http://www.ibm.com/software/MQSeries.

The function returns a value of ’1’ if successful or a ’0’ if unsuccessful. The
result of successfully executing this function is that the publish and subscribe
server will remove the subscription defined by the given parameters.
Messages with the specified topic will no longer be sent to the logical
destination defined by subscriber-service.

subscriber-service
If specified, the subscriber-service must refer to a Subscriber Service Point
defined in the AMT.XML repository file. Service point definitions include
the name of the MQSeries Queue Manager and Queue. See the MQSeries
Application Messaging Interface manual for further details. If
subscriber-service is not specified, then the DB2.DEFAULT.SUBSCRIBER
value is used. The maximum size of subscriber-service is 48 bytes.

service-policy
If specified, the service-policy must refer to a Policy defined in the
AMT.XML repository file. A Service Policy defines a set of quality of
service options to be applied to this messaging operation. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

topic
A string specifying the subject of messages that are not to be received. The
maximum size of topic is 40 bytes. Multiple topics can be specified in one
string (up to 40 bytes long). Each topic must be separated by a colon. For
example, ″t1:t2:the third topic″ indicates that the message is associated
with all three topics: t1, t2, and ″the third topic″.

Examples:

MQUNSUBSCRIBE

422 SQL Reference, Volume 1

Example 1: This example cancels an interest in messages containing the topic
″Weather″. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the unsubscriber and the default service-policy
(DB2.DEFAULT.POLICY) specifies the quality of service.

VALUES MQUNSUBSCRIBE(’Weather’)

Example 2: This example demonstrates a subscriber canceling an interest in
messages containing ″Stocks″. The subscriber is registered as
″PORTFOLIO-UPDATES″ with policy ″BASIC-POLICY″.

VALUES MQUNSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

These examples return a scalar value of ’1’ if successful and a scalar value of
’0’ if unsuccessful.

MQUNSUBSCRIBE

Chapter 3. Functions 423

MULTIPLY_ALT

�� MULTIPLY_ALT (exact_numeric_expression , exact_numeric_expression) ��

The schema is SYSIBM.

The MULTIPLY_ALT scalar function returns the product of the two arguments
as a decimal value. It is provided as an alternative to the multiplication
operator, especially when the sum of the precisions of the arguments exceeds
31.

The arguments can be any built-in exact numeric data type (DECIMAL,
BIGINT, INTEGER, or SMALLINT).

The result of the function is a DECIMAL. The precision and scale of the result
are determined as follows, using the symbols p and s to denote the precision
and scale of the first argument, and the symbols p' and s' to denote the
precision and scale of the second argument.

The precision is MIN(31, p + p')
The scale is:
– 0 if the scale of both arguments is 0
– MIN(31, s + s') if p + p' is less than or equal to 31
– MAX(MIN(3, s + s'), 31 - (p - s + p' - s')) if p + p' is greater than 31.

The result can be null if at least one argument can be null, or if the database
is configured with DFT_SQLMATHWARN set to YES; the result is the null
value if one of the arguments is null.

The MULTIPLY_ALT function is a preferable choice to the multiplication
operator when performing decimal arithmetic where a scale of at least 3 is
required and the sum of the precisions exceeds 31. In these cases, the internal
computation is performed so that overflows are avoided. The final result is
then assigned to the result data type, using truncation where necessary to
match the scale. Note that overflow of the final result is still possible when
the scale is 3.

The following is a sample comparing the result types using MULTIPLY_ALT
and the multiplication operator.

Type of argument 1 Type of argument 2 Result using
MULTIPLY_ALT

Result using
multiplication
operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

MULTIPLY_ALT

424 SQL Reference, Volume 1

Type of argument 1 Type of argument 2 Result using
MULTIPLY_ALT

Result using
multiplication
operator

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

Example:

Multiply two values where the data type of the first argument is
DECIMAL(26,3) and the data type of the second argument is DECIMAL(9,8).
The data type of the result is DECIMAL(31,7).
values multiply_alt(98765432109876543210987.654,5.43210987)
1

536504678578875294857887.5277415

Note that the complete product of these two numbers is
536504678578875294857887.52774154498, but the last 4 digits are truncated to
match the scale of the result data type. Using the multiplication operator with
the same values will cause an arithmetic overflow, since the result data type is
DECIMAL(31,11) and the result value has 24 digits left of the decimal, but the
result data type only supports 20 digits.

MULTIPLY_ALT

Chapter 3. Functions 425

NULLIF

�� NULLIF (expression , expression) ��

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal,
otherwise it returns the value of the first argument.

The arguments must be comparable. They can be of either a built-in (other
than a long string or DATALINK) or distinct data type (other than based on a
long string or DATALINK). (This function cannot be used as a source function
when creating a user-defined function. Because this function accepts any
compatible data types as arguments, it is not necessary to create additional
signatures to support user-defined distinct types.) The attributes of the result
are the attributes of the first argument.

The result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments
is NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

Example:
v Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data

types with the values 4500.00, 500.00, and 5000.00 respectively:
NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

Related reference:

v “Assignments and comparisons” on page 117

NULLIF

426 SQL Reference, Volume 1

POSSTR

�� POSSTR (source-string , search-string) ��

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of
one string (called the search-string) within another string (called the
source-string). Numbers for the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be
null, the result can be null; if either of the arguments is null, the result is the
null value.

source-string
An expression that specifies the source string in which the search is to
take place.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable (including a locator variable or a file reference variable)
v a scalar function
v a large object locator
v a column name
v an expression concatenating any of the above

search-string
An expression that specifies the string that is to be searched for.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable
v a scalar function whose operands are any of the above
v an expression concatenating any of the above

with the restrictions that:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

v The actual length of search-string cannot be more than 4 000 bytes.

POSSTR

Chapter 3. Functions 427

Both search-string and source-string have zero or more contiguous positions. If
the strings are character or binary strings, a position is a byte. If the strings
are graphic strings, a position is a graphic (DBCS) character.

The POSSTR function accepts mixed data strings. However, POSSTR operates
on a strict byte-count basis, oblivious to changes between single and
multi-byte characters.

The following rules apply:
v The data types of source-string and search-string must be compatible,

otherwise an error is raised (SQLSTATE 42884).
– If source-string is a character string, then search-string must be a character

string, but not a CLOB or LONG VARCHAR, with an actual length of
32 672 bytes or less.

– If source-string is a graphic string, then search-string must be a graphic
string, but not a DBCLOB or LONG VARGRAPHIC, with an actual
length of 16 336 double-byte characters or less.

– If source-string is a binary string, then search-string must be a binary
string with an actual length of 32 672 bytes or less.

v If search-string has a length of zero, the result returned by the function is 1.
v Otherwise:

– If source-string has a length of zero, the result returned by the function is
zero.

– Otherwise:
- If the value of search-string is equal to an identical length substring of

contiguous positions from the value of source-string, then the result
returned by the function is the starting position of the first such
substring within the source-string value.

- Otherwise, the result returned by the function is 0.

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of

the words ’GOOD BEER’ within the NOTE_TEXT column for all entries in
the IN_TRAY table that contain these words.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, ’GOOD BEER’)
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, ’GOOD BEER’) <> 0

POSSTR

428 SQL Reference, Volume 1

POWER

�� POWER (expression1 , expression2) ��

The schema is SYSFUN.

Returns the value of expression1 to the power of expression2.

The arguments can be of any built-in numeric data type. DECIMAL and
REAL arguments are converted to a double-precision floating-point number.

The result of the function is:
v INTEGER if both arguments are INTEGER or SMALLINT
v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT
v DOUBLE otherwise.

The result can be null; if any argument is null, the result is the null value.

POWER

Chapter 3. Functions 429

QUARTER

�� QUARTER (expression) ��

The schema is SYSFUN.

Returns an integer value in the range 1 to 4 representing the quarter of the
year for the date specified in the argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

QUARTER

430 SQL Reference, Volume 1

RADIANS

�� RADIANS (expression) ��

The schema is SYSFUN.

Returns the number of radians converted from argument which is expressed
in degrees.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

RADIANS

Chapter 3. Functions 431

RAISE_ERROR

�� RAISE_ERROR (sqlstate , diagnostic-string) ��

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to
return an error with the specified SQLSTATE, SQLCODE -438 and
diagnostic-string. The RAISE_ERROR function always returns NULL with an
undefined data type.

sqlstate
A character string containing exactly 5 characters. It must be of type
CHAR defined with a length of 5 or type VARCHAR defined with a
length of 5 or greater. The sqlstate value must follow the rules for
application-defined SQLSTATEs as follows:
v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’)
v The SQLSTATE class (first two characters) cannot be ’00’, ’01’ or ’02’

since these are not error classes.
v If the SQLSTATE class (first two characters) starts with the character ’0’

through ’6’ or ’A’ through ’H’, then the subclass (last three characters)
must start with a letter in the range ’I’ through ’Z’

v If the SQLSTATE class (first two characters) starts with the character ’7’,
’8’, ’9’ or ’I’ though ’Z’, then the subclass (last three characters) can be
any of ’0’ through ’9’ or ’A’ through ’Z’.

If the SQLSTATE does not conform to these rules an error occurs
(SQLSTATE 428B3).

diagnostic-string
An expression of type CHAR or VARCHAR that returns a character string
of up to 70 bytes that describes the error condition. If the string is longer
than 70 bytes, it will be truncated.

To use this function in a context where the rules for result data types do not
apply (such as alone in a select list), a cast specification must be used to give
the null returned value a data type. A CASE expression is where the
RAISE_ERROR function will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and
Diploma. If an education level is greater than 20, raise an error.

RAISE_ERROR

432 SQL Reference, Volume 1

SELECT EMPNO,
CASE WHEN EDUCLVL < 16 THEN ’Diploma’

WHEN EDUCLVL < 18 THEN ’Graduate’
WHEN EDUCLVL < 21 THEN ’Post Graduate’
ELSE RAISE_ERROR(’70001’,

’EDUCLVL has a value greater than 20’)
END

FROM EMPLOYEE

RAISE_ERROR

Chapter 3. Functions 433

RAND

�� RAND ()
expression

��

The schema is SYSFUN.

Returns a random floating point value between 0 and 1 using the argument as
the optional seed value. The function is defined as not-deterministic.

An argument is not required, but if it is specified it can be either INTEGER or
SMALLINT.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

RAND

434 SQL Reference, Volume 1

REAL

�� REAL (numeric-expression) ��

The schema is SYSIBM.

The REAL function returns a single-precision floating-point representation of a
number.

The argument is an expression that returns a value of any built-in numeric
data type.

The result of the function is a single-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the argument were
assigned to a single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. The result is desired in
single-precision floating point. Therefore, REAL is applied to SALARY so that
the division is carried out in floating point (actually double-precision) and
then REAL is applied to the complete expression to return the result in
single-precision floating point.

SELECT EMPNO, REAL(REAL(SALARY)/COMM)
FROM EMPLOYEE
WHERE COMM > 0

REAL

Chapter 3. Functions 435

REC2XML

�� REC2XML (decimal-constant , format-string , row-tag-string �

� � , column-name) ��

The schema is SYSIBM.

The REC2XML function returns a string formatted with XML tags and
containing column names and column data.

decimal-constant
The expansion factor for replacing column data characters. The decimal
value must be greater than 0.0 and less than or equal to 6.0. (SQLSTATE
42820).

The decimal-constant value is used to calculate the result length of the
function. For every column with a character data type, the length attribute
of the column is multiplied by this expansion factor before it is added in
to the result length.

To specify no expansion, use a value of 1.0. Specifying a value less than
1.0 reduces the calculated result length. If the actual length of the result
string is greater than the calculated result length of the function, then an
error is raised (SQLSTATE 22001).

format-string
The string constant that specifies which format the function is to use
during execution.

The format-string is case-sensitive, so the following values must be
specified in uppercase to be recognized.

COLATTVAL or COLATTVAL_XML
These formats return a string with columns as attribute values.

�� < row-tag-string > �

� � < column-name = "column-name" > column-value </ column >
null="true" />

�

REC2XML

436 SQL Reference, Volume 1

� </ row-tag-string > ��

Column names may or may not be valid XML attribute values. For
column names which are not valid XML attribute values, character
replacement is performed on the column name before it is included in the
result string.

Column values may or may not be valid XML element names. If the
format-string COLATTVAL is specified, then for the column names which
are not valid XML element values, character replacement is performed on
the column value before it is included in the result string. If the
format-string COLATTVAL_XML is specified, then character replacement is
not performed on column values (although character replacement is still
performed on column names).

row-tag-string
A string constant that specifies the tag used for each row. If an empty
string is specified, then a value of ’row’ is assumed.

If a string of one or more blank characters is specified, then no beginning
row-tag-string or ending row-tag-string (including the angle bracket
delimiters) will appear in the result string.

column-name
A qualified or unqualified name of a table column. The column must have
one of the following data types (SQLSTATE 42815):
v numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE)
v character string (CHAR, VARCHAR; a character string with a subtype

of BIT DATA is not allowed)
v datetime (DATE, TIME, TIMESTAMP)
v a user-defined type based on one of the above types

The same column name cannot be specified more than once (SQLSTATE
42734).

The result of the function is VARCHAR. The maximum length is 32 672 bytes
(SQLSTATE 54006).

Consider the following invocation:
REC2XML (dc, fs, rt, c1, c2, ..., cn)

If the value of ″fs″ is either ″COLATTVAL″ or ″COLATTVAL_XML″, then the
result is the same as this expression:
'<' CONCAT rt CONCAT '>' CONCAT y1 CONCAT y2
CONCAT ... CONCAT yn CONCAT '</' CONCAT rt CONCAT '>'

REC2XML

Chapter 3. Functions 437

where yn is equivalent to:
'<column name="' CONCAT xvcn CONCAT vn

and vn is equivalent to:
'">' CONCAT rn CONCAT '</column>'

if the column is not null, and
'" null="true"/>'

if the column value is null.

xvcn is equivalent to a string representation of the column name of cn, where
any characters appearing in Table 18 on page 439 are replaced with the
corresponding representation. This ensures that the resulting string is a valid
XML attribute or element value token.

The rn is equivalent to a string representation as indicated in Table 17

Table 17. Column Values String Result

Data type of cn rn

CHAR, VARCHAR The value is a string. If the format-string
does not end in the characters ″_XML″,
then each character in cn is replaced with
the corresponding replacement
representation from Table 18 on page 439,
as indicated. The length attribute is: dc *
the length attribute of cn.

SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, REAL, DOUBLE

The value is LTRIM(RTRIM(CHAR(cn))).
The length attribute is the result length of
CHAR(cn). The decimal character is
always the period (’.’) character.

DATE The value is CHAR(cn,ISO). The length
attribute is the result length of
CHAR(cn,ISO).

TIME The value is CHAR(cn,JIS). The length
attribute is the result length of
CHAR(cn,JIS)

TIMESTAMP The value is CHAR(cn). The length
attribute is the result length of CHAR(cn).

Character replacement:

Depending on the value specified for the format-string, certain characters in
column names and column values will be replaced to ensure that the column

REC2XML

438 SQL Reference, Volume 1

names form valid XML attribute values and the column values form valid
XML element values.

Table 18. Character Replacements for XML Attribute Values and Element Values

Character Replacement

< <

> >

" "

& &

’ '

Examples:

Note: REC2XML does not insert new line characters in the output. All
example output is formatted for the sake of readability.

v Using the DEPARTMENT table in the sample database, format the
department table row, except the DEPTNAME and LOCATION columns,
for department ’D01’ into an XML string. Since the data does not contain
any of the characters which require replacement, the expansion factor will
be 1.0 (no expansion). Also note that the MGRNO value is null for this row.

SELECT REC2XML (1.0, ’COLATTVAL’, ’’, DEPTNO, MGRNO, ADMRDEPT)
FROM DEPARTMENT
WHERE DEPTNO = ’D01’

This example returns the following VARCHAR(117) string:
<row>
<column name="DEPTNO">D01</column>
<column name="MGRNO" null="true"/>
<column name="ADMRDEPT">A00</column>
</row>

v A 5-day university schedule introduces a class named ’&43<FIE’ to a table
called CL_SCHED, with a new format for the CLASS_CODE column. Using
the REC2XML function, this example formats an XML string with this new
class data, except for the class end time.
The length attribute for the REC2XML call (see below) with an expansion
factor of 1.0 would be 128 (11 for the ’<row>’ and ’</row>’ overhead, 21
for the column names, 75 for the ’<column name=’, ’>’, ’</column>’ and
double quotes, 7 for the CLASS_CODE data, 6 for the DAY data, and 8 for
the STARTING data). Since the ’&’ and ’<’ characters will be replaced, an
expansion factor of 1.0 will not be sufficient. The length attribute of the
function will need to support an increase from 7 to 14 characters for the
new format CLASS_CODE data.

REC2XML

Chapter 3. Functions 439

However, since it is known that the DAY value will never be more than 1
digit long, an unused extra 5 units of length are added to the total.
Therefore, the expansion only needs to handle an increase of 2. Since
CLASS_CODE is the only character string column in the argument list, this
is the only column data to which the expansion factor applies. To get an
increase of 2 for the length, an expansion factor of 9/7 (approximately
1.2857) would be needed. An expansion factor of 1.3 will be used.

SELECT REC2XML (1.3, ’COLATTVAL’, ’record’, CLASS_CODE, DAY, STARTING)
FROM CL_SCHED
WHERE CLASS_CODE = ’&43<FIE’

This example returns the following VARCHAR(167) string:
<record>
<column name="CLASS_CODE">&43<FIE</column>
<column name="DAY">5</column>
<column name="STARTING">06:45:00</column>
</record>

v Assume that new rows have been added to the EMP_RESUME table in the
sample database. The new rows store the resumes as strings of valid XML.
The COLATTVAL_XML format-string is used so character replacement will
not be carried out. None of the resumes are more than 3500 characters in
length. The following query is used to select the XML version of the
resumes from the EMP_RESUME table and format it into an XML
document fragment.

SELECT REC2XML (1.0, ’COLATTVAL_XML’, ’row’, EMPNO, RESUME_XML)
FROM (SELECT EMPNO, CAST(RESUME AS VARCHAR(3500)) AS RESUME_XML

FROM EMP_RESUME
WHERE RESUME_FORMAT = ’XML’)

AS EMP_RESUME_XML

This example returns a row for each employee who has a resume in XML
format. Each returned row will be a string with the following format:

<row>
<column name="EMPNO">{employee number}</column>
<column name="RESUME_XML">{resume in XML}</column>
</row>

Where ″{employee number}″ is the actual EMPNO value for the column
and ″{resume in XML}″ is the actual XML fragment string value that is the
resume.

REC2XML

440 SQL Reference, Volume 1

REPEAT

�� REPEAT (expression , expression) ��

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the
number of times specified by the second argument.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be SMALLINT
or INTEGER.

The result of the function is:
v VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000

bytes) or CHAR
v CLOB(1M) if the first argument is CLOB or LONG VARCHAR
v BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v List the phrase ’REPEAT THIS’ five times.

VALUES CHAR(REPEAT(’REPEAT THIS’, 5), 60)

This example return the following:
1
--
REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

As mentioned, the output of the REPEAT function is VARCHAR(4000). For
this example, the CHAR function has been used to limit the output of
REPEAT to 60 bytes.

REPEAT

Chapter 3. Functions 441

REPLACE

�� REPLACE (expression1 , expression2 , expression3) ��

The schema is SYSFUN.

Replaces all occurrences of expression2 in expression1 with expression3.

The first argument can be of any built-in character string or binary string
type. For a VARCHAR the maximum length is 4 000 bytes and for a CLOB or
a binary string the maximum length is 1 048 576 bytes. CHAR is converted to
VARCHAR and LONG VARCHAR is converted to CLOB(1M). The second
and third arguments are identical to the first argument.

The result of the function is:
v VARCHAR(4000) if the first, second and third arguments are VARCHAR or

CHAR
v CLOB(1M) if the first, second and third arguments are CLOB or LONG

VARCHAR
v BLOB(1M) if the first, second and third arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v Replace all occurrence of the letter ’N’ in the word ’DINING’ with ’VID’.

VALUES CHAR (REPLACE (’DINING’, ’N’, ’VID’), 10)

This example returns the following:
1

DIVIDIVIDG

As mentioned, the output of the REPLACE function is VARCHAR(4000).
For this example, the CHAR function has been used to limit the output of
REPLACE to 10 bytes.

REPLACE

442 SQL Reference, Volume 1

RIGHT

�� RIGHT (expression1 , expression2) ��

Returns a string consisting of the rightmost expression2 bytes in expression1.
The expression1 value is effectively padded on the right with the necessary
number of blank characters so that the specified substring of expression1
always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be INTEGER or
SMALLINT.

The result of the function is:
v VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000

bytes) or CHAR
v CLOB(1M) if the first argument is CLOB or LONG VARCHAR
v BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

RIGHT

Chapter 3. Functions 443

ROUND

�� ROUND (expression1 , expression2) ��

The schema is SYSIBM. (The SYSFUN version of the ROUND function
continues to be available.)

The ROUND function returns expression1 rounded to expression2 places to the
right of the decimal point if expression2 is positive, or to the left of the decimal
point if expression2 is zero or negative.

If expression1 is positive, a digit value of 5 or greater is an indication to round
to the next higher positive number. For example, ROUND(3.5,0) = 4. If
expression1 is negative, a digit value of 5 or greater is an indication to round
to the next lower negative number. For example, ROUND(-3.5,0) = -4.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a small or large integer. When the value of
expression2 is not negative, it specifies rounding to that number of places
to the right of the decimal separator. When the value of expression2 is
negative, it specifies rounding to the absolute value of expression2 places
to the left of the decimal separator.

If expression2 is not negative, expression1 is rounded to the absolute value
of expression2 number of places to the right of the decimal point. If the
value of expression2 is greater than the scale of expression1 then the value is
unchanged except that the result value has a precision that is larger by 1.
For example, ROUND(748.58,5) = 748.58 where the precision is now 6 and
the scale remains 2.

If expression2 is negative, expression1 is rounded to the absolute value of
expression2+1 number of places to the left of the decimal point.

If the absolute value of a negative expression2 is larger than the number of
digits to the left of the decimal point, the result is 0. For example,
ROUND(748.58,-4) = 0.

The data type and length attribute of the result are the same as the data type
and length attribute of the first argument, except that the precision is
increased by one if the expression1 is DECIMAL and the precision is less than
31.

For example, an argument with a data type of DECIMAL(5,2) results in
DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) results in
DECIMAL(31,2). The scale is the same as the scale of the first argument.

ROUND

444 SQL Reference, Volume 1

If either argument can be null or the database is configured with
DFT_SQLMATHWARN set to YES, the result can be null. If either argument is
null, the result is the null value.

Examples:

Calculate the value of 873.726, rounded to 2, 1, 0, -1, -2, -3, and -4 decimal
places, respectively.

VALUES (
ROUND(873.726, 2),
ROUND(873.726, 1),
ROUND(873.726, 0),
ROUND(873.726,-1),
ROUND(873.726,-2),
ROUND(873.726,-3),
ROUND(873.726,-4))

This example returns:
1 2 3 4 5 6 7
--------- --------- --------- --------- --------- --------- ---------

873.730 873.700 874.000 870.000 900.000 1000.000 0.000

Calculate using both positive and negative numbers.
VALUES (

ROUND(3.5, 0),
ROUND(3.1, 0),
ROUNDROUND(-3.1, 0),
ROUND(-3.5,0))

This example returns:
1 2 3 4
---- ---- ---- ----
4.0 3.0 -3.0 -4.0

ROUND

Chapter 3. Functions 445

RTRIM

�� RTRIM (string-expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The RTRIM function removes blanks from the end of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type.
v If the argument is a graphic string in a DBCS or EUC database, then the

trailing double byte blanks are removed.
v If the argument is a graphic string in a Unicode database, then the trailing

UCS-2 blanks are removed.
v Otherwise, the trailing single byte blanks are removed.

The result data type of the function is:
v VARCHAR if the data type of string-expression is VARCHAR or CHAR
v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a
value of ’Hello’.

VALUES RTRIM(:HELLO)

The result is ’Hello’.

Related reference:

v “RTRIM (SYSFUN schema)” on page 447

RTRIM

446 SQL Reference, Volume 1

RTRIM (SYSFUN schema)

�� RTRIM (expression) ��

The schema is SYSFUN.

Returns the characters of the argument with trailing blanks removed.

The argument can be of any built-in character string data types. For a
VARCHAR the maximum length is 4 000 bytes and for a CLOB the maximum
length is 1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null

RTRIM (SYSFUN schema)

Chapter 3. Functions 447

SECOND

�� SECOND (expression) ��

The schema is SYSIBM.

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the seconds part of the value, which is an integer between 0

and 59.
v If the argument is a time duration or timestamp duration:

– The result is the seconds part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Examples:
v Assume that the host variable TIME_DUR (decimal(6,0)) has the value

153045.
SECOND(:TIME_DUR)

Returns the value 45.
v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to 1988-12-25-17.12.30.000000.
SECOND(RECEIVED)

Returns the value 30.

SECOND

448 SQL Reference, Volume 1

SIGN

�� SIGN (expression) ��

Returns an indicator of the sign of the argument. If the argument is less than
zero, −1 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.

The argument can be of any built-in numeric data type. DECIMAL and REAL
values are converted to double-precision floating-point numbers for
processing by the function.

The result of the function is:
v SMALLINT if the argument is SMALLINT
v INTEGER if the argument is INTEGER
v BIGINT if the argument is BIGINT
v DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

SIGN

Chapter 3. Functions 449

SIN

�� SIN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the SIN function continues to
be available.)

Returns the sine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric data type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SIN

450 SQL Reference, Volume 1

SINH

�� SINH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic sine of the argument, where the argument is an angle
expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SINH

Chapter 3. Functions 451

SMALLINT

�� SMALLINT (numeric-expression
character-expression

) ��

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number
or character string in the form of a small integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a small integer column or
variable. If the whole part of the argument is not within the range of
small integers, an error occurs. The decimal part of the argument is
truncated if present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). However, the
value of the constant must be in the range of small integers (SQLSTATE
22003). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
small integer column or variable.

The result of the function is a small integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

SMALLINT

452 SQL Reference, Volume 1

SOUNDEX

�� SOUNDEX (expression) ��

The schema is SYSFUN.

Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR
not exceeding 4 000 bytes.

The result of the function is CHAR(4). The result can be null; if the argument
is null, the result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is
known but the precise spelling is not. It makes assumptions about the way
that letters and combinations of letters sound that can help to search out
words with similar sounds. The comparison can be done directly or by
passing the strings as arguments to the DIFFERENCE function .

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the
employee with a surname that sounds like ’Loucesy’.

SELECT EMPNO, LASTNAME FROM EMPLOYEE
WHERE SOUNDEX(LASTNAME) = SOUNDEX(’Loucesy’)

This example returns the following:
EMPNO LASTNAME
------ ---------------
000110 LUCCHESSI

Related reference:

v “DIFFERENCE” on page 336

SOUNDEX

Chapter 3. Functions 453

SPACE

�� SPACE (expression) ��

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the
second argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the
argument is null, the result is the null value.

SPACE

454 SQL Reference, Volume 1

SQRT

�� SQRT (expression) ��

The schema is SYSFUN.

Returns the square root of the argument.

The argument can be any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

SQRT

Chapter 3. Functions 455

SUBSTR

�� SUBSTR (string , start
, length

) ��

The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string
represented in the code page of its first argument. If it is a binary string, the
result of the function is a binary string. If it is a graphic string, the result of
the function is a graphic string represented in the code page of its first
argument. If the first argument is a host variable, the code page of the result
is the database code page. If any argument of the SUBSTR function can be
null, the result can be null; if any argument is null, the result is the null value.

string
An expression that specifies the string from which the result is derived.

If string is either a character string or a binary string, a substring of string
is zero or more contiguous bytes of string. If string is a graphic string, a
substring of string is zero or more contiguous double-byte characters of
string.

start
An expression that specifies the position of the first byte of the result for a
character string or a binary string or the position of the first character of
the result for a graphic string. start must be an integer between 1 and the
length or maximum length of string, depending on whether string is
fixed-length or varying-length (SQLSTATE 22011, if out of range). It must
be specified as number of bytes in the context of the database code page
and not the application code page.

length
An expression that specifies the length of the result. If specified, length
must be a binary integer in the range 0 to n, where n equals (the length
attribute of string) − start + 1 (SQLSTATE 22011, if out of range).

If length is explicitly specified, string is effectively padded on the right
with the necessary number of blank characters (single-byte for character
strings; double-byte for graphic strings) or hexadecimal zero characters
(for BLOB strings) so that the specified substring of string always exists.
The default for length is the number of bytes from the byte specified by
the start to the last byte of string in the case of character string or binary
string or the number of double-byte characters from the character
specified by the start to the last character of string in the case of a graphic
string. However, if string is a varying-length string with a length less than
start, the default is zero and the result is the empty string. It must be
specified as number of bytes in the context of the database code page and

SUBSTR

456 SQL Reference, Volume 1

not the application code page. (For example, the column NAME with a
data type of VARCHAR(18) and a value of 'MCKNIGHT' will yield an
empty string with SUBSTR(NAME,10)).

Table 19 shows that the result type and length of the SUBSTR function depend
on the type and attributes of its inputs.

Table 19. Data Type and Length of SUBSTR Result

String Argument Data
Type

Length Argument Result Data Type

CHAR(A) constant (l<255) CHAR(l)

CHAR(A) not specified but start argument is a
constant

CHAR(A-start+1)

CHAR(A) not a constant VARCHAR(A)

VARCHAR(A) constant (l<255) CHAR(l)

VARCHAR(A) constant (254<l<32673) VARCHAR(l)

VARCHAR(A) not a constant or not specified VARCHAR(A)

LONG VARCHAR constant (l<255) CHAR(l)

LONG VARCHAR constant (254<l<4001) VARCHAR(l)

LONG VARCHAR constant (l>4000) LONG VARCHAR

LONG VARCHAR not a constant or not specified LONG VARCHAR

CLOB(A) constant (l) CLOB(l)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (l<128) GRAPHIC(l)

GRAPHIC(A) not specified but start argument is a
constant

GRAPHIC(A-start+1)

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (l<128) GRAPHIC(l)

VARGRAPHIC(A) constant (127<l<16337) VARGRAPHIC(l)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

SUBSTR

Chapter 3. Functions 457

Table 19. Data Type and Length of SUBSTR Result (continued)

String Argument Data
Type

Length Argument Result Data Type

LONG VARGRAPHIC constant (l<128) GRAPHIC(l)

LONG VARGRAPHIC constant (127<l<2001) VARGRAPHIC(l)

LONG VARGRAPHIC constant (l>2000) LONG VARGRAPHIC

LONG VARGRAPHIC not a constant or not specified LONG VARGRAPHIC

DBCLOB(A) constant (l) DBCLOB(l)

DBCLOB(A) not a constant or not specified DBCLOB(A)

BLOB(A) constant (l) BLOB(l)

BLOB(A) not a constant or not specified BLOB(A)

If string is a fixed-length string, omission of length is an implicit specification
of LENGTH(string) - start + 1. If string is a varying-length string, omission of
length is an implicit specification of zero or LENGTH(string) - start + 1,
whichever is greater.

Examples:
v Assume the host variable NAME (VARCHAR(50)) has a value of ’BLUE

JAY’ and the host variable SURNAME_POS (int) has a value of 6.
SUBSTR(:NAME, :SURNAME_POS)

Returns the value 'JAY'
SUBSTR(:NAME, :SURNAME_POS,1)

Returns the value 'J'.
v Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word ’OPERATION’.
SELECT * FROM PROJECT

WHERE SUBSTR(PROJNAME,1,10) = ’OPERATION ’

The space at the end of the constant is necessary to preclude initial words
such as ’OPERATIONS’.

SUBSTR

458 SQL Reference, Volume 1

Notes:

1. In dynamic SQL, string, start, and length may be represented by a
parameter marker (?). If a parameter marker is used for string, the data
type of the operand will be VARCHAR, and the operand will be nullable.

2. Though not explicitly stated in the result definitions above, it follows from
these semantics that if string is a mixed single- and multi-byte character
string, the result may contain fragments of multi-byte characters,
depending upon the values of start and length. That is, the result could
possibly begin with the second byte of a double-byte character, and/or
end with the first byte of a double-byte character. The SUBSTR function
does not detect such fragments, nor provides any special processing
should they occur.

SUBSTR

Chapter 3. Functions 459

TABLE_NAME

�� TABLE_NAME (objectname)
, objectschema

��

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the unqualified name of the starting point is
returned. The resulting name may be of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing an unqualified name. The result name could
represent one of the following:

table The value for objectname was either a table name (the input value is
returned) or an alias name that resolved to the table whose name is
returned.

view The value for objectname was either a view name (the input value is
returned) or an alias name that resolved to the view whose name is
returned.

undefined object

The value for objectname was either an undefined object (the input
value is returned) or an alias name that resolved to the undefined
object whose name is returned.

Therefore, if a non-null value is given to this function, a value is always
returned, even if no object with the result name exists.

TABLE_NAME

460 SQL Reference, Volume 1

TABLE_SCHEMA

�� TABLE_SCHEMA (objectname
, objectschema

) ��

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the schema name of the starting point is
returned. The resulting schema name may be of a table, view, or undefined
object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing a schema name. The result schema could
represent the schema name for one of the following:

table The value for objectname was either a table name (the input or default
value of objectschema is returned) or an alias name that resolved to a
table for which the schema name is returned.

view The value for objectname was either a view name (the input or default
value of objectschema is returned) or an alias name that resolved to a
view for which the schema name is returned.

undefined object

The value for objectname was either an undefined object (the input or
default value of objectschema is returned) or an alias name that
resolved to an undefined object for which the schema name is
returned.

TABLE_SCHEMA

Chapter 3. Functions 461

Therefore, if a non-null objectname value is given to this function, a value is
always returned, even if the object name with the result schema name does
not exist. For example, TABLE_SCHEMA(’DEPT’, ’PEOPLE’) returns 'PEOPLE ' if
the catalog entry is not found.

Examples:
v PBIRD tries to select the statistics for a given table from SYSCAT.TABLES

using an alias PBIRD.A1 defined on the table HEDGES.T1.
SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME (’A1’)
AND TABSCHEMA = TABLE_SCHEMA (’A1’)

The requested statistics for HEDGES.T1 are retrieved from the catalog.
v Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES

using HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not
known whether HEDGES.X1 is an alias or a table.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME (’X1’,’HEDGES’)
AND TABSCHEMA = TABLE_SCHEMA (’X1’,’HEDGES’)

Assuming that HEDGES.X1 is a table, the requested statistics for
HEDGES.X1 are retrieved from the catalog.

v Select the statistics for a given table from SYSCAT.TABLES using an alias
PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME (’A2’,’PBIRD’)
AND TABSCHEMA = TABLE_SCHEMA (’A2’,PBIRD’)

The statement returns 0 records as no matching entry is found in
SYSCAT.TABLES where TABNAME = ’T2’ and TABSCHEMA = ’HEDGES’.

v Select the qualified name of each entry in SYSCAT.TABLES along with the
final referenced name for any alias entry.

SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,
TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,
TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME
FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and
the final referenced name (after alias has been resolved) for any alias
entries. For all non-alias entries, BASE_TABNAME and
BASE_TABSCHEMA are null so the REAL_SCHEMA and REAL_NAME
columns will contain nulls.

TABLE_SCHEMA

462 SQL Reference, Volume 1

TAN

�� TAN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the TAN function continues
to be available.)

Returns the tangent of the argument, where the argument is an angle
expressed in radians.

The argument can be any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

TAN

Chapter 3. Functions 463

TANH

�� TANH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic tangent of the argument, where the argument is an
angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

TANH

464 SQL Reference, Volume 1

TIME

�� TIME (expression) ��

The schema is SYSIBM.

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG
VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string
representation of a time or a timestamp.

The result of the function is a time. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time:

– The result is that time.
v If the argument is a timestamp:

– The result is the time part of the timestamp.
v If the argument is a string:

– The result is the time represented by the string.

Example:
v Select all notes from the IN_TRAY sample table that were received at least

one hour later in the day (any day) than the current time.
SELECT * FROM IN_TRAY

WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIME

Chapter 3. Functions 465

TIMESTAMP

�� TIMESTAMP (expression)
,expression

��

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp from a value or a pair of
values.

Only Unicode databases support an argument that is a graphic string
representation of a date, a time, or a timestamp.

The rules for the arguments depend on whether the second argument is
specified.
v If only one argument is specified:

– It must be a timestamp, a valid string representation of a timestamp, or a
string of length 14 that is not a CLOB, LONG VARCHAR, DBCLOB, or
LONG VARGRAPHIC.
A string of length 14 must be a string of digits that represents a valid
date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is
the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

v If both arguments are specified:
– The first argument must be a date or a valid string representation of a

date and the second argument must be a time or a valid string
representation of a time.

The result of the function is a timestamp. If either argument can be null, the
result can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:
v If both arguments are specified:

– The result is a timestamp with the date specified by the first argument
and the time specified by the second argument. The microsecond part of
the timestamp is zero.

v If only one argument is specified and it is a timestamp:
– The result is that timestamp.

v If only one argument is specified and it is a string:
– The result is the timestamp represented by that string. If the argument is

a string of length 14, the timestamp has a microsecond part of zero.

TIMESTAMP

466 SQL Reference, Volume 1

Example:
v Assume the column START_DATE (date) has a value equivalent to

1988-12-25, and the column START_TIME (time) has a value equivalent to
17.12.30.

TIMESTAMP(START_DATE, START_TIME)

Returns the value ’1988-12-25-17.12.30.000000’.

TIMESTAMP

Chapter 3. Functions 467

TIMESTAMP_FORMAT

�� TIMESTAMP_FORMAT (string-expression ,format-string) ��

The schema is SYSIBM.

The TIMESTAMP_FORMAT function returns a timestamp from a character
string that has been interpreted using a character template.

string-expression
A character expression representing a timestamp value in the format
specified by format-string. (If string-expression is an untyped parameter
marker, the type is assumed to be VARCHAR with a maximum length of
254.) The string expression returns a CHAR or a VARCHAR value whose
maximum length is not greater than 254 (SQLSTATE 42815). Leading and
trailing blanks are removed from string-expression, and the resulting
substring is interpreted as a timestamp using the format specified by
format-string. Leading zeros can be omitted from any timestamp
components except the year. Blanks can be used in place of leading zeros
for these components. For example, with a format string of ’YYYY-MM-DD
HH24:MI:SS’, each of the following strings is an acceptable specification
for 9 a.m. on January 1, 2000:

’2000-1-01 09:00:00’ (single digit for month)
’2000- 1-01 09:00:00’ (single digit - preceded by a blank -

for month)
’2000-1-1 09:00:00’ (single digits for month and day)
’2000-01-01 9:00:00’ (single digit for hour)
’2000-01-01 09:0:0’ (single digits for minutes and seconds)
’2000- 1- 1 09: 0: 0’ (single digit - preceded by a blank -

for month, day, minutes, and seconds)
’2000-01-01 09:00:00’ (maximum number of digits for each element)

format-string
A character constant that contains a template for how the string
expression is to be interpreted as a timestamp value. The length of the
format string must not be greater than 254 (SQLSTATE 42815). Leading
and trailing blanks are removed from format-string, and the resulting
substring must be a valid template for a timestamp value (SQLSTATE
42815). The content of format-string can be specified in mixed case.

Valid format strings are:
’YYYY-MM-DD HH24:MI:SS’

where YYYY represents a 4-digit year value; MM represents a 2-digit
month value (01-12; January=01); DD represents a 2-digit day of the
month value (01-31); HH24 represents a 2-digit hour of the day value

TIMESTAMP_FORMAT

468 SQL Reference, Volume 1

(00-24; If the hour is 24, the minutes and seconds values are zero.); MI
represents a 2-digit minute value (00-59); and SS represents a 2-digit
seconds value (00-59).

The result of the function is a timestamp. If the first argument can be null, the
result can be null; if the first argument is null, the result is the null value.

Example:
v Insert a row into the in_tray table with a receiving timestamp that is equal

to one second before the beginning of the year 2000 (December 31, 1999 at
23:59:59).

INSERT INTO in_tray (received)
VALUES (TIMESTAMP_FORMAT(’1999-12-31 23:59:59’,

’YYYY-MM-DD HH24:MI:SS’))

TIMESTAMP_FORMAT

Chapter 3. Functions 469

TIMESTAMP_ISO

�� TIMESTAMP_ISO (expression) ��

The schema is SYSFUN.

Returns a timestamp value based on date, time or timestamp argument. If the
argument is a date, it inserts zero for all the time elements. If the argument is
a time, it inserts the value of CURRENT DATE for the date elements and zero
for the fractional time element.

The argument must be a date, time or timestamp, or a valid character string
representation of a date, time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is TIMESTAMP. The result can be null; if the
argument is null, the result is the null value.

TIMESTAMP_ISO

470 SQL Reference, Volume 1

TIMESTAMPDIFF

�� TIMESTAMPDIFF (expression , expression) ��

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first
argument, based on the difference between two timestamps.

The first argument can be either INTEGER or SMALLINT. Valid values of
interval (the first argument) are:

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The second argument is the result of subtracting two timestamps and
converting the result to CHAR(22).

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

The following assumptions may be used in estimating a difference:
v There are 365 days in a year.
v There are 30 days in a month.
v There are 24 hours in a day.
v There are 60 minutes in an hour.
v There are 60 seconds in a minute.

These assumptions are used when converting the information in the second
argument, which is a timestamp duration, to the interval type specified in the
first argument. The returned estimate may vary by a number of days. For
example, if the number of days (interval 16) is requested for the difference
between ’1997-03-01-00.00.00’ and ’1997-02-01-00.00.00’, the result is 30. This is

TIMESTAMPDIFF

Chapter 3. Functions 471

because the difference between the timestamps is 1 month, and the
assumption of 30 days in a month applies.

Example:

The following example returns 4277, the number of minutes between two
timestamps:

TIMESTAMPDIFF(4,CHAR(TIMESTAMP(’2001-09-29-11.25.42.483219’) -
TIMESTAMP(’2001-09-26-12.07.58.065497’)))

TIMESTAMPDIFF

472 SQL Reference, Volume 1

TO_CHAR

�� TO_CHAR (timestamp-expression ,format-string) ��

The schema is SYSIBM.

The TO_CHAR function returns a character representation of a timestamp that
has been formatted using a character template.

TO_CHAR is a synonym for VARCHAR_FORMAT.

Related reference:

v “VARCHAR_FORMAT” on page 487

TO_CHAR

Chapter 3. Functions 473

TO_DATE

�� TO_DATE (string-expression ,format-string) ��

The schema is SYSIBM.

The TO_DATE function returns a timestamp from a character string that has
been interpreted using a character template.

TO_DATE is a synonym for TIMESTAMP_FORMAT.

Related reference:

v “TIMESTAMP_FORMAT” on page 468

TO_DATE

474 SQL Reference, Volume 1

TRANSLATE

character string expression:

�� TRANSLATE (char-string-exp �

�
, ’ ’

, to-string-exp , from-string-exp
, pad-char

) ��

graphic string expression:

�� TRANSLATE (graphic-string-exp , to-string-exp , from-string-exp �

�
, ’ ’

, pad-char
) ��

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in
a string expression may have been translated into other characters.

The result of the function has the same data type and code page as the first
argument. If the first argument is a host variable, the code page of the result
is the database code page. The length attribute of the result is the same as that
of the first argument. If any specified expression can be NULL, the result can
be NULL. If any specified expression is NULL, the result will be NULL.

char-string-exp or graphic-string-exp
A string to be translated.

to-string-exp
Is a string of characters to which certain characters in the char-string-exp
will be translated.

If the to-string-exp is not present, and the data type is not graphic, all
characters in char-string-exp will be in monocase; that is, the characters a-z
will be translated to the characters A-Z, and characters with diacritical
marks will be translated to their uppercase equivalents, if they exist. For
example, in code page 850, é maps to É, but ÿ is not mapped, because
code page 850 does not include Ÿ.

from-string-exp
Is a string of characters which, if found in the char-string-exp, will be
translated to the corresponding character in the to-string-exp. If the

TRANSLATE

Chapter 3. Functions 475

from-string-exp contains duplicate characters, the first one found will be
used, and the duplicates will be ignored. If the to-string-exp is longer than
the from-string-exp, the surplus characters will be ignored. If the
to-string-exp is present, the from-string-exp must also be present.

pad-char-exp
Is a single character that will be used to pad the to-string-exp if the
to-string-exp is shorter than the from-string-exp. The pad-char-exp must have
a length attribute of one, or an error is returned. If not present, it will be
taken to be a single-byte blank.

The arguments may be either strings of data type CHAR or VARCHAR, or
graphic strings of data type GRAPHIC or VARGRAPHIC. They may not have
data type LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or
DBCLOB.

With graphic-string-exp, only the pad-char-exp is optional (if not provided, it
will be taken to be the double-byte blank), and each argument, including the
pad character, must be of graphic data type.

The result is the string that occurs after translating all the characters in the
char-string-exp or graphic-string-exp that occur in the from-string-exp to the
corresponding character in the to-string-exp or, if no corresponding character
exists, to the pad character specified by the pad-char-exp.

The code page of the result of TRANSLATE is the same as the code page of
the first operand. As of Version 8, if the first operand is a host variable, the
code page of the result is the database code page. Each of the other operands
is converted to the result code page unless it or the first operand is defined as
FOR BIT DATA (in which case there is no conversion).

If the arguments are of data type CHAR or VARCHAR, the corresponding
characters of the to-string-exp and the from-string-exp must have the same
number of bytes. For example, it is not valid to translate a single-byte
character to a multi-byte character or vice versa. An error will result if an
attempt is made to do this. The pad-char-exp must not be the first byte of a
valid multi-byte character, or SQLSTATE 42815 is returned. If the pad-char-exp
is not present, it will be taken to be a single-byte blank.

If only the char-string-exp is specified, single-byte characters will be
monocased and multi-byte characters will remain unchanged.

Examples:
v Assume the host variable SITE (VARCHAR(30)) has a value of ’Hanauma

Bay’.
TRANSLATE(:SITE)

TRANSLATE

476 SQL Reference, Volume 1

Returns the value ’HANAUMA BAY’.
TRANSLATE(:SITE ’j’,’B’)

Returns the value ’Hanauma jay’.
TRANSLATE(:SITE,’ei’,’aa’)

Returns the value ’Heneume Bey’.
TRANSLATE(:SITE,’bA’,’Bay’,’%’)

Returns the value ’HAnAumA bA%’.
TRANSLATE(:SITE,’r’,’Bu’)

Returns the value ’Hana ma ray’.

TRANSLATE

Chapter 3. Functions 477

TRUNCATE or TRUNC

�� TRUNCATE
TRUNC

(expression1 , expression2) ��

The schema is SYSIBM. (The SYSFUN version of the TRUNCATE or TRUNC
function continues to be available.)

Returns expression1 truncated to expression2 places to the right of the decimal
point if expression2 is positive, or to the left of the decimal point if expression2
is zero or negative.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a small or a large integer. The absolute value
of the integer specifies the number of places to the right of the decimal
point for the result if expression2 is not negative, or to left of the decimal
point if expression2 is negative.

If the absolute value of expression2 is larger than the number of digits to
the left of the decimal point, the result is 0. For example:

TRUNCATE(748.58,-4) = 0

The data type and length attribute of the result are the same as the data type
and length attribute of the first argument.

The result can be null if the argument can be null or the database is
configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

Examples:
v Using the EMPLOYEE table, calculate the average monthly salary for the

highest paid employee. Truncate the result two places to the right of the
decimal point.

SELECT TRUNCATE(MAX(SALARY)/12,2)
FROM EMPLOYEE;

Because the highest paid employee earns $52750.00 per year, the example
returns 4395.83.

v Display the number 873.726 truncated 2, 1, 0, -1, and -2 decimal places,
respectively.

VALUES (
TRUNC(873.726,2),
TRUNC(873.726,1),

TRUNCATE or TRUNC

478 SQL Reference, Volume 1

TRUNC(873.726,0),
TRUNC(873.726,-1),
TRUNC(873.726,-2),
TRUNC(873.726,-3));

This example returns 873.720, 873.700, 873.000, 870.000, 800.000, and 0.000.

TRUNCATE or TRUNC

Chapter 3. Functions 479

TYPE_ID

�� TYPE_ID (expression) ��

The schema is SYSIBM.

The TYPE_ID function returns the internal type identifier of the dynamic data
type of the expression.

The argument must be a user-defined structured type. (This function cannot
be used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.)

The data type of the result of the function is INTEGER. If expression can be
null, the result can be null; if expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases.
The value may be different, even though the type schema and type name of
the dynamic data type are the same. When coding for portability, use the
TYPE_SCHEMA and TYPE_NAME functions to determine the type schema
and type name.

Examples:
v A table hierarchy exists having root table EMPLOYEE of type EMP and

subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the internal type
identifier of the row that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE−>NAME,
TYPE_ID(DEREF(WHO_RESPONSIBLE))

FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

TYPE_ID

480 SQL Reference, Volume 1

TYPE_NAME

�� TYPE_NAME (expression) ��

The schema is SYSIBM.

The TYPE_NAME function returns the unqualified name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. (This function cannot
be used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.)

The data type of the result of the function is VARCHAR(18). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_SCHEMA function to determine the schema name of the type
name returned by TYPE_NAME.

Examples:
v A table hierarchy exists having root table EMPLOYEE of type EMP and

subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the type of the row
that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE−>NAME,
TYPE_NAME(DEREF(WHO_RESPONSIBLE)),
TYPE_SCHEMA(DEREF(WHO_RESPONSIBLE))

FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

TYPE_NAME

Chapter 3. Functions 481

TYPE_SCHEMA

�� TYPE_SCHEMA (expression) ��

The schema is SYSIBM.

The TYPE_SCHEMA function returns the schema name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. This function cannot be
used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.

The data type of the result of the function is VARCHAR(128). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_NAME function to determine the type name associated with
the schema name returned by TYPE_SCHEMA.

Related reference:

v “TYPE_NAME” on page 481

TYPE_SCHEMA

482 SQL Reference, Volume 1

UCASE or UPPER

�� UCASE (expression)
UPPER

��

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available for upward compatibility. See Version 5 documentation for a
description.)

The UCASE or UPPER function is identical to the TRANSLATE function
except that only the first argument (char-string-exp) is specified.

Notes:

This function has been extended to recognize the lowercase and uppercase
properties of a Unicode character. In a Unicode database, all Unicode
characters correctly convert to uppercase.

Related reference:

v “TRANSLATE” on page 475

UCASE or UPPER

Chapter 3. Functions 483

VALUE

�� VALUE (expression � ,expression) ��

The schema is SYSIBM.

The VALUE function returns the first argument that is not null.

VALUE is a synonym for COALESCE.

Related reference:

v “COALESCE” on page 311

VALUE

484 SQL Reference, Volume 1

VARCHAR

Character to Varchar:

�� VARCHAR (character-string-expression
, integer

) ��

Datetime to Varchar:

�� VARCHAR (datetime-expression) ��

Graphic to Varchar:

�� VARCHAR (graphic-string-expression)
, integer

��

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string
representation of:
v A character string, if the first argument is any type of character string
v A graphic string (Unicode databases only), if the first argument is any type

of graphic string
v A datetime value, if the argument is a date, time, or timestamp.

Character to Varchar

character-string-expression
An expression whose value must be of a character-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
32 672 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Datetime to Varchar

datetime-expression
An expression whose value must be of a date, time, or timestamp data
type.

Graphic to Varchar

VARCHAR

Chapter 3. Functions 485

graphic-string-expression
An expression whose value must be of a graphic-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
16 336 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Example:
v Using the EMPLOYEE table, set the host variable JOB_DESC

(VARCHAR(8)) to the VARCHAR equivalent of the job description (JOB
defined as CHAR(8)) for employee Dolores Quintana.

SELECT VARCHAR(JOB)
INTO :JOB_DESC
FROM EMPLOYEE
WHERE LASTNAME = ’QUINTANA’

VARCHAR

486 SQL Reference, Volume 1

VARCHAR_FORMAT

�� VARCHAR_FORMAT (timestamp-expression ,format-string) ��

The schema is SYSIBM.

The VARCHAR_FORMAT function returns a character representation of a
timestamp that has been formatted using a character template.

timestamp-expression
An expression that results in a timestamp. The argument must be a
timestamp or a string representation of a timestamp that is neither a
CLOB nor a LONG VARCHAR. (If string-expression is an untyped
parameter marker, the type is assumed to be TIMESTAMP.) The string
expression returns a CHAR or a VARCHAR value whose maximum
length is not greater than 254 (SQLSTATE 42815). Leading and trailing
blanks are removed from string-expression, and the resulting substring is
interpreted as a timestamp using the format specified by format-string.
Leading zeros can be omitted from any timestamp components except the
year. Blanks can be used in place of leading zeros for these components.
For example, with a format string of ’YYYY-MM-DD HH24:MI:SS’, each of
the following strings is an acceptable specification for 9 a.m. on January 1,
2000:

’2000-1-01 09:00:00’ (single digit for month)
’2000- 1-01 09:00:00’ (single digit - preceded by a blank - for month)
’2000-1-1 09:00:00’ (single digits for month and day)
’2000-01-01 9:00:00’ (single digit for hour)
’2000-01-01 09:0:0’ (single digits for minutes and seconds)
’2000- 1- 1 09: 0: 0’ (single digit - preceded by a blank - for month,

day, minutes, and seconds)
’2000-01-01 09:00:00’ (maximum number of digits for each element)

format-string
A character constant that contains a template for how the result is to be
formatted. The length of the format string must not be greater than 254
(SQLSTATE 42815). Leading and trailing blanks are removed from
format-string, and the resulting substring must be a valid template for a
timestamp value (SQLSTATE 42815). The content of format-string can be
specified in mixed case.

Valid format strings are:
’YYYY-MM-DD HH24:MI:SS’

where YYYY represents a 4-digit year value; MM represents a 2-digit
month value (01-12; January=01); DD represents a 2-digit day of the
month value (01-31); HH24 represents a 2-digit hour of the day value

VARCHAR_FORMAT

Chapter 3. Functions 487

(00-24; If the hour is 24, the minutes and seconds values are zero.); MI
represents a 2-digit minute value (00-59); and SS represents a 2-digit
seconds value (00-59).

The result of the function is a varying-length character string containing a
formatted timestamp expression. The format string also determines the length
attribute and the actual length of the result. If format-string is ’YYYY-MM-DD
HH24:MI:SS’, the length attribute is 19. The result is 19 characters of the form:

YYYY-MM-DD HH:MI:SS

For example, with format ’YYYY-MM-DD HH24:MI:SS’ and a time and date of 10
a.m. on January 1, 2000, the following is returned:

’2000-01-01 10:00:00’

Even though the values for month and day only require a single digit, in this
example, each significant digit is preceded with a leading zero. And, even
though the minutes and seconds values are both zero, the maximum number
of digits are used for each, and ’00’ is returned for each of these parts in the
result.

If the first argument can be null, the result can be null; if the first argument is
null, the result is the null value. The CCSID of the result is the SBCS CCSID
of the system.

Example:
v Display the table names and creation timestamps for all of the system tables

whose name starts with ’SYSU’.
SELECT VARCHAR(name, 20) AS TABLE_NAME,

VARCHAR_FORMAT(ctime, ’YYYY-MM-DD HH24:MI:SS’) AS CREATION_TIME
FROM SYSCAT.TABLES
WHERE name LIKE ’SYSU%’

This example returns the following:
TABLE_NAME CREATION_TIME
-------------------- -------------------
SYSUSERAUTH 2000-05-19 08:18:56
SYSUSEROPTIONS 2000-05-19 08:18:56

VARCHAR_FORMAT

488 SQL Reference, Volume 1

VARGRAPHIC

Character to Vargraphic:

�� VARGRAPHIC (character-string-expression) ��

Datetime to Vargraphic:

�� VARGRAPHIC (datetime-expression) ��

Graphic to Vargraphic:

�� VARGRAPHIC (graphic-string-expression
, integer

) ��

The schema is SYSIBM.

The VARGRAPHIC function returns a varying-length graphic string
representation of:
v A character string, converting single-byte characters to double-byte

characters, if the first argument is any type of character string
v A graphic string, if the first argument is any type of graphic string
v A datetime value (Unicode databases only), if the argument is a date, time,

or timestamp.

The result of the function is a varying length graphic string (VARGRAPHIC
data type). If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Character to Vargraphic

character-string-expression
An expression whose value must be of a character string data type other
than LONG VARCHAR or CLOB, and whose maximum length must not
be greater than 16 336 bytes.

The length attribute of the result is equal to the length attribute of the
argument.

Let S denote the value of the character-string-expression. Each single-byte
character in S is converted to its equivalent double-byte representation or to
the double-byte substitution character in the result; each double-byte character
in S is mapped ’as-is’. If the first byte of a double-byte character appears as

VARGRAPHIC

Chapter 3. Functions 489

the last byte of S, it is converted into the double-byte substitution character.
The sequential order of the characters in S is preserved.

The following are additional considerations for the conversion.
v For a Unicode database, this function converts the character string from the

code page of the operand to UCS-2. Every character of the operand,
including double-byte characters, is converted. If the second argument is
given, it specifies the desired length of the resulting string (in UCS-2
characters).

v The conversion to double-byte code points by the VARGRAPHIC function
is based on the code page of the operand.

v Double-byte characters of the operand are not converted. All other
characters are converted to their corresponding double-byte equivalent. If
there is no corresponding double-byte equivalent, the double-byte
substitution character for the code page is used.

v No warning or error code is generated if one or more double-byte
substitution characters are returned in the result.

Datetime to Vargraphic

datetime-expression
An expression whose value must be of the DATE, TIME, or TIMESTAMP
data type.

Graphic to Vargraphic

graphic-string-expression
An expression that returns a value that is a graphic string.

integer
The length attribute for the resulting varying length graphic string. The
value must be between 0 and 16 336. If this argument is not specified, the
length of the result is the same as the length of the argument.

If the length of the graphic-string-expression is greater than the length attribute
of the result, truncation is performed and a warning is returned (SQLSTATE
01004), unless the truncated characters were all blanks and the
graphic-string-expression was not a long string (LONG VARGRAPHIC or
DBCLOB).

Related reference:

v Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)
considerations” on page 883

VARGRAPHIC

490 SQL Reference, Volume 1

WEEK

�� WEEK (expression) ��

Returns the week of the year of the argument as an integer value in range
1-54. The week starts with Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

WEEK

Chapter 3. Functions 491

WEEK_ISO

�� WEEK_ISO (expression) ��

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in the range
1-53. The week starts with Monday and always includes 7 days. Week 1 is the
first week of the year to contain a Thursday, which is equivalent to the first
week containing January 4. It is therefore possible to have up to 3 days at the
beginning of a year appear in the last week of the previous year. Conversely,
up to 3 days at the end of a year may appear in the first week of the next
year.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:

The following list shows examples of the result of WEEK_ISO and
DAYOFWEEK_ISO.
DATE WEEK_ISO DAYOFWEEK_ISO
---------- ----------- -------------
1997-12-28 52 7
1997-12-31 1 3
1998-01-01 1 4
1999-01-01 53 5
1999-01-04 1 1
1999-12-31 52 5
2000-01-01 52 6
2000-01-03 1 1

WEEK_ISO

492 SQL Reference, Volume 1

YEAR

�� YEAR (expression) ��

The schema is SYSIBM.

The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the year part of the value, which is an integer between 1

and 9 999.
v If the argument is a date duration or timestamp duration:

– The result is the year part of the value, which is an integer between
−9 999 and 9 999. A nonzero result has the same sign as the argument.

Examples:
v Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.
SELECT * FROM PROJECT

WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

v Select all the projects in the PROJECT table that are scheduled to take less
than one year to complete.

SELECT * FROM PROJECT
WHERE YEAR(PRENDATE - PRSTDATE) < 1

YEAR

Chapter 3. Functions 493

Table functions

A table function can be used only in the FROM clause of a statement. Table
functions return columns of a table, resembling a table created through a
simple CREATE TABLE statement. Table functions can be qualified with a
schema name.

Table functions

494 SQL Reference, Volume 1

MQREADALL

�� MQREADALL (
receive-service

, service-policy
num-rows

) ��

The schema is MQDB2.

The MQREADALL function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
does not remove the messages from the queue associated with receive-service.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned. The table returned contains the following columns:
v MSG - a VARCHAR(4000) column containing the contents of the MQSeries

message.
v CORRELID - a VARCHAR(24) column holding a correlation ID used to

relate messages.
v TOPIC - a VARCHAR(40) column holding the topic that the message was

published with, if available.
v QNAME - a VARCHAR(48) column holding the queue name where the

message was received.
v MSGID - a CHAR(24) column holding the assigned MQSeries unique

identifier for this message.
v MSGFORMAT - a VARCHAR(8) column holding the format of the message,

as defined by MQSeries. Typical strings have a MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is read. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT.XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the

MQREADALL

Chapter 3. Functions 495

MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

num-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.
SELECT *

FROM table (MQREADALL()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.
SELECT T.MSG, T.CORRELID

FROM table (MQREADALL(’MYSERVICE’)) T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of ’1234’ are
returned. All columns are returned.
SELECT *

FROM table (MQREADALL()) T
WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.
SELECT *

FROM table (MQREADALL(10)) T

MQREADALL

496 SQL Reference, Volume 1

MQREADALLCLOB

�� MQREADALLCLOB (
receive-service

, service-policy
num-rows

) ��

The schema is DB2MQ.

The MQREADALLCLOB function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
does not remove the messages from the queue associated with receive-service.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned. The table returned contains the following columns:
v MSG - a CLOB column containing the contents of the MQSeries message.
v CORRELID - a VARCHAR(24) column holding a correlation ID used to

relate messages.
v TOPIC - a VARCHAR(40) column holding the topic that the message was

published with, if available.
v QNAME - a VARCHAR(48) column holding the queue name where the

message was received.
v MSGID - a CHAR(24) column holding the assigned MQSeries unique

identifier for this message.
v MSGFORMAT - a VARCHAR(8) column holding the format of the message,

as defined by MQSeries. Typical strings have an MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is read. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If

MQREADALLCLOB

Chapter 3. Functions 497

service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

num-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT *
FROM table (MQREADALLCLOB()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQREADALLCLOB(’MYSERVICE’)) T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of ’1234’ are
returned. All columns are returned.

SELECT *
FROM table (MQREADALLCLOB()) T
WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT *
FROM table (MQREADALLCLOB(10)) T

MQREADALLCLOB

498 SQL Reference, Volume 1

MQRECEIVEALL

�� MQRECEIVEALL (
receive-service

, service-policy
, correl-id

�

�
num-rows

,

) ��

The schema is MQDB2.

The MQRECEIVEALL function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
removes the messages from the queue associated with receive-service.

If a correl-id is specified, then only those messages with a matching correlation
identifier will be returned. If correl-id is not specified, then the message at the
head of the queue will be returned.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages are returned.
The table returned contains the following columns:
v MSG - a VARCHAR(4000) column containing the contents of the MQSeries

message.
v CORRELID - a VARCHAR(24) column holding a correlation ID used to

relate messages.
v TOPIC - a VARCHAR(40) column holding the topic that the message was

published with, if available.
v QNAME - a VARCHAR(48) column holding the queue name where the

message was received.
v MSGID - a CHAR(24) column holding the assigned MQSeries unique

identifier for this message.
v MSGFORMAT - a VARCHAR(8) column holding the format of the message,

as defined by MQSeries. Typical strings have a MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface manual for further

MQRECEIVEALL

Chapter 3. Functions 499

details. If receive-service is not specified, then the DB2.DEFAULT.SERVICE
will be used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT.XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is
specified. The maximum size of correl-id is 24 bytes.

num-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.
SELECT *

FROM table (MQRECEIVEALL()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.
SELECT T.MSG, T.CORRELID

FROM table (MQRECEIVEALL(’MYSERVICE’)) T

Example 3: This example receives all of the message from the head of the
queue specified by the service ″MYSERVICE″, using the policy ″MYPOLICY″.
Only messages with a CORRELID of ’1234’ are returned. Only the MSG and
CORRELID columns are returned.
SELECT T.MSG, T.CORRELID

FROM table (MQRECEIVEALL(’MYSERVICE’,’MYPOLICY’,’1234’)) T

MQRECEIVEALL

500 SQL Reference, Volume 1

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.
SELECT *

FROM table (MQRECEIVEALL(10)) T

MQRECEIVEALL

Chapter 3. Functions 501

MQRECEIVEALLCLOB

�� MQRECEIVEALLCLOB (�

�
receive-service

, service-policy
, correl-id

num-rows
,

�

�) ��

The schema is DB2MQ.

The MQRECEIVEALLCLOB function returns a table containing the messages
and message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
removes the messages from the queue associated with receive-service.

If a correl-id is specified, then only those messages with a matching correlation
identifier will be returned. If correl-id is not specified, then the message at the
head of the queue will be returned.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages are returned.
The table returned contains the following columns:
v MSG - a CLOB column containing the contents of the MQSeries message.
v CORRELID - a VARCHAR(24) column holding a correlation ID used to

relate messages.
v TOPIC - a VARCHAR(40) column holding the topic that the message was

published with, if available.
v QNAME - a VARCHAR(48) column holding the queue name where the

message was received.
v MSGID - a CHAR(24) column holding the assigned MQSeries unique

identifier for this message.
v MSGFORMAT - a VARCHAR(8) column holding the format of the message,

as defined by MQSeries. Typical strings have an MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface manual for further

MQRECEIVEALLCLOB

502 SQL Reference, Volume 1

details. If receive-service is not specified, then the DB2.DEFAULT.SERVICE
will be used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is
specified. The maximum size of correl-id is 24 bytes.

num-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT *
FROM table (MQRECEIVEALLCLOB()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALLCLOB(’MYSERVICE’)) T

Example 3: This example receives all of the message from the head of the
queue specified by the service ″MYSERVICE″, using the policy ″MYPOLICY″.
Only messages with a CORRELID of ’1234’ are returned. Only the MSG and
CORRELID columns are returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALLCLOB(’MYSERVICE’,’MYPOLICY’,’1234’)) T

MQRECEIVEALLCLOB

Chapter 3. Functions 503

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT *
FROM table (MQRECEIVEALLCLOB(10)) T

MQRECEIVEALLCLOB

504 SQL Reference, Volume 1

SNAPSHOT_AGENT

�� SNAPSHOT_AGENT (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_AGENT function returns information about agents from an
application snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 20. Column names and data types of the table returned by the
SNAPSHOT_AGENT table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

AGENT_PID BIGINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_AGENT

Chapter 3. Functions 505

SNAPSHOT_APPL

�� SNAPSHOT_APPL (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_APPL function returns general information from an
application snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

UOW_LOG_SPACE_USED BIGINT

ROWS_READ BIGINT

ROWS_WRITTEN BIGINT

POOL_DATA_L_READS BIGINT

POOL_DATA_P_READS BIGINT

POOL_DATA_WRITES BIGINT

POOL_INDEX_L_READS BIGINT

SNAPSHOT_APPL

506 SQL Reference, Volume 1

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type

POOL_INDEX_P_READS BIGINT

POOL_INDEX_WRITES BIGINT

POOL_READ_TIME BIGINT

POOL_WRITE_TIME BIGINT

DIRECT_READS BIGINT

DIRECT_WRITES BIGINT

DIRECT_READ_REQS BIGINT

DIRECT_WRITE_REQS BIGINT

DIRECT_READ_TIME BIGINT

DIRECT_WRITE_TIME BIGINT

POOL_DATA_TO_ESTORE BIGINT

POOL_INDEX_TO_ESTORE BIGINT

POOL_INDEX_FROM_ESTORE BIGINT

POOL_DATA_FROM_ESTORE BIGINT

UNREAD_PREFETCH_PAGES BIGINT

LOCKS_HELD BIGINT

LOCK_WAITS BIGINT

LOCK_WAIT_TIME BIGINT

LOCK_ESCALS BIGINT

X_LOCK_ESCALS BIGINT

DEADLOCKS BIGINT

TOTAL_SORTS BIGINT

TOTAL_SORT_TIME BIGINT

SORT_OVERFLOWS BIGINT

COMMIT_SQL_STMTS BIGINT

ROLLBACK_SQL_STMTS BIGINT

DYNAMIC_SQL_STMTS BIGINT

STATIC_SQL_STMTS BIGINT

FAILED_SQL_STMTS BIGINT

SELECT_SQL_STMTS BIGINT

DDL_SQL_STMTS BIGINT

SNAPSHOT_APPL

Chapter 3. Functions 507

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type

UID_SQL_STMTS BIGINT

INT_AUTO_REBINDS BIGINT

INT_ROWS_DELETED BIGINT

INT_ROWS_UPDATED BIGINT

INT_COMMITS BIGINT

INT_ROLLBACKS BIGINT

INT_DEADLOCK_ROLLBACKS BIGINT

ROWS_DELETED BIGINT

ROWS_INSERTED BIGINT

ROWS_UPDATED BIGINT

ROWS_SELECTED BIGINT

BINDS_PRECOMPILES BIGINT

OPEN_REM_CURS BIGINT

OPEN_REM_CURS_BLK BIGINT

REJ_CURS_BLK BIGINT

ACC_CURS_BLK BIGINT

SQL_REQS_SINCE_COMMIT BIGINT

LOCK_TIMEOUTS BIGINT

INT_ROWS_INSERTED BIGINT

OPEN_LOC_CURS BIGINT

OPEN_LOC_CURS_BLK BIGINT

PKG_CACHE_LOOKUPS BIGINT

PKG_CACHE_INSERTS BIGINT

CAT_CACHE_LOOKUPS BIGINT

CAT_CACHE_INSERTS BIGINT

CAT_CACHE_OVERFLOWS BIGINT

CAT_CACHE_HEAP_FULL BIGINT

NUM_AGENTS BIGINT

AGENTS_STOLEN BIGINT

ASSOCIATED_AGENTS_TOP BIGINT

APPL_PRIORITY BIGINT

SNAPSHOT_APPL

508 SQL Reference, Volume 1

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type

APPL_PRIORITY_TYPE BIGINT

PREFETCH_WAIT_TIME BIGINT

APPL_SECTION_LOOKUPS BIGINT

APPL_SECTION_INSERTS BIGINT

LOCKS_WAITING BIGINT

TOTAL_HASH_JOINS BIGINT

TOTAL_HASH_LOOPS BIGINT

HASH_JOIN_OVERFLOWS BIGINT

HASH_JOIN_SMALL_OVERFLOWS BIGINT

APPL_IDLE_TIME BIGINT

UOW_LOCK_WAIT_TIME BIGINT

UOW_COMP_STATUS BIGINT

AGENT_USR_CPU_TIME_S BIGINT

AGENT_USR_CPU_TIME_MS BIGINT

AGENT_SYS_CPU_TIME_S BIGINT

AGENT_SYS_CPU_TIME_MS BIGINT

APPL_CON_TIME TIMESTAMP

CONN_COMPLETE_TIME TIMESTAMP

LAST_RESET TIMESTAMP

UOW_START_TIME TIMESTAMP

UOW_STOP_TIME TIMESTAMP

PREV_UOW_STOP_TIME TIMESTAMP

UOW_ELAPSED_TIME_S BIGINT

UOW_ELAPSED_TIME_MS BIGINT

ELAPSED_EXEC_TIME_S BIGINT

ELAPSED_EXEC_TIME_MS BIGINT

INBOUND_COMM_ADDRESS VARCHAR(SQLM_COMM_ADDR_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_APPL

Chapter 3. Functions 509

SNAPSHOT_APPL_INFO

�� SNAPSHOT_APPL_INFO (INT, VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_APPL_INFO function returns general information from an
application snapshot.

The arguments must be:
v A valid snapshot API request type, as defined in sqllib\function\sqlmon.h.
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

For the save to file option, if both the database name and the partition
number are NULLs, the result of the snapshot will be returned only if a
snapshot of the same request type has previously been taken through the
SYSPROC.SNAPSHOT_FILEW stored procedure; otherwise, a new snapshot
will be taken for the currently connected database and the current partition
number (as though the partition number had been set to -1).

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 22. Column names and data types of the table returned by the
SNAPSHOT_APPL_INFO table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

APPL_STATUS BIGINT

CODEPAGE_ID BIGINT

NUM_ASSOC_AGENTS BIGINT

COORD_PARTITION_NUM SMALLINT

AUTHORITY_LVL BIGINT

CLIENT_PID BIGINT

SNAPSHOT_APPL_INFO

510 SQL Reference, Volume 1

Table 22. Column names and data types of the table returned by the
SNAPSHOT_APPL_INFO table function (continued)

Column name Data type

COORD_AGENT_PID BIGINT

STATUS_CHANGE_TIME TIMESTAMP

CLIENT_PLATFORM SMALLINT

CLIENT_PROTOCOL SMALLINT

COUNTRY_CODE SMALLINT

APPL_NAME VARCHAR(255)

APPL_ID VARCHAR(32)

SEQUENCE_NO VARCHAR(4)

AUTH_ID VARCHAR(30)

CLIENT_NNAME VARCHAR(20)

CLIENT_PRDID VARCHAR(20)

INPUT_DB_ALIAS VARCHAR(20)

CLIENT_DB_ALIAS VARCHAR(20)

DB_NAME VARCHAR(8)

DB_PATH VARCHAR(256)

EXECUTION_ID VARCHAR(20)

CORR_TOKEN VARCHAR(32)

TPMON_CLIENT_USERID VARCHAR(20)

TPMON_CLIENT_WKSTN VARCHAR(20)

TPMON_CLIENT_APP VARCHAR(20)

TPMON_ACC_STR VARCHAR(100)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_APPL_INFO

Chapter 3. Functions 511

SNAPSHOT_BP

�� SNAPSHOT_BP (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_BP function returns information from a buffer pool snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR BUFFERPOOLS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_BUFFERPOOLS, and

iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 23. Column names and data types of the table returned by the SNAPSHOT_BP
table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

POOL_DATA_L_READS BIGINT

POOL_DATA_P_READS BIGINT

POOL_DATA_WRITES BIGINT

POOL_INDEX_L_READS BIGINT

POOL_INDEX_P_READS BIGINT

POOL_INDEX_WRITES BIGINT

POOL_READ_TIME BIGINT

POOL_WRITE_TIME BIGINT

POOL_ASYNC_DATA_READS BIGINT

SNAPSHOT_BP

512 SQL Reference, Volume 1

Table 23. Column names and data types of the table returned by the SNAPSHOT_BP
table function (continued)

Column name Data type

POOL_ASYNC_DATA_WRITES BIGINT

POOL_ASYNC_INDEX_WRITES BIGINT

POOL_ASYNC_READ_TIME BIGINT

POOL_ASYNC_WRITE_TIME BIGINT

POOL_ASYNC_DATA_READ_REQS BIGINT

DIRECT_READS BIGINT

DIRECT_WRITES BIGINT

DIRECT_READ_REQS BIGINT

DIRECT_WRITE_REQS BIGINT

DIRECT_READ_TIME BIGINT

DIRECT_WRITE_TIME BIGINT

POOL_ASYNC_INDEX_READS BIGINT

POOL_DATA_TO_ESTORE BIGINT

POOL_INDEX_TO_ESTORE BIGINT

POOL_INDEX_FROM_ESTORE BIGINT

POOL_DATA_FROM_ESTORE BIGINT

UNREAD_PREFETCH_PAGES BIGINT

FILES_CLOSED BIGINT

BP_NAME VARCHAR(SQLM_IDENT_SZ)

DB_NAME VARCHAR(SQL_DBNAME_SZ)

DB_PATH VARCHAR(SQLM_DBPATH_SZ)

INPUT_DB_ALIAS VARCHAR(SQL_DBNAME_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_BP

Chapter 3. Functions 513

SNAPSHOT_CONTAINER

�� SNAPSHOT_CONTAINER (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_CONTAINER function returns container configuration
information from a tablespace snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and

iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 24. Column names and data types of the table returned by the
SNAPSHOT_CONTAINER table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

TABLESPACE_ID BIGINT

TABLESPACE_NAME VARCHAR(128)

CONTAINER_ID BIGINT

CONTAINER_NAME VARCHAR(255)

CONTAINER_TYPE SMALLINT

TOTAL_PAGES BIGINT

USABLE_PAGES BIGINT

ACCESSIBLE BIGINT

SNAPSHOT_CONTAINER

514 SQL Reference, Volume 1

Table 24. Column names and data types of the table returned by the
SNAPSHOT_CONTAINER table function (continued)

Column name Data type

STRIPE_SET BIGINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_CONTAINER

Chapter 3. Functions 515

SNAPSHOT_DATABASE

�� SNAPSHOT_DATABASE (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_DATABASE function returns information from a database
snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR DATABASE ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

SEC_LOG_USED_TOP BIGINT

TOT_LOG_USED_TOP BIGINT

TOTAL_LOG_USED BIGINT

TOTAL_LOG_AVAILABLE BIGINT

ROWS_READ BIGINT

POOL_DATA_L_READS BIGINT

POOL_DATA_P_READS BIGINT

POOL_DATA_WRITES BIGINT

POOL_INDEX_L_READS BIGINT

SNAPSHOT_DATABASE

516 SQL Reference, Volume 1

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type

POOL_INDEX_P_READS BIGINT

POOL_INDEX_WRITES BIGINT

POOL_READ_TIME BIGINT

POOL_WRITE_TIME BIGINT

POOL_ASYNC_INDEX_READS BIGINT

POOL_DATA_TO_ESTORE BIGINT

POOL_INDEX_TO_ESTORE BIGINT

POOL_INDEX_FROM_ESTORE BIGINT

POOL_DATA_FROM_ESTORE BIGINT

POOL_ASYNC_DATA_READS BIGINT

POOL_ASYNC_DATA_WRITES BIGINT

POOL_ASYNC_INDEX_WRITES BIGINT

POOL_ASYNC_READ_TIME BIGINT

POOL_ASYNC_WRITE_TIME BIGINT

POOL_ASYNC_DATA_READ_REQS BIGINT

DIRECT_READS BIGINT

DIRECT_WRITES BIGINT

DIRECT_READ_REQS BIGINT

DIRECT_WRITE_REQS BIGINT

DIRECT_READ_TIME BIGINT

DIRECT_WRITE_TIME BIGINT

UNREAD_PREFETCH_PAGES BIGINT

FILES_CLOSED BIGINT

POOL_LSN_GAP_CLNS BIGINT

POOL_DRTY_PG_STEAL_CLNS BIGINT

POOL_DRTY_PG_THRSH_CLNS BIGINT

LOCKS_HELD BIGINT

LOCK_WAITS BIGINT

LOCK_WAIT_TIME BIGINT

LOCK_LIST_IN_USE BIGINT

DEADLOCKS BIGINT

SNAPSHOT_DATABASE

Chapter 3. Functions 517

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type

LOCK_ESCALS BIGINT

X_LOCK_ESCALS BIGINT

LOCKS_WAITING BIGINT

SORT_HEAP_ALLOCATED BIGINT

TOTAL_SORTS BIGINT

TOTAL_SORT_TIME BIGINT

SORT_OVERFLOWS BIGINT

ACTIVE_SORTS BIGINT

COMMIT_SQL_STMTS BIGINT

ROLLBACK_SQL_STMTS BIGINT

DYNAMIC_SQL_STMTS BIGINT

STATIC_SQL_STMTS BIGINT

FAILED_SQL_STMTS BIGINT

SELECT_SQL_STMTS BIGINT

DDL_SQL_STMTS BIGINT

UID_SQL_STMTS BIGINT

INT_AUTO_REBINDS BIGINT

INT_ROWS_DELETED BIGINT

INT_ROWS_UPDATED BIGINT

INT_COMMITS BIGINT

INT_ROLLBACKS BIGINT

INT_DEADLOCK_ROLLBACKS BIGINT

ROWS_DELETED BIGINT

ROWS_INSERTED BIGINT

ROWS_UPDATED BIGINT

ROWS_SELECTED BIGINT

BINDS_PRECOMPILES BIGINT

TOTAL_CONS BIGINT

APPLS_CUR_CONS BIGINT

APPLS_IN_DB2 BIGINT

SEC_LOGS_ALLOCATED BIGINT

SNAPSHOT_DATABASE

518 SQL Reference, Volume 1

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type

DB_STATUS BIGINT

LOCK_TIMEOUTS BIGINT

CONNECTIONS_TOP BIGINT

DB_HEAP_TOP BIGINT

INT_ROWS_INSERTED BIGINT

LOG_READS BIGINT

LOG_WRITES BIGINT

PKG_CACHE_LOOKUPS BIGINT

PKG_CACHE_INSERTS BIGINT

CAT_CACHE_LOOKUPS BIGINT

CAT_CACHE_INSERTS BIGINT

CAT_CACHE_OVERFLOWS BIGINT

CAT_CACHE_HEAP_FULL BIGINT

CATALOG_PARTITION SMALLINT

TOTAL_SEC_CONS BIGINT

NUM_ASSOC_AGENTS BIGINT

AGENTS_TOP BIGINT

COORD_AGENTS_TOP BIGINT

PREFETCH_WAIT_TIME BIGINT

APPL_SECTION_LOOKUPS BIGINT

APPL_SECTION_INSERTS BIGINT

TOTAL_HASH_JOINS BIGINT

TOTAL_HASH_LOOPS BIGINT

HASH_JOIN_OVERFLOWS BIGINT

HASH_JOIN_SMALL_OVERFLOWS BIGINT

PKG_CACHE_NUM_OVERFLOWS BIGINT

PKG_CACHE_SIZE_TOP BIGINT

DB_CONN_TIME TIMESTAMP

SQLM_ELM_LAST_RESET TIMESTAMP

SQLM_ELM_LAST_BACKUP TIMESTAMP

APPL_CON_TIME TIMESTAMP

SNAPSHOT_DATABASE

Chapter 3. Functions 519

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type

DB_LOCATION INTEGER

SERVER_PLATFORM INTEGER

APPL_ID_OLDEST_XACT BIGINT

CATALOG_PARTITION_NAME VARCHAR(SQL_NNAME_SZ)

INPUT_DB_ALIAS VARCHAR(SQL_DBNAME_SZ)

DB_NAME VARCHAR(SQL_DBNAME_SZ)

DB_PATH VARCHAR(SQLM_DBPATH_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_DATABASE

520 SQL Reference, Volume 1

SNAPSHOT_DBM

�� SNAPSHOT_DBM (INT) ��

The schema is SYSPROC.

The SNAPSHOT_DBM function returns information from a snapshot of the
DB2 database manager.

The argument must be a valid partition number. Specify -1 for the current
partition, -2 for all partitions. If NULL is specified, -1 is set implicitly.

If NULL is specified, the snapshot will be taken only if a file has not
previously been created by either:
v A GET SNAPSHOT FOR DBM ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DB2, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 26. Column names and data types of the table returned by the SNAPSHOT_DBM
table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

SORT_HEAP_ALLOCATED BIGINT

POST_THRESHOLD_SORTS BIGINT

PIPED_SORTS_REQUESTED BIGINT

PIPED_SORTS_ACCEPTED BIGINT

REM_CONS_IN BIGINT

REM_CONS_IN_EXEC BIGINT

LOCAL_CONS BIGINT

LOCAL_CONS_IN_EXEC BIGINT

CON_LOCAL_DBASES BIGINT

AGENTS_REGISTERED BIGINT

AGENTS_WAITING_ON_TOKEN BIGINT

DB2_STATUS BIGINT

AGENTS_REGISTERED_TOP BIGINT

SNAPSHOT_DBM

Chapter 3. Functions 521

Table 26. Column names and data types of the table returned by the SNAPSHOT_DBM
table function (continued)

Column name Data type

AGENTS_WAITING_TOP BIGINT

COMM_PRIVATE_MEM BIGINT

IDLE_AGENTS BIGINT

AGENTS_FROM_POOL BIGINT

AGENTS_CREATED_EMPTY_POOL BIGINT

COORD_AGENTS_TOP BIGINT

MAX_AGENT_OVERFLOWS BIGINT

AGENTS_STOLEN BIGINT

GW_TOTAL_CONS BIGINT

GW_CUR_CONS BIGINT

GW_CONS_WAIT_HOST BIGINT

GW_CONS_WAIT_CLIENT BIGINT

POST_THRESHOLD_HASH_JOINS BIGINT

INACTIVE_GW_AGENTS BIGINT

NUM_GW_CONN_SWITCHES BIGINT

DB2START_TIME TIMESTAMP

LAST_RESET TIMESTAMP

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_DBM

522 SQL Reference, Volume 1

SNAPSHOT_DYN_SQL

�� SNAPSHOT_DYN_SQL (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_DYN_SQL function returns information from a dynamic SQL
snapshot. It replaces the SQLCACHE_SNAPSHOT function, which is still
available for compatibility reasons.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR LOCKS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_LOCKS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 27. Column names and data types of the table returned by the
SNAPSHOT_DYN_SQL table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

ROWS_READ BIGINT

ROWS_WRITTEN BIGINT

NUM_EXECUTIONS BIGINT

NUM_COMPILATIONS BIGINT

PREP_TIME_WORST BIGINT

PREP_TIME_BEST BIGINT

INT_ROWS_DELETED BIGINT

INT_ROWS_INSERTED BIGINT

SNAPSHOT_DYN_SQL

Chapter 3. Functions 523

Table 27. Column names and data types of the table returned by the
SNAPSHOT_DYN_SQL table function (continued)

Column name Data type

INT_ROWS_UPDATED BIGINT

STMT_SORTS BIGINT

TOTAL_EXEC_TIME BIGINT

TOTAL_SYS_CPU_TIME BIGINT

TOTAL_USR_CPU_TIME BIGINT

STMT_TEXT CLOB(65536)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_DYN_SQL

524 SQL Reference, Volume 1

SNAPSHOT_FCM

�� SNAPSHOT_FCM (INT) ��

The schema is SYSPROC.

The SNAPSHOT_FCM function returns database manager level information
regarding the fast communication manager (FCM).

The function returns a table as shown below.

Table 28. Column names and data types of the table returned by the SNAPSHOT_FCM
table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

BUFF_FREE BIGINT

BUFF_FREE_BOTTOM BIGINT

MA_FREE BIGINT

MA_FREE_BOTTOM BIGINT

CE_FREE BIGINT

CE_FREE_BOTTOM BIGINT

RB_FREE BIGINT

RB_FREE_BOTTOM BIGINT

PARTITION_NUMBER SMALLINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_FCM

Chapter 3. Functions 525

SNAPSHOT_FCMPARTITION

�� SNAPSHOT_FCMPARTITION (INT) ��

The schema is SYSPROC.

The SNAPSHOT_FCMPARTITION function returns information from a
snapshot of the fast communication manager in the database manager.

The argument must be a valid partition number. Specify -1 for the current
partition, -2 for all partitions. If NULL is specified, -1 is set implicitly.

If NULL is specified, the snapshot will be taken only if a file has not
previously been created by either:
v A GET SNAPSHOT FOR DBM ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DB2, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 29. Column names and data types of the table returned by the
SNAPSHOT_FCMPARTITION table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

CONNECTION_STATUS BIGINT

TOTAL_BUFFERS_SENT BIGINT

TOTAL_BUFFERS_RCVD BIGINT

PARTITION_NUMBER SMALLINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_FCMPARTITION

526 SQL Reference, Volume 1

SNAPSHOT_LOCK

�� SNAPSHOT_LOCK (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_LOCK function returns information from a lock snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR LOCKS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_LOCKS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 30. Column names and data types of the table returned by the
SNAPSHOT_LOCK table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

TABLE_FILE_ID BIGINT

LOCK_OBJECT_TYPE BIGINT

LOCK_MODE BIGINT

LOCK_STATUS BIGINT

LOCK_OBJECT_NAME BIGINT

PARTITION_NUMBER SMALLINT

LOCK_ESCALATION SMALLINT

SNAPSHOT_LOCK

Chapter 3. Functions 527

Table 30. Column names and data types of the table returned by the
SNAPSHOT_LOCK table function (continued)

Column name Data type

TABLE_NAME VARCHAR(SQL_MAX_TABLE_NAME_
LEN)

TABLE_SCHEMA VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

TABLESPACE_NAME VARCHAR(SQLB_MAX_TBS_NAME_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_LOCK

528 SQL Reference, Volume 1

SNAPSHOT_LOCKWAIT

�� SNAPSHOT_LOCKWAIT (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_LOCKWAIT function returns lock waits information from an
application snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 31. Column names and data types of the table returned by the
SNAPSHOT_LOCKWAIT table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

SUBSECTION_NUMBER BIGINT

LOCK_MODE BIGINT

LOCK_OBJECT_TYPE BIGINT

AGENT_ID_HOLDING_LK BIGINT

LOCK_WAIT_START_TIME TIMESTAMP

LOCK_MODE_REQUESTED BIGINT

PARTITION_NUMBER SMALLINT

SNAPSHOT_LOCKWAIT

Chapter 3. Functions 529

Table 31. Column names and data types of the table returned by the
SNAPSHOT_LOCKWAIT table function (continued)

Column name Data type

LOCK_ESCALLATION SMALLINT

TABLE_NAME VARCHAR(SQL_MAX_TABLE_NAME_
LEN)

TABLE_SCHEMA VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

TABLESPACE_NAME VARCHAR(SQLB_MAX_TBS_NAME_SZ)

APPL_ID_HOLDING_LK VARCHAR(SQLM_APPLID_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_LOCKWAIT

530 SQL Reference, Volume 1

SNAPSHOT_QUIESCERS

�� SNAPSHOT_QUIESCERS (VARCHAR(255), INT) ��

The schema is SYSPROC.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

The function returns a table as shown below.

Table 32. Column names and data types of the table returned by the
SNAPSHOT_QUIESCERS table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

TABLESPACE_NAME VARCHAR(128)

QUIESCER_TBS_ID BIGINT

QUIESCER_OBJ_ID BIGINT

QUIESCER_AUTH_ID BIGINT

QUIESCER_AGENT_ID BIGINT

QUIESCER_STATE BIGINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_QUIESCERS

Chapter 3. Functions 531

SNAPSHOT_RANGES

�� SNAPSHOT_RANGES (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_RANGES function returns information from a range
snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

The function returns a table as shown below.

Table 33. Column names and data types of the table returned by the
SNAPSHOT_RANGES table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

TABLESPACE_ID BIGINT

TABLESPACE_NAME VARCHAR(128)

RANGE_NUMBER BIGINT

RANGE_STRIPE_SET_NUMBER BIGINT

RANGE_OFFSET BIGINT

RANGE_MAX_PAGE BIGINT

RANGE_MAX_EXTENT BIGINT

RANGE_START_STRIPE BIGINT

RANGE_END_STRIPE BIGINT

RANGE_ADJUSTMENT BIGINT

RANGE_NUM_CONTAINER BIGINT

RANGE_CONTAINER_ID BIGINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_RANGES

532 SQL Reference, Volume 1

SNAPSHOT_STATEMENT

�� SNAPSHOT_STATEMENT (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_STATEMENT function returns information about statements
from an application snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 34. Column names and data types of the table returned by the
SNAPSHOT_STATEMENT table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

AGENT_ID BIGINT

ROWS_READ BIGINT

ROWS_WRITTEN BIGINT

NUM_AGENTS BIGINT

AGENTS_TOP BIGINT

STMT_TYPE BIGINT

STMT_OPERATION BIGINT

SECTION_NUMBER BIGINT

SNAPSHOT_STATEMENT

Chapter 3. Functions 533

Table 34. Column names and data types of the table returned by the
SNAPSHOT_STATEMENT table function (continued)

Column name Data type

QUERY_COST_ESTIMATE BIGINT

QUERY_CARD_ESTIMATE BIGINT

DEGREE_PARALLELISM BIGINT

STMT_SORTS BIGINT

TOTAL_SORT_TIME BIGINT

SORT_OVERFLOWS BIGINT

INT_ROWS_DELETED BIGINT

INT_ROWS_UPDATED BIGINT

INT_ROWS_INSERTED BIGINT

FETCH_COUNT BIGINT

STMT_START TIMESTAMP

STMT_STOP TIMESTAMP

STMT_USR_CPU_TIME_S BIGINT

STMT_USR_CPU_TIME_MS BIGINT

STMT_SYS_CPU_TIME_S BIGINT

STMT_SYS_CPU_TIME_MS BIGINT

STMT_ELAPSED_TIME_S BIGINT

STMT_ELAPSED_TIME_MS BIGINT

BLOCKING_CURSOR SMALLINT

STMT_PARTITION_NUMBER SMALLINT

CURSOR_NAME VARCHAR(SQL_MAX_CURSOR_NAME_
LEN)

CREATOR VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

PACKAGE_NAME VARCHAR(SQLM_IDENT_SZ)

STMT_TEXT CLOB(65536)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_STATEMENT

534 SQL Reference, Volume 1

SNAPSHOT_SUBSECT

�� SNAPSHOT_SUBSECT (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_SUBSECT function returns information about subsections of
access plans from an application snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 35. Column names and data types of the table returned by the
SNAPSHOT_SUBSECT table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

STMT_TEXT CLOB(65536)

SS_EXEC_TIME BIGINT

TQ_TOT_SEND_SPILLS BIGINT

TQ_CUR_SEND_SPILLS BIGINT

TQ_MAX_SEND_SPILLS BIGINT

TQ_ROWS_READ BIGINT

TQ_ROWS_WRITTEN BIGINT

ROWS_READ BIGINT

SNAPSHOT_SUBSECT

Chapter 3. Functions 535

Table 35. Column names and data types of the table returned by the
SNAPSHOT_SUBSECT table function (continued)

Column name Data type

ROWS_WRITTEN BIGINT

SS_USR_CPU_TIME BIGINT

SS_SYS_CPU_TIME BIGINT

SS_NUMBER INTEGER

SS_STATUS INTEGER

SS_PARTITION_NUMBER SMALLINT

TQ_PARTITION_WAITED_FOR SMALLINT

TQ_WAIT_FOR_ANY INTEGER

TQ_ID_WAITING_ON INTEGER

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_SUBSECT

536 SQL Reference, Volume 1

SNAPSHOT_SWITCHES

�� SNAPSHOT_SWITCHES (INT) ��

The schema is SYSPROC.

The SNAPSHOT_SWITCHES function returns information about the database
snapshot switch state. The function returns a table as shown below.

Table 36. Column names and data types of the table returned by the
SNAPSHOT_SWITCHES table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

UOW_SW_STATE SMALLINT

UOW_SW_TIME TIMESTAMP

STATEMENT_SW_STATE SMALLINT

STATEMENT_SW_TIME TIMESTAMP

TABLE_SW_STATE SMALLINT

TABLE_SW_TIME TIMESTAMP

BUFFPOOL_SW_STATE SMALLINT

BUFFPOOL_SW_TIME TIMESTAMP

LOCK_SW_STATE SMALLINT

LOCK_SW_TIME TIMESTAMP

SORT_SW_STATE SMALLINT

SORT_SW_TIME TIMESTAMP

PARTITION_NUMBER SMALLINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_SWITCHES

Chapter 3. Functions 537

SNAPSHOT_TABLE

�� SNAPSHOT_TABLE (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_TABLE function returns activity information from a table
snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR TABLES ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_TABLES, and iStoreResult set

to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 37. Column names and data types of the table returned by the
SNAPSHOT_TABLE table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

ROWS_WRITTEN BIGINT

ROWS_READ BIGINT

OVERFLOW_ACCESSES BIGINT

TABLE_FILE_ID BIGINT

TABLE_TYPE BIGINT

PAGE_REORGS BIGINT

TABLE_NAME VARCHAR(SQL_MAX_TABLE_NAME_
LEN)

SNAPSHOT_TABLE

538 SQL Reference, Volume 1

Table 37. Column names and data types of the table returned by the
SNAPSHOT_TABLE table function (continued)

Column name Data type

TABLE_SCHEMA VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_TABLE

Chapter 3. Functions 539

SNAPSHOT_TBS

�� SNAPSHOT_TBS (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_TBS function returns activity information from a table space
snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and

iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 38. Column names and data types of the table returned by the SNAPSHOT_TBS
table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

POOL_DATA_L_READS BIGINT

POOL_DATA_P_READS BIGINT

POOL_ASYNC_DATA_READS BIGINT

POOL_DATA_WRITES BIGINT

POOL_ASYNC_DATA_WRITES BIGINT

POOL_INDEX_L_READS BIGINT

POOL_INDEX_P_READS BIGINT

POOL_INDEX_WRITES BIGINT

SNAPSHOT_TBS

540 SQL Reference, Volume 1

Table 38. Column names and data types of the table returned by the SNAPSHOT_TBS
table function (continued)

Column name Data type

POOL_ASYNC_INDEX_WRITES BIGINT

POOL_READ_TIME BIGINT

POOL_WRITE_TIME BIGINT

POOL_ASYNC_READ_TIME BIGINT

POOL_ASYNC_WRITE_TIME BIGINT

POOL_ASYNC_DATA_READ_REQS BIGINT

DIRECT_READS BIGINT

DIRECT_WRITES BIGINT

DIRECT_READ_REQS BIGINT

DIRECT_WRITE_REQS BIGINT

DIRECT_READ_TIME BIGINT

DIRECT_WRITE_TIME BIGINT

UNREAD_PREFETCH_PAGES BIGINT

POOL_ASYNC_INDEX_READS BIGINT

POOL_DATA_TO_ESTORE BIGINT

POOL_INDEX_TO_ESTORE BIGINT

POOL_INDEX_FROM_ESTORE BIGINT

POOL_DATA_FROM_ESTORE BIGINT

FILES_CLOSED BIGINT

TABLESPACE_NAME VARCHAR(SQLB_MAX_TBS_NAME_SZ)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_TBS

Chapter 3. Functions 541

SNAPSHOT_TBS_CFG

�� SNAPSHOT_TBS_CFG (VARCHAR(255), INT) ��

The schema is SYSPROC.

The SNAPSHOT_TBS_CFG function returns configuration information from a
table space snapshot.

The arguments must be:
v A valid database name in the same instance as the currently connected

database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

v A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
v A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or
v A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and

iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 39. Column names and data types of the table returned by the
SNAPSHOT_TBS_CFG table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

TABLESPACE_ID BIGINT

TABLESPACE_NAME VARCHAR(128)

TABLESPACE_TYPE SMALLINT

TABLESPACE_STATE BIGINT

NUM_QUIESCERS BIGINT

STATE_CHANGE_OBJ_ID BIGINT

STATE_CHANGE_TBS_ID BIGINT

MIN_RECOVERY_TIME TIMESTAMP

SNAPSHOT_TBS_CFG

542 SQL Reference, Volume 1

Table 39. Column names and data types of the table returned by the
SNAPSHOT_TBS_CFG table function (continued)

Column name Data type

TBS_CONTENTS_TYPE SMALLINT

BUFFERPOOL_ID BIGINT

NEXT_BUFFERPOOL_ID BIGINT

PAGE_SIZE BIGINT

EXTENT_SIZE BIGINT

PREFETCH_SIZE BIGINT

TOTAL_PAGES BIGINT

USABLE_PAGES BIGINT

USED_PAGES BIGINT

FREE_PAGES BIGINT

PENDING_FREE_PAGES BIGINT

HIGH_WATER_MARK BIGINT

REBALANCER_MODE BIGINT

REBALANCER_EXTENTS_REMAINING BIGINT

REBALANCER_EXTENTS_PROCESSED BIGINT

REBALANCER_PRIORITY BIGINT

REBALANCER_START_TIME TIMESTAMP

REBALANCER_RESTART_TIME TIMESTAMP

LAST_EXTENT_MOVED BIGINT

NUM_RANGES BIGINT

NUM_CONTAINERS BIGINT

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SNAPSHOT_TBS_CFG

Chapter 3. Functions 543

SQLCACHE_SNAPSHOT

�� SQLCACHE_SNAPSHOT () ��

The schema is SYSPROC.

The SQLCACHE_SNAPSHOT function returns the results of a snapshot of the
DB2 dynamic SQL statement cache.

The function does not take any arguments. It returns a table, as shown below.

Table 40. Column names and data types of the table returned by
SQLCACHE_SNAPSHOT table function

Column name Data type

NUM_EXECUTIONS INTEGER

NUM_COMPILATIONS INTEGER

PREP_TIME_WORST INTEGER

PREP_TIME_BEST INTEGER

INT_ROWS_DELETED INTEGER

INT_ROWS_INSERTED INTEGER

ROWS_READ INTEGER

INT_ROWS_UPDATED INTEGER

ROWS_WRITE INTEGER

STMT_SORTS INTEGER

TOTAL_EXEC_TIME_S INTEGER

TOTAL_EXEC_TIME_MS INTEGER

TOT_U_CPU_TIME_S INTEGER

TOT_U_CPU_TIME_MS INTEGER

TOT_S_CPU_TIME_S INTEGER

TOT_S_CPU_TIME_MS INTEGER

DB_NAME VARCHAR(8)

STMT_TEXT CLOB(64K)

Related reference:

v “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SQLCACHE_SNAPSHOT

544 SQL Reference, Volume 1

Procedures

A procedure is an application program that can be started through the SQL
CALL statement. The procedure is specified by a procedure name, which may
be followed by arguments that are enclosed within parentheses.

The argument or arguments of a procedure are individual scalar values, which
can be of different types and can have different meanings. The arguments can
be used to pass values into the procedure, receive return values from the
procedure, or both.

User-defined procedures are procedures that are registered to a database in
SYSCAT.ROUTINES, using the CREATE PROCEDURE statement. One such
set of functions is provided with the database manager, in a schema called
SYSFUN, and another in a schema called SYSPROC.

Procedures can be qualified with the schema name.

Procedures

Chapter 3. Functions 545

GET_ROUTINE_SAR

�� GET_ROUTINE_SAR �

� (sarblob , type , routine_name_string)
, hide_body_flag

��

The schema is SYSFUN.

The GET_ROUTINE_SAR procedure retrieves the necessary information to
install the same routine in another database server running the same level on
the same operating system. The information is retrieved into a single BLOB
string representing an SQL archive file. The invoker of the
GET_ROUTINE_SAR procedure must have DBADM authority.

sarblob
An output argument of type BLOB(3M) that contains the routine SAR file
contents.

type
An input argument of type CHAR(2) that specifies whether the type of
routine, using one of the following values:
v P for a procedure.
v SP for the specific name of a procedure.

routine_name_string
An input argument of type VARCHAR(257) that specifies a qualified
name of the routine. If no schema name is specified, the default is the
CURRENT SCHEMA when the routine is processed. The
routine_name_string cannot include double quotation marks (").

hide_body_flag
An input argument of type INTEGER that specifies (using one of the
following values) whether or not the routine body should be hidden when
the routine text is extracted from the catalogs. Valid values are:

0 Leave the routine text intact. This is the default value.

1 Replace the routine body with an empty body when the routine
text is extracted from the catalogs.

The qualified name of the routine is used to determine which routine to
retrieve. The routine that is found must be an SQL routine. Not using a
specific name may result in more than one routine, and an error is raised
(SQLSTATE 42725). If this occurs, the specific name of the desired routine
must be used.

GET_ROUTINE_SAR

546 SQL Reference, Volume 1

The SAR file must include a bind file, which may not be available at the
server. If the bind file cannot be found and stored in the SAR file, an error is
raised (SQLSTATE 55045).

GET_ROUTINE_SAR

Chapter 3. Functions 547

PUT_ROUTINE_SAR

�� PUT_ROUTINE_SAR (sarblob
, new_owner , use_register_flag

) ��

The schema is SYSFUN.

The PUT_ROUTINE_SAR procedure passes the necessary file to create an SQL
routine at the server and then defines the routine. The invoker of the
PUT_ROUTINE_SAR procedure must have DBADM authority.

sarblob
An input argument of type BLOB(3M) that contains the routine SAR file
contents.

new_owner
An input argument of type VARCHAR(128) that contains an
authorization-name used for authorization checking of the routine. The
new-owner must have the necessary privileges for the routine to be
defined. If new-owner is not specified, the authorization-name of the
original routine definer is used.

use_register_flag
An input argument of type INTEGER that indicates whether or not the
CURRENT SCHEMA and CURRENT PATH special registers are used to
define the routine. If the special registers are not used, the settings for the
default schema and SQL path are the settings used when the routine was
originally defined. Possible values for use-register-flag:

0 Do not use the special registers of the current environment

1 Use the CURRENT SCHEMA and CURRENT PATH special registers.

If the value is 1, CURRENT SCHEMA is used for unqualified object
names in the routine definition (including the name of the routine) and
CURRENT PATH is used to resolve unqualified routines and data types in
the routine definition. If the use-registers-flag is not specified, the behavior
is the same as if a value of 0 was specified.

The identification information contained in sarblob is checked to confirm that
the inputs are appropriate for the environment, otherwise an error is raised
(SQLSTATE 55046). The PUT_ROUTINE_SAR procedure then uses the
contents of the sarblob to define the routine at the server.

The contents of the sarblob argument are extracted into the separate files that
make up the SQL archive file. The shared library and bind files are written to
files in a temporary directory. The environment is set so that the routine
definition statement processing is aware that compiling and linking are not

PUT_ROUTINE_SAR

548 SQL Reference, Volume 1

required, and that the location of the shared library and bind files is available.
The contents of the DDL file are then used to dynamically execute the routine
definition statement.

Note: No more than one procedure can be concurrently installed under a
given schema.

Processing of this statement may result in the same errors as executing the
routine definition statement using other interfaces. During routine definition
processing, the presence of the shared library and bind files is noted and the
precompile, compile and link steps are skipped. The bind file is used during
bind processing and the contents of both files are copied to the usual
directory for an SQL routine.

Note: If a GET ROUTINE or a PUT ROUTINE operation (or their
corresponding procedure) fails to execute successfully, it will always
return an error (SQLSTATE 38000), along with diagnostic text providing
information about the cause of the failure. For example, if the
procedure name provided to GET ROUTINE does not identify an SQL
procedure, diagnostic ″-204, 42704″ text will be returned, where ″-204″
and ″42704″ are the SQLCODE and SQLSTATE, respectively, that
identify the cause of the problem. The SQLCODE and SQLSTATE in
this example indicate that the procedure name provided in the GET
ROUTINE command is undefined.

PUT_ROUTINE_SAR

Chapter 3. Functions 549

User-defined functions

�� function-name (

�

,

expression

) ��

User-defined functions (UDFs) are extensions or additions to the existing built-in
functions of the SQL language. A user-defined function can be a scalar
function, which returns a single value each time it is called; a column
function, which is passed a set of like values and returns a single value for
the set; a row function, which returns one row; or a table function, which
returns a table.

A number of user-defined functions are provided in the SYSFUN and
SYSPROC schemas.

A UDF can be a column function only if it is sourced on an existing column
function. A UDF is referenced by means of a qualified or unqualified function
name, followed by parentheses enclosing the function arguments (if any). A
user-defined column or scalar function registered with the database can be
referenced in the same contexts in which any built-in function can appear. A
user-defined row function can be referenced only implicitly when registered
as a transform function for a user-defined type. A user-defined table function
registered with the database can be referenced only in the FROM clause of a
SELECT statement.

Function arguments must correspond in number and position to the
parameters specified for the user-defined function when it was registered with
the database. In addition, the arguments must be of data types that are
promotable to the data types of the corresponding defined parameters.

The result of the function is specified in the RETURNS clause. The RETURNS
clause, defined when the UDF was registered, determines whether or not a
function is a table function. If the RETURNS NULL ON NULL INPUT clause
is specified (or defaulted to) when the function is registered, the result is null
if any argument is null. In the case of table functions, this is interpreted to
mean a return table with no rows (that is, an empty table).

Following are some examples of user-defined functions:
v A scalar UDF called ADDRESS extracts the home address from resumes

stored in script format. The ADDRESS function expects a CLOB argument
and returns a VARCHAR(4000) value:

SELECT EMPNO, ADDRESS(RESUME) FROM EMP_RESUME
WHERE RESUME_FORMAT = ’SCRIPT’

User-defined functions

550 SQL Reference, Volume 1

v Table T2 has a numeric column A. Invoking the scalar UDF called
ADDRESS from the previous example:

SELECT ADDRESS(A) FROM T2

raises an error (SQLSTATE 42884), because no function with a matching
name and with a parameter that is promotable from the argument exists.

v A table UDF called WHO returns information about the sessions on the
server machine that were active at the time that the statement is executed.
The WHO function is invoked from within a FROM clause that includes the
keyword TABLE and a mandatory correlation variable. The column names
of the WHO() table were defined in the CREATE FUNCTION statement.

SELECT ID, START_DATE, ORIG_MACHINE
FROM TABLE(WHO()) AS QQ
WHERE START_DATE LIKE ’MAY%’

Related reference:

v “Subselect” on page 554
v “CREATE FUNCTION statement” in the SQL Reference, Volume 2

User-defined functions

Chapter 3. Functions 551

User-defined functions

552 SQL Reference, Volume 1

Chapter 4. Queries

SQL queries

A query specifies a result table. A query is a component of certain SQL
statements. The three forms of a query are:
v subselect
v fullselect
v select-statement.

Authorization

For each table, view, or nickname referenced in the query, the authorization ID
of the statement must have at least one of the following:
v SYSADM or DBADM authority
v CONTROL privilege
v SELECT privilege.

Group privileges, with the exception of PUBLIC, are not checked for queries
that are contained in static SQL statements.

For nicknames, authorization requirements of the data source for the object
referenced by the nickname are applied when the query is processed. The
authorization ID of the statement may be mapped to a different authorization
ID at the data source.

Related reference:

v “SELECT INTO statement” in the SQL Reference, Volume 2

© Copyright IBM Corp. 1993 - 2002 553

Subselect

�� select-clause from-clause
where-clause group-by-clause

�

�
having-clause order-by-clause fetch-first-clause

��

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the tables, views or
nicknames identified in the FROM clause. The derivation can be described as
a sequence of operations in which the result of each operation is input for the
next. (This is only a way of describing the subselect. The method used to
perform the derivation may be quite different from this description.)

The clauses of the subselect are processed in the following sequence:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause
7. FETCH FIRST clause

A subselect that contains an ORDER BY or FETCH FIRST clause cannot be
specified:
v In the outermost fullselect of a view.
v In a materialized query table.
v Unless the subselect is enclosed in parenthesis.

For example, the following is not valid (SQLSTATE 428FJ):
SELECT * FROM T1

ORDER BY C1
UNION
SELECT * FROM T2

ORDER BY C1

The following example is valid:
(SELECT * FROM T1

ORDER BY C1)
UNION
(SELECT * FROM T2

ORDER BY C1)

Subselect

554 SQL Reference, Volume 1

Note: An ORDER BY clause in a subselect does not affect the order of the
rows returned by a query. An ORDER BY clause only affects the order
of the rows returned if it is specified in the outermost fullselect.

select-clause

�� SELECT
ALL

DISTINCT

�

*
,

expression
AS

new-column-name
exposed-name.*

��

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is
the names or expressions specified in the SELECT clause, and R is the result
of the previous operation of the subselect. For example, if the only clauses
specified are SELECT, FROM, and WHERE, R is the result of that WHERE
clause.

ALL
Retains all rows of the final result table, and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result
table. If DISTINCT is used, no string column of the result table can be a
LONG VARCHAR, LONG VARGRAPHIC, DATALINK, LOB type, distinct
type on any of these types, or structured type. DISTINCT may be used
more than once in a subselect. This includes SELECT DISTINCT, the use
of DISTINCT in a column function of the select list or HAVING clause,
and subqueries of the subselect.

Two rows are duplicates of one another only if each value in the first is
equal to the corresponding value of the second. For determining
duplicates, two null values are considered equal.

Select list notation:

* Represents a list of names that identify the columns of table R. The first
name in the list identifies the first column of R, the second name identifies
the second column of R, and so on.

The list of names is established when the program containing the SELECT
clause is bound. Hence * (the asterisk) does not identify any columns that
have been added to a table after the statement containing the table
reference has been bound.

Subselect

Chapter 4. Queries 555

expression
Specifies the values of a result column. Can be any expression that is a
valid SQL language element, but commonly includes column names. Each
column name used in the select list must unambiguously identify a
column of R.

new-column-name or AS new-column-name
Names or renames the result column. The name must not be qualified
and does not have to be unique. Subsequent usage of column-name is
limited as follows:
v A new-column-name specified in the AS clause can be used in the

order-by-clause, provided the name is unique.
v A new-column-name specified in the AS clause of the select list

cannot be used in any other clause within the subselect
(where-clause, group-by-clause or having-clause).

v A new-column-name specified in the AS clause cannot be used in
the update-clause.

v A new-column-name specified in the AS clause is known outside
the fullselect of nested table expressions, common table expressions
and CREATE VIEW.

name.*
Represents the list of names that identify the columns of the result table
identified by exposed-name. The exposed-name may be a table name, view
name, nickname, or correlation name, and must designate a table, view or
nickname named in the FROM clause. The first name in the list identifies
the first column of the table, view or nickname, the second name in the
list identifies the second column of the table, view or nickname, and so
on.

The list of names is established when the statement containing the
SELECT clause is bound. Therefore, * does not identify any columns that
have been added to a table after the statement has been bound.

The number of columns in the result of SELECT is the same as the
number of expressions in the operational form of the select list (that is, the
list established when the statement is prepared), and cannot exceed 500
for a 4K page size or 1012 for an 8K, 16K, or 32K page size.

Limitations on string columns
For limitations on the select list, see “Restrictions Using Varying-Length
Character Strings”.

Applying the select list
Some of the results of applying the select list to R depend on whether or not
GROUP BY or HAVING is used. The results are described in two separate
lists:

Select list notation:

556 SQL Reference, Volume 1

If GROUP BY or HAVING is used:

v An expression X (not a column function) used in the select list must have a
GROUP BY clause with:
– a grouping-expression in which each column-name unambiguously

identifies a column of R (see “group-by-clause” on page 569) or
– each column of R referenced in X as a separate grouping-expression.

v The select list is applied to each group of R, and the result contains as
many rows as there are groups in R. When the select list is applied to a
group of R, that group is the source of the arguments of the column
functions in the select list.

If neither GROUP BY nor HAVING is used:

v Either the select list must not include any column functions, or each
column-name in the select list must be specified within a column function or
must be a correlated column reference.

v If the select does not include column functions, then the select list is
applied to each row of R and the result contains as many rows as there are
rows in R.

v If the select list is a list of column functions, then R is the source of the
arguments of the functions and the result of applying the select list is one
row.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if
they are derived from:
v A column that does not allow null values
v A constant
v The COUNT or COUNT_BIG function
v A host variable that does not have an indicator variable
v A scalar function or expression that does not include an operand that

allows nulls.

Result columns allow null values if they are derived from:
v Any column function except COUNT or COUNT_BIG
v A column that allows null values
v A scalar function or expression that includes an operand that allows nulls
v A NULLIF function with arguments containing equal values.
v A host variable that has an indicator variable.
v A result of a set operation if at least one of the corresponding items in the

select list is nullable.

If GROUP BY or HAVING is used

Chapter 4. Queries 557

v An arithmetic expression or view column that is derived from an arithmetic
expression and the database is configured with DFT_SQLMATHWARN set
to yes

v A dereference operation.

Names of result columns:

v If the AS clause is specified, the name of the result column is the name
specified on the AS clause.

v If the AS clause is not specified and the result column is derived from a
column, then the result column name is the unqualified name of that
column.

v If the AS clause is not specified and the result column is derived using a
dereference operation, then the result column name is the unqualified name
of the target column of the dereference operation.

v All other result column names are unnamed. The system assigns temporary
numbers (as character strings) to these columns.

Data types of result columns: Each column of the result of SELECT acquires
a data type from the expression from which it is derived.

When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,
with the same precision and scale for
DECIMAL columns.

an integer constant INTEGER.

a decimal constant DECIMAL, with the precision and scale of
the constant.

a floating-point constant DOUBLE.

the name of any numeric variable the same as the data type of the variable,
with the same precision and scale for
DECIMAL variables.

a hexadecimal constant representing n
bytes

VARCHAR(n); the code page is the
database code page.

the name of any string column the same as the data type of the column,
with the same length attribute.

the name of any string variable the same as the data type of the variable,
with the same length attribute; if the data
type of the variable is not identical to an
SQL data type (for example, a
NUL-terminated string in C), the result
column is a varying-length string.

a character string constant of length n VARCHAR(n).

Null attributes of result columns

558 SQL Reference, Volume 1

When the expression is ... The data type of the result column is ...

a graphic string constant of length n VARGRAPHIC(n).

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column.

the name of a reference type column the same as the data type of the column.

Data types of result columns

Chapter 4. Queries 559

from-clause

�� �

,

FROM table-reference ��

The FROM clause specifies an intermediate result table.

If one table-reference is specified, the intermediate result table is simply the
result of that table-reference. If more than one table-reference is specified, the
intermediate result table consists of all possible combinations of the rows of
the specified table-references (the Cartesian product). Each row of the result is
a row from the first table-reference concatenated with a row from the second
table-reference, concatenated in turn with a row from the third, and so on.
The number of rows in the result is the product of the number of rows in all
the individual table-references. For a description of table-reference, see
“table-reference” on page 561.

from-clause

560 SQL Reference, Volume 1

table-reference

��

�

nickname
table-name correlation-clause
view-name
ONLY (table-name)
OUTER view-name

TABLE (function-name ()) correlation-clause
,

expression
(fullselect) correlation-clause

TABLE
joined-table

��

correlation-clause:

�

AS
correlation-name

,

(column-name)

Each table-name, view-name or nickname specified as a table-reference must
identify an existing table, view or nickname at the application server or the
table-name of a common table expression defined preceding the fullselect
containing the table-reference. If the table-name references a typed table, the
name denotes the UNION ALL of the table with all its subtables, with only
the columns of the table-name. Similarly, if the view-name references a typed
view, the name denotes the UNION ALL of the view with all its subviews,
with only the columns of the view-name.

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the
proper subtables or subviews are not included. If the table-name used with
ONLY does not have subtables, then ONLY(table-name) is equivalent to
specifying table-name. If the view-name used with ONLY does not have
subviews, then ONLY(view-name) is equivalent to specifying view-name.

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table.
If the table-name or view-name used with OUTER does not have subtables or
subviews, then specifying OUTER is equivalent to not specifying OUTER.
OUTER(table-name) is derived from table-name as follows:
v The columns include the columns of table-name followed by the additional

columns introduced by each of its subtables (if any). The additional
columns are added on the right, traversing the subtable hierarchy in
depth-first order. Subtables that have a common parent are traversed in
creation order of their types.

table-reference

Chapter 4. Queries 561

v The rows include all the rows of table-name and all the rows of its subtables.
Null values are returned for columns that are not in the subtable for the
row.

The previous points also apply to OUTER(view-name), substituting view-name
for table-name and subview for subtable.

The use of ONLY or OUTER requires the SELECT privilege on every subtable
of table-name or subview of view-name.

Each function-name together with the types of its arguments, specified as a
table reference must resolve to an existing table function at the application
server.

A fullselect in parentheses followed by a correlation name is called a nested
table expression.

A joined-table specifies an intermediate result set that is the result of one or
more join operations. For more information, see “joined-table” on page 565.

The exposed names of all table references should be unique. An exposed
name is:
v A correlation-name,
v A table-name that is not followed by a correlation-name,
v A view-name that is not followed by a correlation-name,
v A nickname that is not followed by a correlation-name,
v An alias-name that is not followed by a correlation-name.

Each correlation-name is defined as a designator of the immediately preceding
table-name, view-name, nickname, function-name reference or nested table
expression. Any qualified reference to a column for a table, view, table
function or nested table expression must use the exposed name. If the same
table name, view or nickname name is specified twice, at least one
specification should be followed by a correlation-name. The correlation-name is
used to qualify references to the columns of the table, view or nickname.
When a correlation-name is specified, column-names can also be specified to give
names to the columns of the table-name, view-name, nickname, function-name
reference or nested table expression.

In general, table functions and nested table expressions can be specified on
any from-clause. Columns from the table functions and nested table
expressions can be referenced in the select list and in the rest of the subselect
using the correlation name which must be specified. The scope of this
correlation name is the same as correlation names for other table, view or
nickname in the FROM clause. A nested table expression can be used:

table-reference

562 SQL Reference, Volume 1

v in place of a view to avoid creating the view (when general use of the view
is not required)

v when the desired result table is based on host variables.

Table function references
In general, a table function together with its argument values can be
referenced in the FROM clause of a SELECT in exactly the same way as a
table or view. There are, however, some special considerations which apply.
v Table Function Column Names

Unless alternate column names are provided following the correlation-name,
the column names for the table function are those specified in the
RETURNS clause of the CREATE FUNCTION statement. This is analogous
to the names of the columns of a table, which are defined in the CREATE
TABLE statement.

v Table Function Resolution
The arguments specified in a table function reference, together with the
function name, are used by an algorithm called function resolution to
determine the exact function to be used. This is no different from what
happens with other functions (such as scalar functions), used in a
statement.

v Table Function Arguments
As with scalar function arguments, table function arguments can in general
be any valid SQL expression. So the following examples are valid syntax:
Example 1: SELECT c1

FROM TABLE(tf1(’Zachary’)) AS z
WHERE c2 = ’FLORIDA’;

Example 2: SELECT c1
FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

Example 3: SELECT c1
FROM t
WHERE c2 IN

(SELECT c3 FROM
TABLE(tf5(t.c4)) AS z -- correlated reference
) -- to previous FROM clause

Correlated references in table-references
Correlated references can be used in nested table expressions or as arguments
to table functions. The basic rule that applies for both these cases is that the
correlated reference must be from a table-reference at a higher level in the
hierarchy of subqueries. This hierarchy includes the table-references that have
already been resolved in the left-to-right processing of the FROM clause. For
nested table expressions, the TABLE keyword must appear before the
fullselect. So the following examples are valid syntax:

table-reference

Chapter 4. Queries 563

Example 1: SELECT t.c1, z.c5
FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3
WHERE t.c3 = z.c4; -- in FROM, so t.c2

-- is known

Example 2: SELECT t.c1, z.c5
FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf3
WHERE t.c3 = z.c4; -- in FROM, so t.c2

-- is known

Example 3: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
TABLE (SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount
FROM employee e -- department precedes
WHERE e.workdept=d.deptno -- and TABLE is
) AS empinfo; -- specified, so

-- d.deptno is known

But the following examples are not valid:
Example 4: SELECT t.c1, z.c5

FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!
WHERE t.c3 = z.c4; -- compare to Example 1 above.

Example 5: SELECT a.c1, b.c5
FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b
WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

Example 6: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
(SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount
FROM employee e -- department precedes
WHERE e.workdept=d.deptno -- but TABLE is not
) AS empinfo; -- specified, so

-- d.deptno is unknown

Correlated references in table-references

564 SQL Reference, Volume 1

joined-table

��
INNER

table-reference JOIN table-reference ON join-condition
outer

(joined-table)

��

outer:

OUTER
LEFT
RIGHT
FULL

A joined table specifies an intermediate result table that is the result of either
an inner join or an outer join. The table is derived by applying one of the join
operators: INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER to its
operands.

Inner joins can be thought of as the cross product of the tables (combine each
row of the left table with every row of the right table), keeping only the rows
where the join condition is true. The result table may be missing rows from
either or both of the joined tables. Outer joins include the inner join and
preserve these missing rows. There are three types of outer joins:
v left outer join includes rows from the left table that were missing from the

inner join.
v right outer join includes rows from the right table that were missing from

the inner join.
v full outer join includes rows from both the left and right tables that were

missing from the inner join.

If a join-operator is not specified, INNER is implicit. The order in which
multiple joins are performed can affect the result. Joins can be nested within
other joins. The order of processing for joins is generally from left to right, but
based on the position of the required join-condition. Parentheses are
recommended to make the order of nested joins more readable. For example:

TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1
RIGHT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1

ON TB1.C1=TB3.C1

is the same as:
(TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)

RIGHT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)
ON TB1.C1=TB3.C1

joined-table

Chapter 4. Queries 565

A joined table can be used in any context in which any form of the SELECT
statement is used. A view or a cursor is read-only if its SELECT statement
includes a joined table.

A join-condition is a search-condition except that:
v it cannot contain any subqueries, scalar or otherwise
v it cannot include any dereference operations or the DEREF function where

the reference value is other than the object identifier column.
v it cannot include an SQL function
v any column referenced in an expression of the join-condition must be a

column of one of the operand tables of the associated join (in the scope of
the same joined-table clause)

v any function referenced in an expression of the join-condition of a full outer
join must be deterministic and have no external action.

An error occurs if the join condition does not comply with these rules
(SQLSTATE 42972).

Column references are resolved using the rules for resolution of column name
qualifiers. The same rules that apply to predicates apply to join conditions.

Join operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left
and right operand tables of the JOIN operator of the join-condition. For all
possible combinations of rows of T1 and T2, a row of T1 is paired with a row
of T2 if the join-condition is true. When a row of T1 is joined with a row of T2,
a row in the result consists of the values of that row of T1 concatenated with
the values of that row of T2. The execution might involve the generation of a
null row. The null row of a table consists of a null value for each column of
the table, regardless of whether the columns allow null values.

The following summarizes the result of the join operations:
v The result of T1 INNER JOIN T2 consists of their paired rows where the

join-condition is true.
v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where

the join-condition is true and, for each unpaired row of T1, the
concatenation of that row with the null row of T2. All columns derived
from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows
where the join-condition is true and, for each unpaired row of T2, the
concatenation of that row with the null row of T1. All columns derived
from T1 allow null values.

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and,
for each unpaired row of T2, the concatenation of that row with the null

joined-table

566 SQL Reference, Volume 1

row of T1 and, for each unpaired row of T1, the concatenation of that row
with the null row of T2. All columns derived from T1 and T2 allow null
values.

Join operations

Chapter 4. Queries 567

where-clause

�� WHERE search-condition ��

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search-condition is true. R is the result of the FROM
clause of the subselect.

The search-condition must conform to the following rules:
v Each column-name must unambiguously identify a column of R or be a

correlated reference. A column-name is a correlated reference if it identifies a
column of a table-reference in an outer subselect.

v A column function must not be specified unless the WHERE clause is
specified in a subquery of a HAVING clause and the argument of the
function is a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R,
and the results are used in the application of the search-condition to the given
row of R. A subquery is actually executed for each row of R only if it includes
a correlated reference. In fact, a subquery with no correlated references may
be executed just once, whereas a subquery with a correlated reference may
have to be executed once for each row.

where-clause

568 SQL Reference, Volume 1

group-by-clause

�� �

,

GROUP BY grouping-expression
grouping-sets
super-groups

��

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the
subselect.

In its simplest form, a GROUP BY clause contains a grouping expression. A
grouping expression is an expression used in defining the grouping of R. Each
column name included in grouping-expression must unambiguously identify a
column of R (SQLSTATE 42702 or 42703). A grouping expression cannot
include a scalar-fullselect (SQLSTATE 42822) or any function that is variant or
has an external action (SQLSTATE 42845).

More complex forms of the GROUP BY clause include grouping-sets and
super-groups. For a description of these forms, see “grouping-sets” on page 570
and “super-groups” on page 571, respectively.

The result of GROUP BY is a set of groups of rows. Each row in this result
represents the set of rows for which the grouping-expression is equal. For
grouping, all null values from a grouping-expression are considered equal.

A grouping-expression can be used in a search condition in a HAVING clause,
in an expression in a SELECT clause or in a sort-key-expression of an ORDER
BY clause (see “order-by-clause” on page 576 for details). In each case, the
reference specifies only one value for each group. For example, if the
grouping-expression is col1+col2, then an allowed expression in the select list
would be col1+col2+3. Associativity rules for expressions would disallow the
similar expression, 3+col1+col2, unless parentheses are used to ensure that the
corresponding expression is evaluated in the same order. Thus, 3+(col1+col2)
would also be allowed in the select list. If the concatenation operator is used,
the grouping-expression must be used exactly as the expression was specified in
the select list.

If the grouping-expression contains varying-length strings with trailing blanks,
the values in the group can differ in the number of trailing blanks and may
not all have the same length. In that case, a reference to the grouping-expression
still specifies only one value for each group, but the value for a group is
chosen arbitrarily from the available set of values. Thus, the actual length of
the result value is unpredictable.

group-by-clause

Chapter 4. Queries 569

As noted, there are some cases where the GROUP BY clause cannot refer
directly to a column that is specified in the SELECT clause as an expression
(scalar-fullselect, variant or external action functions). To group using such an
expression, use a nested table expression or a common table expression to first
provide a result table with the expression as a column of the result. For an
example using nested table expressions, see “Example A9” on page 582.

grouping-sets

�� �

�

,

GROUPING SETS (grouping-expression)
super-groups

,

(grouping-expression)
super-groups

��

A grouping-sets specification allows multiple grouping clauses to be specified
in a single statement. This can be thought of as the union of two or more
groups of rows into a single result set. It is logically equivalent to the union of
multiple subselects with the group by clause in each subselect corresponding
to one grouping set. A grouping set can be a single element or can be a list of
elements delimited by parentheses, where an element is either a
grouping-expression or a super-group. Using grouping-sets allows the groups
to be computed with a single pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be
used, or the more complex forms of super-groups. For a description of
super-groups, see “super-groups” on page 571.

Note that grouping sets are the fundamental building blocks for GROUP BY
operations. A simple GROUP BY with a single column can be considered a
grouping set with one element. For example:

GROUP BY a

is the same as
GROUP BY GROUPING SETS((a))

and
GROUP BY a,b,c

is the same as
GROUP BY GROUPING SETS((a,b,c))

group-by-clause

570 SQL Reference, Volume 1

Non-aggregation columns from the select list of the subselect that are
excluded from a grouping set will return a null for such columns for each row
generated for that grouping set. This reflects the fact that aggregation was
done without considering the values for those columns.

“Example C2” on page 587 through “Example C7” on page 591 illustrate the
use of grouping sets.

super-groups

��
(1)

ROLLUP (grouping-expression-list)
(2)

CUBE (grouping-expression-list)
grand-total

��

grouping-expression-list:

�

�

,

grouping-expression
,

(grouping-expression)

grand-total:

()

Notes:

1 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH ROLLUP.

2 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that
produces a result set containing sub-total rows in addition to the “regular”
grouped rows. Sub-total rows are “super-aggregate” rows that contain
further aggregates whose values are derived by applying the same
column functions that were used to obtain the grouped rows. These rows
are called sub-total rows, because that is their most common use;
however, any column function can be used for the aggregation. For
instance, MAX and AVG are used in “Example C8” on page 593.

A ROLLUP grouping is a series of grouping-sets. The general specification
of a ROLLUP with n elements

grouping-sets

Chapter 4. Queries 571

GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to
GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

(C1,C2,...,Cn-1)
...
(C1,C2)
(C1)
())

Note that the n elements of the ROLLUP translate to n+1 grouping sets.
Note also that the order in which the grouping-expressions is specified is
significant for ROLLUP. For example:
GROUP BY ROLLUP(a,b)

is equivalent to
GROUP BY GROUPING SETS((a,b)

(a)
())

while
GROUP BY ROLLUP(b,a)

is the same as
GROUP BY GROUPING SETS((b,a)

(b)
())

The ORDER BY clause is the only way to guarantee the order of the rows
in the result set. “Example C3” on page 587 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a
result set that contains all the rows of a ROLLUP aggregation and, in
addition, contains ″cross-tabulation″ rows. Cross-tabulation rows are
additional ″super-aggregate″ rows that are not part of an aggregation with
sub-totals.

Like a ROLLUP, a CUBE grouping can also be thought of as a series of
grouping-sets. In the case of a CUBE, all permutations of the cubed
grouping-expression-list are computed along with the grand total. Therefore,
the n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets.
For instance, a specification of
GROUP BY CUBE(a,b,c)

is equivalent to

super-groups

572 SQL Reference, Volume 1

GROUP BY GROUPING SETS((a,b,c)
(a,b)
(a,c)
(b,c)
(a)
(b)
(c)
())

Notice that the 3 elements of the CUBE translate to 8 grouping sets.

The order of specification of elements does not matter for CUBE. ’CUBE
(DayOfYear, Sales_Person)’ and ’CUBE (Sales_Person, DayOfYear)’ yield
the same result sets. The use of the word ’same’ applies to content of the
result set, not to its order. The ORDER BY clause is the only way to
guarantee the order of the rows in the result set. “Example C4” on
page 588 illustrates the use of CUBE.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP clause to
define the number of elements in the CUBE or ROLLUP operation. This is
controlled by using parentheses to delimit elements with multiple
grouping-expressions.

The rules for a grouping-expression are described in “group-by-clause” on
page 569. For example, suppose that a query is to return the total
expenses for the ROLLUP of City within a Province but not within a
County. However the clause:
GROUP BY ROLLUP(Province, County, City)

results in unwanted sub-total rows for the County. In the clause
GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and,
therefore, a query that uses this clause will yield the desired result. In
other words, the two element ROLLUP

GROUP BY ROLLUP(Province, (County, City))

generates
GROUP BY GROUPING SETS((Province, County, City)

(Province)
())

while the 3 element ROLLUP would generate
GROUP BY GROUPING SETS((Province, County, City)

(Province, County)
(Province)
())

super-groups

Chapter 4. Queries 573

“Example C2” on page 587 also utilizes composite column values.

grand-total
Both CUBE and ROLLUP return a row which is the overall (grand total)
aggregation. This may be separately specified with empty parentheses
within the GROUPING SET clause. It may also be specified directly in the
GROUP BY clause, although there is no effect on the result of the query.
“Example C4” on page 588 uses the grand-total syntax.

Combining grouping sets
This can be used to combine any of the types of GROUP BY clauses. When
simple grouping-expression fields are combined with other groups, they are
″appended″ to the beginning of the resulting grouping sets. When ROLLUP or
CUBE expressions are combined, they operate like ″multipliers″ on the
remaining expression, forming additional grouping set entries according to the
definition of either ROLLUP or CUBE.

For instance, combining grouping-expression elements acts as follows:
GROUP BY a, ROLLUP(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a))

Or similarly,
GROUP BY a, b, ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b))

Combining of ROLLUP elements acts as follows:
GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a)
(b,c)
(b)
())

Similarly,
GROUP BY ROLLUP(a), CUBE(b,c)

super-groups

574 SQL Reference, Volume 1

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a,c)
(a)
(b,c)
(b)
(c)
())

Combining of CUBE and ROLLUP elements acts as follows:
GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b)
(a,c,d)
(a,c)
(a)
(b,c,d)
(b,c)
(b)
(c,d)
(c)
())

Like a simple grouping-expression, combining grouping sets also eliminates
duplicates within each grouping set. For instance,

GROUP BY a, ROLLUP(a,b)

is equivalent to
GROUP BY GROUPING SETS((a,b)

(a))

A more complete example of combining grouping sets is to construct a result
set that eliminates certain rows that would be returned for a full CUBE
aggregation.

For example, consider the following GROUP BY clause:
GROUP BY Region,

ROLLUP(Sales_Person, WEEK(Sales_Date)),
CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is simply grouped,
those within the parenthesis following ROLLUP are rolled up, and those
within the parenthesis following CUBE are cubed. Thus, the above clause
results in a cube of MONTH within YEAR which is then rolled up within

Combining grouping sets

Chapter 4. Queries 575

WEEK within Sales_Person within the Region aggregation. It does not result
in any grand total row or any cross-tabulation rows on Region, Sales_Person
or WEEK(Sales_Date) so produces fewer rows than the clause:

GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
YEAR(Sales_Date), MONTH(Sales_Date))

having-clause

�� HAVING search-condition ��

The HAVING clause specifies an intermediate result table that consists of
those groups of R for which the search-condition is true. R is the result of the
previous clause of the subselect. If this clause is not GROUP BY, R is
considered to be a single group with no grouping columns.

Each column-name in the search condition must do one of the following:
v Unambiguously identify a grouping column of R.
v Be specified within a column function.
v Be a correlated reference. A column-name is a correlated reference if it

identifies a column of a table-reference in an outer subselect.

A group of R to which the search condition is applied supplies the argument
for each column function in the search condition, except for any function
whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and
the results used in applying the search condition. In actuality, the subquery is
executed for each group only if it contains a correlated reference. For an
illustration of the difference, see “Example A6” on page 581 and “Example
A7” on page 581.

A correlated reference to a group of R must either identify a grouping column
or be contained within a column function.

When HAVING is used without GROUP BY, the select list can only be a
column name within a column function, a correlated column reference, a
literal, or a special register.

order-by-clause

�� ORDER BY �

,
ASC

sort-key
DESC

ORDER OF table-designator

��

Combining grouping sets

576 SQL Reference, Volume 1

sort-key:

simple-column-name
simple-integer
sort-key-expression

The ORDER BY clause specifies an ordering of the rows of the result table. If
a single sort specification (one sort-key with associated direction) is identified,
the rows are ordered by the values of that sort specification. If more than one
sort specification is identified, the rows are ordered by the values of the first
identified sort specification, then by the values of the second identified sort
specification, and so on. Each sort-key cannot have a data type of LONG
VARCHAR, CLOB, LONG VARGRAPHIC, DBCLOB, BLOB, DATALINK,
distinct type on any of these types, or structured type (SQLSTATE 42907).

A named column in the select list may be identified by a sort-key that is a
simple-integer or a simple-column-name. An unnamed column in the select list
must be identified by an simple-integer or, in some cases, by a
sort-key-expression that matches the expression in the select list (see details of
sort-key-expression). A column is unnamed if the AS clause is not specified and
it is derived from a constant, an expression with operators, or a function.

Ordering is performed in accordance with comparison rules. The null value is
higher than all other values. If the ORDER BY clause does not completely
order the rows, rows with duplicate values of all identified columns are
displayed in an arbitrary order.

simple-column-name
Usually identifies a column of the result table. In this case,
simple-column-name must be the column name of a named column in the
select list.

The simple-column-name may also identify a column name of a table, view,
or nested table identified in the FROM clause if the query is a subselect.
An error occurs if the subselect:
v Specifies DISTINCT in the select-clause (SQLSTATE 42822)
v Produces a grouped result and the simple-column-name is not a

grouping-expression (SQLSTATE 42803).

Determining which column is used for ordering the result is described
under “Column names in sort keys” below.

simple-integer
Must be greater than 0 and not greater than the number of columns in the
result table (SQLSTATE 42805). The integer n identifies the nth column of
the result table.

order-by-clause

Chapter 4. Queries 577

sort-key-expression
An expression that is not simply a column name or an unsigned integer
constant. The query to which ordering is applied must be a subselect to
use this form of sort-key. The sort-key-expression cannot include a
correlated scalar-fullselect (SQLSTATE 42703) or a function with an
external action (SQLSTATE 42845).

Any column-name within a sort-key-expression must conform to the rules
described under “Column names in sort keys” below.

There are a number of special cases that further restrict the expressions
that can be specified.
v DISTINCT is specified in the SELECT clause of the subselect

(SQLSTATE 42822).
The sort-key-expression must match exactly with an expression in the
select list of the subselect (scalar-fullselects are never matched).

v The subselect is grouped (SQLSTATE 42803).
The sort-key-expression can:
– be an expression in the select list of the subselect,
– include a grouping-expression from the GROUP BY clause of the

subselect
– include a column function, constant or host variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied
to the result table of the subselect. There must be a table reference
matching table-designator in the FROM clause of the subselect that specifies
this clause (SQLSTATE 42703). The subselect (or fullselect) corresponding
to the specified table-designator must include an ORDER BY clause that is
dependant on the data (SQLSTATE 428FI). The ordering that is applied is
the same as if the columns of the ORDER BY clause in the nested
subselect (or fullselect) were included in the outer subselect (or fullselect),
and these columns were specified in place of the ORDER OF clause.

Note that this form is not allowed in a fullselect (other than the
degenerative form of a fullselect). For example, the following is not valid:
(SELECT C1 FROM T1

ORDER BY C1)
UNION
SELECT C1 FROM T2

ORDER BY ORDER OF T1

order-by-clause

578 SQL Reference, Volume 1

The following example is valid:
SELECT C1 FROM

(SELECT C1 FROM T1
UNION

SELECT C1 FROM T2
ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

Notes:

v Column names in sort keys:
– The column name is qualified.

The query must be a subselect (SQLSTATE 42877). The column name
must unambiguously identify a column of some table, view or nested
table in the FROM clause of the subselect (SQLSTATE 42702). The value
of the column is used to compute the value of the sort specification.

– The column name is unqualified.
- The query is a subselect.

If the column name is identical to the name of more than one column
of the result table, the column name must unambiguously identify a
column of some table, view or nested table in the FROM clause of the
ordering subselect (SQLSTATE 42702). If the column name is identical
to one column, that column is used to compute the value of the sort
specification. If the column name is not identical to a column of the
result table, then it must unambiguously identify a column of some
table, view or nested table in the FROM clause of the fullselect in the
select-statement (SQLSTATE 42702).

- The query is not a subselect (it includes set operations such as union,
except or intersect).
The column name must not be identical to the name of more than one
column of the result table (SQLSTATE 42702). The column name must
be identical to exactly one column of the result table (SQLSTATE
42707), and this column is used to compute the value of the sort
specification.

v Limits: The use of a sort-key-expression or a simple-column-name where the
column is not in the select list may result in the addition of the column or
expression to the temporary table used for sorting. This may result in
reaching the limit of the number of columns in a table or the limit on the
size of a row in a table. Exceeding these limits will result in an error if a
temporary table is required to perform the sorting operation.

fetch-first-clause

��
1

FETCH FIRST
integer

ROW
ROWS

ONLY ��

order-by-clause

Chapter 4. Queries 579

The fetch-first-clause sets a maximum number of rows that can be retrieved. It
lets the database manager know that the application does not want to retrieve
more than integer rows, regardless of how many rows there might be in the
result table when this clause is not specified. An attempt to fetch beyond
integer rows is handled the same way as normal end of data (SQLSTATE
02000). The value of integer must be a positive integer (not zero).

Limiting the result table to the first integer rows can improve performance.
The database manager will cease processing the query once it has determined
the first integer rows. If both the fetch-first-clause and the optimize-for-clause are
specified, the lower of the integer values from these clauses will be used to
influence the communications buffer size. The values are considered
independently for optimization purposes.

Examples of subselects
Example A1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example A2: Join the EMP_ACT and EMPLOYEE tables, select all the
columns from the EMP_ACT table and add the employee’s surname
(LASTNAME) from the EMPLOYEE table to each row of the result.

SELECT EMP_ACT.*, LASTNAME
FROM EMP_ACT, EMPLOYEE
WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example A3: Join the EMPLOYEE and DEPARTMENT tables, select the
employee number (EMPNO), employee surname (LASTNAME), department
number (WORKDEPT in the EMPLOYEE table and DEPTNO in the
DEPARTMENT table) and department name (DEPTNAME) of all employees
who were born (BIRTHDATE) earlier than 1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE WORKDEPT = DEPTNO
AND YEAR(BIRTHDATE) < 1930

Example A4: Select the job (JOB) and the minimum and maximum salaries
(SALARY) for each group of rows with the same job code in the EMPLOYEE
table, but only for groups with more than one row and with a maximum
salary greater than or equal to 27000.

SELECT JOB, MIN(SALARY), MAX(SALARY)
FROM EMPLOYEE
GROUP BY JOB
HAVING COUNT(*) > 1
AND MAX(SALARY) >= 27000

fetch-first-clause

580 SQL Reference, Volume 1

Example A5: Select all the rows of EMP_ACT table for employees (EMPNO)
in department (WORKDEPT) ‘E11’. (Employee department numbers are
shown in the EMPLOYEE table.)

SELECT *
FROM EMP_ACT
WHERE EMPNO IN

(SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT = ’E11’)

Example A6: From the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all
departments whose maximum salary is less than the average salary for all
employees.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this
example.

Example A7: Using the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all
departments whose maximum salary is less than the average salary in all
other departments.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to “Example A6”, the subquery in the HAVING clause would need
to be executed for each group.

Example A8: Determine the employee number and salary of sales
representatives along with the average salary and head count of their
departments.

This query must first create a nested table expression (DINFO) in order to get
the AVGSALARY and EMPCOUNT columns, as well as the DEPTNO column
that is used in the WHERE clause.
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
FROM EMPLOYEE THIS_EMP,

(SELECT OTHERS.WORKDEPT AS DEPTNO,
AVG(OTHERS.SALARY) AS AVGSALARY,

Examples of subselects

Chapter 4. Queries 581

COUNT(*) AS EMPCOUNT
FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT
) AS DINFO

WHERE THIS_EMP.JOB = ’SALESREP’
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the overhead of creating
the DINFO view as a regular view. During statement preparation, accessing
the catalog for the view is avoided and, because of the context of the rest of
the query, only the rows for the department of the sales representatives need
to be considered by the view.

Example A9: Display the average education level and salary for 5 random
groups of employees.

This query requires the use of a nested table expression to set a random value
for each employee so that it can subsequently be used in the GROUP BY
clause.

SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)
FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

FROM EMPLOYEE
) AS EMPRAND

GROUP BY RANDID

Example A10: Query the EMP_ACT table and return those project numbers
that have an employee whose salary is in the top 10 of all employees.

SELECT EMP_ACT.EMPNO,PROJNO
FROM EMP_ACT
WHERE EMP_ACT.EMPNO IN

(SELECT EMPLOYEE.EMPNO
FROM EMPLOYEE
ORDER BY SALARY DESC
FETCH FIRST 10 ROWS ONLY)

Examples of subselects

582 SQL Reference, Volume 1

Examples of joins
Example B1: This example illustrates the results of the various joins using
tables J1 and J2. These tables contain rows as shown.

SELECT * FROM J1

W X
--- ------
A 11
B 12
C 13

SELECT * FROM J2

Y Z
--- ------
A 21
C 22
D 23

The following query does an inner join of J1 and J2 matching the first column
of both tables.

SELECT * FROM J1 INNER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22

In this inner join example the row with column W=’C’ from J1 and the row
with column Y=’D’ from J2 are not included in the result because they do not
have a match in the other table. Note that the following alternative form of an
inner join query produces the same result.

SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls
for the columns of J2. Every row from J1 is included.

SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
B 12 - -
C 13 C 22

The following right outer join will get back the missing row from J2 with
nulls for the columns of J1. Every row from J2 is included.

SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

W X Y Z

Examples of joins

Chapter 4. Queries 583

--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23

The following full outer join will get back the missing rows from both J1 and
J2 with nulls where appropriate. Every row from both J1 and J2 is included.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23
B 12 - -

Example B2: Using the tables J1 and J2 from the previous example, examine
what happens when and additional predicate is added to the search condition.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
C 13 C 22

The additional condition caused the inner join to select only 1 row compared
to the inner join in “Example B1” on page 583.

Notice what the impact of this is on the full outer join.
SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
- - A 21
C 13 C 22
- - D 23
A 11 - -
B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate)
since there was only 1 row in the inner join and all rows of both tables must
be returned.

The following query illustrates that placing the same additional predicate in
WHERE clause has completely different results.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y
WHERE X=13

W X Y Z
--- ------ --- ------
C 13 C 22

Examples of joins

584 SQL Reference, Volume 1

The WHERE clause is applied after the intermediate result of the full outer
join. This intermediate result would be the same as the result of the full outer
join query in “Example B1” on page 583. The WHERE clause is applied to this
intermediate result and eliminates all but the row that has X=13. Choosing the
location of a predicate when performing outer joins can have significant
impact on the results. Consider what happens if the predicate was X=12
instead of X=13. The following inner join returns no rows.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join would return 6 rows, 3 from J1 with nulls for the
columns of J2 and 3 from J2 with nulls for the columns of J1.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

W X Y Z
--- ------ --- ------
- - A 21
- - C 22
- - D 23
A 11 - -
B 12 - -
C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.
SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

WHERE X=12

W X Y Z
--- ------ --- ------
B 12 - -

Example B3: List every department with the employee number and last name
of the manager, including departments without a manager.

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

ON MGRNO = EMPNO

Example B4: List every employee number and last name with the employee
number and last name of their manager, including employees without a
manager.

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM EMPLOYEE E LEFT OUTER JOIN

DEPARTMENT INNER JOIN EMPLOYEE M
ON MGRNO = M.EMPNO
ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the
DEPARTMENT table and the left outer join guarantees that each employee is
listed even if a corresponding department is not found in DEPARTMENT.

Examples of joins

Chapter 4. Queries 585

Examples of grouping sets, cube, and rollup
The queries in “Example C1” through “Example C4” on page 588 use a subset
of the rows in the SALES tables based on the predicate ’WEEK(SALES_DATE)
= 13’.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SALES AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13

which results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 LUCCHESSI 3
13 6 LUCCHESSI 1
13 6 LEE 2
13 6 LEE 2
13 6 LEE 3
13 6 LEE 5
13 6 GOUNOT 3
13 6 GOUNOT 1
13 6 GOUNOT 7
13 7 LUCCHESSI 1
13 7 LUCCHESSI 2
13 7 LUCCHESSI 1
13 7 LEE 7
13 7 LEE 3
13 7 LEE 7
13 7 LEE 4
13 7 GOUNOT 2
13 7 GOUNOT 18
13 7 GOUNOT 1

Example C1: Here is a query with a basic GROUP BY clause over 3 columns:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4

Examples of grouping sets, cube, and rollup

586 SQL Reference, Volume 1

Example C2: Produce the result based on two different grouping sets of rows
from the SALES table.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

(DAYOFWEEK(SALES_DATE), SALES_PERSON))
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows
are from the second grouping set.

Example C3: If you use the 3 distinct columns involved in the grouping sets
of “Example C2” and perform a ROLLUP, you can see grouping sets for
(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and
grand total.
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4

Examples of grouping sets, cube, and rollup

Chapter 4. Queries 587

13 7 - 46
13 - - 73
- - - 73

Example C4: If you run the same query as “Example C3” on page 587 only
replace ROLLUP with CUBE, you can see additional grouping sets for
(WEEK,SALES_PERSON), (DAY_WEEK,SALES_PERSON), (DAY_WEEK),
(SALES_PERSON) in the result.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4
13 7 - 46
13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
13 - - 73
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 6 - 27
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4
- 7 - 46
- - GOUNOT 32
- - LEE 33
- - LUCCHESSI 8
- - - 73

Example C5: Obtain a result set which includes a grand-total of selected rows
from the SALES table together with a group of rows aggregated by
SALES_PERSON and MONTH.

SELECT SALES_PERSON,
MONTH(SALES_DATE) AS MONTH,
SUM(SALES) AS UNITS_SOLD

FROM SALES

Examples of grouping sets, cube, and rollup

588 SQL Reference, Volume 1

GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),
()

)
ORDER BY SALES_PERSON, MONTH

This results in:
SALES_PERSON MONTH UNITS_SOLD
--------------- ----------- -----------
GOUNOT 3 35
GOUNOT 4 14
GOUNOT 12 1
LEE 3 60
LEE 4 25
LEE 12 6
LUCCHESSI 3 9
LUCCHESSI 4 4
LUCCHESSI 12 1
- - 155

Example C6: This example shows two simple ROLLUP queries followed by a
query which treats the two ROLLUPs as grouping sets in a single result set
and specifies row ordering for each column involved in the grouping sets.

Example C6-1:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
ORDER BY WEEK, DAY_WEEK

results in:
WEEK DAY_WEEK UNITS_SOLD
----------- ----------- -----------

13 6 27
13 7 46
13 - 73
14 1 31
14 2 43
14 - 74
53 1 8
53 - 8
- - 155

Example C6-2:
SELECT MONTH(SALES_DATE) AS MONTH,

REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);
ORDER BY MONTH, REGION

Examples of grouping sets, cube, and rollup

Chapter 4. Queries 589

results in:
MONTH REGION UNITS_SOLD
----------- --------------- -----------

3 Manitoba 22
3 Ontario-North 8
3 Ontario-South 34
3 Quebec 40
3 - 104
4 Manitoba 17
4 Ontario-North 1
4 Ontario-South 14
4 Quebec 11
4 - 43
12 Manitoba 2
12 Ontario-South 4
12 Quebec 2
12 - 8
- - 155

Example C6-3:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

ROLLUP(MONTH(SALES_DATE), REGION))
ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
WEEK DAY_WEEK MONTH REGION UNITS_SOLD
----------- ----------- ----------- --------------- -----------

13 6 - - 27
13 7 - - 46
13 - - - 73
14 1 - - 31
14 2 - - 43
14 - - - 74
53 1 - - 8
53 - - - 8
- - 3 Manitoba 22
- - 3 Ontario-North 8
- - 3 Ontario-South 34
- - 3 Quebec 40
- - 3 - 104
- - 4 Manitoba 17
- - 4 Ontario-North 1
- - 4 Ontario-South 14
- - 4 Quebec 11
- - 4 - 43
- - 12 Manitoba 2
- - 12 Ontario-South 4

Examples of grouping sets, cube, and rollup

590 SQL Reference, Volume 1

- - 12 Quebec 2
- - 12 - 8
- - - - 155
- - - - 155

Using the two ROLLUPs as grouping sets causes the result to include
duplicate rows. There are even two grand total rows.

Observe how the use of ORDER BY has affected the results:
v In the first grouped set, week 53 has been repositioned to the end.
v In the second grouped set, month 12 has now been positioned to the end

and the regions now appear in alphabetic order.
v Null values are sorted high.

Example C7: In queries that perform multiple ROLLUPs in a single pass (such
as “Example C6-3” on page 590) you may want to be able to indicate which
grouping set produced each row. The following steps demonstrate how to
provide a column (called GROUP) which indicates the origin of each row in
the result set. By origin, we mean which one of the two grouping sets
produced the row in the result set.

Step 1: Introduce a way of ″generating″ new data values, using a query which
selects from a VALUES clause (which is an alternate form of a fullselect). This
query shows how a table can be derived called ″X″ having 2 columns ″R1″
and ″R2″ and 1 row of data.
SELECT R1,R2
FROM (VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2);

results in:
R1 R2
------- -------
GROUP 1 GROUP 2

Step 2: Form the cross product of this table ″X″ with the SALES table. This
add columns ″R1″ and ″R2″ to every row.
SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SALES AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

This add columns ″R1″ and ″R2″ to every row.

Step 3: Now we can combine these columns with the grouping sets to include
these columns in the rollup analysis.

Examples of grouping sets, cube, and rollup

Chapter 4. Queries 591

SELECT R1, R2,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE))),
(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ------- -------- --------- --------- --------------- -----------
GROUP 1 - 13 6 - - 27
GROUP 1 - 13 7 - - 46
GROUP 1 - 13 - - - 73
GROUP 1 - 14 1 - - 31
GROUP 1 - 14 2 - - 43
GROUP 1 - 14 - - - 74
GROUP 1 - 53 1 - - 8
GROUP 1 - 53 - - - 8
- GROUP 2 - - 3 Manitoba 22
- GROUP 2 - - 3 Ontario-North 8
- GROUP 2 - - 3 Ontario-South 34
- GROUP 2 - - 3 Quebec 40
- GROUP 2 - - 3 - 104
- GROUP 2 - - 4 Manitoba 17
- GROUP 2 - - 4 Ontario-North 1
- GROUP 2 - - 4 Ontario-South 14
- GROUP 2 - - 4 Quebec 11
- GROUP 2 - - 4 - 43
- GROUP 2 - - 12 Manitoba 2
- GROUP 2 - - 12 Ontario-South 4
- GROUP 2 - - 12 Quebec 2
- GROUP 2 - - 12 - 8
- GROUP 2 - - - - 155
GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets,
whenever R1 is non-null in the result, R2 is null and whenever R2 is non-null
in the result, R1 is null. That means you can consolidate these columns into a
single column using the COALESCE function. You can also use this column in
the ORDER BY clause to keep the results of the two grouping sets together.

SELECT COALESCE(R1,R2) AS GROUP,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

Examples of grouping sets, cube, and rollup

592 SQL Reference, Volume 1

DAYOFWEEK(SALES_DATE))),
(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:
GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ----------- ----------- ----------- --------------- -----------
GROUP 1 13 6 - - 27
GROUP 1 13 7 - - 46
GROUP 1 13 - - - 73
GROUP 1 14 1 - - 31
GROUP 1 14 2 - - 43
GROUP 1 14 - - - 74
GROUP 1 53 1 - - 8
GROUP 1 53 - - - 8
GROUP 1 - - - - 155
GROUP 2 - - 3 Manitoba 22
GROUP 2 - - 3 Ontario-North 8
GROUP 2 - - 3 Ontario-South 34
GROUP 2 - - 3 Quebec 40
GROUP 2 - - 3 - 104
GROUP 2 - - 4 Manitoba 17
GROUP 2 - - 4 Ontario-North 1
GROUP 2 - - 4 Ontario-South 14
GROUP 2 - - 4 Quebec 11
GROUP 2 - - 4 - 43
GROUP 2 - - 12 Manitoba 2
GROUP 2 - - 12 Ontario-South 4
GROUP 2 - - 12 Quebec 2
GROUP 2 - - 12 - 8
GROUP 2 - - - - 155

Example C8: The following example illustrates the use of various column
functions when performing a CUBE. The example also makes use of cast
functions and rounding to produce a decimal result with reasonable precision
and scale.

SELECT MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD,
MAX(SALES) AS BEST_SALE,
CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

FROM SALES
GROUP BY CUBE(MONTH(SALES_DATE),REGION)
ORDER BY MONTH, REGION

This results in:
MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
----------- --------------- ----------- ----------- --------------

3 Manitoba 22 7 3.14
3 Ontario-North 8 3 2.67
3 Ontario-South 34 14 4.25
3 Quebec 40 18 5.00

Examples of grouping sets, cube, and rollup

Chapter 4. Queries 593

3 - 104 18 4.00
4 Manitoba 17 9 5.67
4 Ontario-North 1 1 1.00
4 Ontario-South 14 8 4.67
4 Quebec 11 8 5.50
4 - 43 9 4.78
12 Manitoba 2 2 2.00
12 Ontario-South 4 3 2.00
12 Quebec 2 1 1.00
12 - 8 3 1.60
- Manitoba 41 9 3.73
- Ontario-North 9 3 2.25
- Ontario-South 52 14 4.00
- Quebec 53 18 4.42
- - 155 18 3.87

Related reference:

v “Identifiers” on page 65
v “Functions” on page 168
v “GROUPING” on page 278
v “Fullselect” on page 595
v “Select-statement” on page 601
v “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL

Reference, Volume 2

v “CREATE FUNCTION (External Table) statement” in the SQL Reference,
Volume 2

v “Character strings” on page 95
v “Assignments and comparisons” on page 117
v “Predicates” on page 225

Examples of grouping sets, cube, and rollup

594 SQL Reference, Volume 1

Fullselect

�� subselect
(fullselect)

values-clause

�

UNION subselect
UNION ALL (fullselect)
EXCEPT values-clause
EXCEPT ALL
INTERSECT
INTERSECT ALL

�

�
order-by-clause fetch-first-clause

��

values-clause:

VALUES �

,

values-row

values-row:

�

expression
NULL

,

(expression)
NULL

The fullselect is a component of the select-statement, the INSERT statement,
and the CREATE VIEW statement. It is also a component of certain predicates
which, in turn, are components of a statement. A fullselect that is a
component of a predicate is called a subquery, and a fullselect that is enclosed
in parentheses is sometimes called a subquery.

The set operators UNION, EXCEPT, and INTERSECT correspond to the
relational operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of
the fullselect is the result of the specified subselect or values-clause.

values-clause
Derives a result table by specifying the actual values, using expressions,
for each column of a row in the result table. Multiple rows may be
specified.

Fullselect

Chapter 4. Queries 595

NULL can only be used with multiple specifications of values-row, and at
least one row in the same column must not be NULL (SQLSTATE 42826).

A values-row is specified by:
v A single expression for a single column result table or,
v n expressions (or NULL) separated by commas and enclosed in

parentheses, where n is the number of columns in the result table.

A multiple row VALUES clause must have the same number of
expressions in each values-row (SQLSTATE 42826).

The following are examples of values-clauses and their meaning.
VALUES (1),(2),(3) - 3 rows of 1 column
VALUES 1, 2, 3 - 3 rows of 1 column
VALUES (1, 2, 3) - 1 row of 3 columns
VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1 to
REn, where n is greater than 1, is equivalent to:

RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding expressions of each values-row must be
comparable (SQLSTATE 42825).

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all
rows in either R1 or R2, with the duplicate rows eliminated. In either case,
however, each row of the UNION table is either a row from R1 or a row
from R2.

EXCEPT or EXCEPT ALL
Derives a result table by combining two other result tables (R1 and R2). If
EXCEPT ALL is specified, the result consists of all rows that do not have a
corresponding row in R2, where duplicate rows are significant. If EXCEPT
is specified without the ALL option, the result consists of all rows that are
only in R1, with duplicate rows in the result of this operation eliminated.

INTERSECT or INTERSECT ALL
Derives a result table by combining two other result tables (R1 and R2). If
INTERSECT ALL is specified, the result consists of all rows that are in
both R1 and R2. If INTERSECT is specified without the ALL option, the
result consists of all rows that are in both R1 and R2, with the duplicate
rows eliminated.

Fullselect

596 SQL Reference, Volume 1

order-by-clause
A fullselect that contains an ORDER BY or FETCH FIRST clause cannot be
specified in:
v A materialized query table
v The outermost fullselect of a view (SQLSTATE 428FJ).

Note: An ORDER BY clause in a fullselect does not affect the order of the
rows returned by a query. An ORDER BY clause only affects the
order of the rows returned if it is specified in the outermost
fullselect.

The number of columns in the result tables R1 and R2 must be the same
(SQLSTATE 42826). If the ALL keyword is not specified, R1 and R2 must not
include any columns having a data type of LONG VARCHAR, CLOB, LONG
VARGRAPHIC, DBCLOB, BLOB, DATALINK, distinct type on any of these
types, or structured type (SQLSTATE 42907).

The columns of the result are named as follows:
v If the nth column of R1 and the nth column of R2 have the same result

column name, then the nth column of R has the result column name.
v If the nth column of R1 and the nth column of R2 have different result

column names, a name is generated. This name cannot be used as the
column name in an ORDER BY or UPDATE clause.

The generated name can be determined by performing a DESCRIBE of the
SQL statement and consulting the SQLNAME field.

Two rows are duplicates of one another if each value in the first is equal to
the corresponding value of the second. (For determining duplicates, two null
values are considered equal.)

When multiple operations are combined in an expression, operations within
parentheses are performed first. If there are no parentheses, the operations are
performed from left to right with the exception that all INTERSECT
operations are performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the
left. The other headings listed show the values as a result of various set
operations on R1 and R2.

R1 R2 UNION
ALL

UNION EXCEPT
ALL

EXCEPT INTER-
SECT
ALL

INTER-
SECT

1 1 1 1 1 2 1 1

Fullselect

Chapter 4. Queries 597

R1 R2 UNION
ALL

UNION EXCEPT
ALL

EXCEPT INTER-
SECT
ALL

INTER-
SECT

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

4

4

4

5

Examples of a fullselect
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: List the employee numbers (EMPNO) of all employees in the
EMPLOYEE table whose department number (WORKDEPT) either begins
with 'E' or who are assigned to projects in the EMP_ACT table whose project
number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3: Make the same query as in example 2, and, in addition, “tag” the
rows from the EMPLOYEE table with 'emp' and the rows from the EMP_ACT

Fullselect

598 SQL Reference, Volume 1

table with 'emp_act'. Unlike the result from example 2, this query may return
the same EMPNO more than once, identifying which table it came from by
the associated “tag”.

SELECT EMPNO, ’emp’
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO, ’emp_act’ FROM EMP_ACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 4: Make the same query as in example 2, only use UNION ALL so
that no duplicate rows are eliminated.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION ALL
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 5: Make the same query as in Example 3, only include an additional
two employees currently not in any table and tag these rows as ″new″.

SELECT EMPNO, ’emp’
FROM EMPLOYEE
WHEREWORKDEPTLIKE ’E%’

UNION
SELECT EMPNO, ’emp_act’

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

UNION
VALUES (’NEWAAA’, ’new’), (’NEWBBB’, ’new’)

Example 6: This example of EXCEPT produces all rows that are in T1 but not
in T2.

(SELECT * FROM T1)
EXCEPT ALL
(SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as
SELECT ALL *

FROM T1
WHERE NOT EXISTS (SELECT * FROM T2

WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

Example 7: This example of INTERSECT produces all rows that are in both
tables T1 and T2, removing duplicates.

(SELECT * FROM T1)
INTERSECT
(SELECT * FROM T2)

Examples of a fullselect

Chapter 4. Queries 599

If no NULL values are involved, this example returns the same result as
SELECT DISTINCT * FROM T1

WHERE EXISTS (SELECT * FROM T2
WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

Related reference:

v “Rules for result data types” on page 134
v “Rules for string conversions” on page 139

Examples of a fullselect

600 SQL Reference, Volume 1

Select-statement

��

�

,

WITH common-table-expression

fullselect *
read-only-clause

(1)
update-clause

�

� * *
optimize-for-clause WITH RR

RS
CS
UR

��

Notes:

1 The update-clause cannot be specified if the fullselect contains an
order-by-clause or a fetch-first-clause.

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a
DECLARE CURSOR statement. It can also be issued through the use of
dynamic SQL statements using the command line processor (or similar tools),
causing a result table to be displayed on the user’s screen. In either case, the
table specified by a select-statement is the result of the fullselect.

The optional WITH clause specifies the isolation level at which the select
statement is executed.
v RR - Repeatable Read
v RS - Read Stability
v CS - Cursor Stability
v UR - Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound.

common-table-expression

��

�

table-name AS (fullselect)
(1)

()
,

column-name

��

Notes:

1 If a common table expression is recursive, or if the fullselect results in
duplicate column names, column names must be specified.

Select-statement

Chapter 4. Queries 601

A common table expression permits defining a result table with a table-name that
can be specified as a table name in any FROM clause of the fullselect that
follows. Multiple common table expressions can be specified following the
single WITH keyword. Each common table expression specified can also be
referenced by name in the FROM clause of subsequent common table
expressions.

If a list of columns is specified, it must consist of as many names as there are
columns in the result table of the fullselect. Each column-name must be unique
and unqualified. If these column names are not specified, the names are
derived from the select list of the fullselect used to define the common table
expression.

The table-name of a common table expression must be different from any other
common table expression table-name in the same statement (SQLSTATE 42726).
If the common table expression is specified in an INSERT statement the
table-name cannot be the same as the table or view name that is the object of
the insert (SQLSTATE 42726). A common table expression table-name can be
specified as a table name in any FROM clause throughout the fullselect. A
table-name of a common table expression overrides any existing table, view or
alias (in the catalog) with the same qualified name.

If more than one common table expression is defined in the same statement,
cyclic references between the common table expressions are not permitted
(SQLSTATE 42835). A cyclic reference occurs when two common table
expressions dt1 and dt2 are created such that dt1 refers to dt2 and dt2 refers to
dt1.

The common table expression is also optional prior to the fullselect in the
CREATE VIEW and INSERT statements.

A common table expression can be used:
v In place of a view to avoid creating the view (when general use of the view

is not required and positioned updates or deletes are not used)
v To enable grouping by a column that is derived from a scalar subselect or

function that is not deterministic or has external action
v When the desired result table is based on host variables
v When the same result table needs to be shared in a fullselect

v When the result needs to be derived using recursion.

If a fullselect of a common table expression contains a reference to itself in a
FROM clause, the common table expression is a recursive common table
expression. Queries using recursion are useful in supporting applications such
as bill of materials (BOM), reservation systems, and network planning.

common-table-expression

602 SQL Reference, Volume 1

The following must be true of a recursive common table expression:
v Each fullselect that is part of the recursion cycle must start with SELECT or

SELECT ALL. Use of SELECT DISTINCT is not allowed (SQLSTATE 42925).
Furthermore, the unions must use UNION ALL (SQLSTATE 42925).

v The column names must be specified following the table-name of the
common table expression (SQLSTATE 42908).

v The first fullselect of the first union (the initialization fullselect) must not
include a reference to any column of the common table expression in any
FROM clause (SQLSTATE 42836).

v If a column name of the common table expression is referred to in the
iterative fullselect, the data type, length, and code page for the column are
determined based on the initialization fullselect. The corresponding column
in the iterative fullselect must have the same data type and length as the
data type and length determined based on the initialization fullselect and
the code page must match (SQLSTATE 42825). However, for character string
types, the length of the two data types may differ. In this case, the column
in the iterative fullselect must have a length that would always be
assignable to the length determined from the initialization fullselect.

v Each fullselect that is part of the recursion cycle must not include any
column functions, group-by-clauses, or having-clauses (SQLSTATE 42836).
The FROM clauses of these fullselects can include at most one reference to a
common table expression that is part of a recursion cycle (SQLSTATE
42836).

v The iterative fullselect and the overall recursive fullselect must not include
an order-by-clause (SQLSTATE 42836).

v Subqueries (scalar or quantified) must not be part of any recursion cycles
(SQLSTATE 42836).

When developing recursive common table expressions, remember that an
infinite recursion cycle (loop) can be created. Check that recursion cycles will
terminate. This is especially important if the data involved is cyclic. A
recursive common table expression is expected to include a predicate that will
prevent an infinite loop. The recursive common table expression is expected to
include:
v In the iterative fullselect, an integer column incremented by a constant.
v A predicate in the where clause of the iterative fullselect in the form

″counter_col < constant″ or ″counter _col < :hostvar″.

A warning is issued if this syntax is not found in the recursive common table
expression (SQLSTATE 01605).

update-clause

common-table-expression

Chapter 4. Queries 603

�� FOR UPDATE

�

,

OF column-name

��

The FOR UPDATE clause identifies the columns that can be updated in a
subsequent Positioned UPDATE statement. Each column-name must be
unqualified and must identify a column of the table or view identified in the
first FROM clause of the fullselect. If the FOR UPDATE clause is specified
without column names, all updatable columns of the table or view identified
in the first FROM clause of the fullselect are included.

The FOR UPDATE clause cannot be used if one of the following is true:
v The cursor associated with the select-statement is not deletable .
v One of the selected columns is a non-updatable column of a catalog table

and the FOR UPDATE clause has not been used to exclude that column.

read-only-clause

�� FOR READ
FETCH

ONLY ��

The FOR READ ONLY clause indicates that the result table is read-only and
therefore the cursor cannot be referred to in Positioned UPDATE and DELETE
statements. FOR FETCH ONLY has the same meaning.

Some result tables are read-only by nature. (For example, a table based on a
read-only view.) FOR READ ONLY can still be specified for such tables, but
the specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR
READ ONLY (or FOR FETCH ONLY) can possibly improve the performance
of FETCH operations by allowing the database manager to do blocking and
avoid exclusive locks. For example, in programs that contain dynamic SQL
statements without the FOR READ ONLY or ORDER BY clause, the database
manager might open cursors as if the FOR UPDATE clause was specified. It is
recommended, therefore, that the FOR READ ONLY clause be used to
improve performance except in cases where queries will be used in a
Positioned UPDATE or DELETE statements.

A read-only result table must not be referred to in a Positioned UPDATE or
DELETE statement, whether it is read-only by nature or specified as FOR
READ ONLY (FOR FETCH ONLY).

update-clause

604 SQL Reference, Volume 1

optimize-for-clause

�� OPTIMIZE FOR integer ROWS
ROW

��

The OPTIMIZE FOR clause requests special processing of the select statement.
If the clause is omitted, it is assumed that all rows of the result table will be
retrieved; if it is specified, it is assumed that the number of rows retrieved
will probably not exceed n, where n is the value of integer. The value of n
must be a positive integer. Use of the OPTIMIZE FOR clause influences query
optimization, based on the assumption that n rows will be retrieved. In
addition, for cursors that are blocked, this clause will influence the number of
rows that will be returned in each block (that is, no more than n rows will be
returned in each block). If both the fetch-first-clause and the optimize-for-clause
are specified, the lower of the integer values from these clauses will be used
to influence the communications buffer size. The values are considered
independently for optimization purposes.

This clause does not limit the number of rows that can be fetched, or affect
the result in any other way than performance. Using OPTIMIZE FOR n ROWS
can improve performance if no more than n rows are retrieved, but may
degrade performance if more than n rows are retrieved.

If the value of n multiplied by the size of the row exceeds the size of the
communication buffer, the OPTIMIZE FOR clause will have no impact on the
data buffers. The size of the communication buffer is defined by the
RQRIOBLK or the ASLHEAPSZ configuration parameter.

Examples of a select-statement
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and
end date (PRENDATE) from the PROJECT table. Order the result table by the
end date with the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE
FROM PROJECT
ORDER BY PRENDATE DESC

Example 3: Select the department number (WORKDEPT) and average
departmental salary (SALARY) for all departments in the EMPLOYEE table.
Arrange the result table in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 2

optimize-for-clause

Chapter 4. Queries 605

Example 4: Declare a cursor named UP_CUR to be used in a C program to
update the start date (PRSTDATE) and the end date (PRENDATE) columns in
the PROJECT table. The program must receive both of these values together
with the project number (PROJNO) value for each row.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT PROJNO, PRSTDATE, PRENDATE

FROM PROJECT
FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5: This example names the expression SAL+BONUS+COMM as
TOTAL_PAY

SELECT SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY

Example 6: Determine the employee number and salary of sales
representatives along with the average salary and head count of their
departments. Also, list the average salary of the department with the highest
average salary.

Using a common table expression for this case saves the overhead of creating
the DINFO view as a regular view. During statement preparation, accessing
the catalog for the view is avoided and, because of the context of the rest of
the fullselect, only the rows for the department of the sales representatives
need to be considered by the view.
WITH

DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS
(SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

),
DINFOMAX AS

(SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX
FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
WHERE THIS_EMP.JOB = ’SALESREP’
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Related reference:

v “Subselect” on page 554
v “DECLARE CURSOR statement” in the SQL Reference, Volume 2

v Appendix L, “Recursion example: bill of materials” on page 861

Examples of a select-statement

606 SQL Reference, Volume 1

Appendix A. SQL limits

The following tables describe certain SQL limits. Adhering to the most
restrictive case can help the programmer design application programs that are
easily portable.

Table 41. Identifier Length Limits

Description Limit in Bytes

Longest authorization name (can only be single-byte
characters)

30

Longest constraint name 18

Longest correlation name 128

Longest condition name 64

Longest cursor name 18

Longest data source column name 128

Longest data source index name 128

Longest data source name 128

Longest data source table name (remote-table-name) 128

Longest external program name 8

Longest host identifier a 255

Longest identifier of a data source user
(remote-authorization-name)

30

Longest label name 64

Longest method name 18

Longest parameter name b 128

Longest password to access a data source 32

Longest savepoint name 128

Longest schema name c 30

Longest server (database alias) name 8

Longest SQL variable name 64

Longest statement name 18

Longest transform group name 18

Longest unqualified column name 30

Longest unqualified package name 8

© Copyright IBM Corp. 1993 - 2002 607

Table 41. Identifier Length Limits (continued)

Description Limit in Bytes

Longest unqualified user-defined type, user-defined
function, user-defined method, buffer pool, table space,
database partition group, trigger, index, or index
specification name

18

Longest unqualified table name, view name, stored
procedure name, sequence name, nickname, or alias

128

Longest wrapper name 128

Notes:

1. a Individual host language compilers may have a more restrictive limit on variable
names.

2. b Parameter names in an SQL procedure are limited to 64 bytes.

3. c The schema name for a user-defined type is limited to 8 bytes.

Table 42. Numeric Limits

Description Limit

Smallest INTEGER value −2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest BIGINT value −9 223 372 036 854 775 808

Largest BIGINT value +9 223 372 036 854 775 807

Smallest SMALLINT value −32 768

Largest SMALLINT value +32 767

Largest decimal precision 31

Smallest DOUBLE value −1.79769E+308

Largest DOUBLE value +1.79769E+308

Smallest positive DOUBLE value +2.225E−307

Largest negative DOUBLE value −2.225E−307

Smallest REAL value −3.402E+38

Largest REAL value +3.402E+38

Smallest positive REAL value +1.175E−37

Largest negative REAL value −1.175E−37

Table 43. String Limits

Description Limit

Maximum length of CHAR (in bytes) 254

SQL limits

608 SQL Reference, Volume 1

Table 43. String Limits (continued)

Description Limit

Maximum length of VARCHAR (in bytes) 32 672

Maximum length of LONG VARCHAR (in bytes) 32 700

Maximum length of CLOB (in bytes) 2 147 483 647

Maximum length of GRAPHIC (in characters) 127

Maximum length of VARGRAPHIC (in characters) 16 336

Maximum length of LONG VARGRAPHIC (in
characters)

16 350

Maximum length of DBCLOB (in characters) 1 073 741 823

Maximum length of BLOB (in bytes) 2 147 483 647

Maximum length of character constant 32 672

Maximum length of graphic constant 16 336

Maximum length of concatenated character string 2 147 483 647

Maximum length of concatenated graphic string 1 073 741 823

Maximum length of concatenated binary string 2 147 483 647

Maximum number of hex constant digits 16 336

Maximum size of a catalog comment (in bytes) 254

Largest instance of a structured type column object at
run time

1 GB

Table 44. Datetime Limits

Description Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 45. Database Manager Limits

Description Limit

Most columns in a table g 1 012

Most columns in a view a 5 000

Maximum length of a row including all overhead b g 32 677

SQL limits

Appendix A. SQL limits 609

Table 45. Database Manager Limits (continued)

Description Limit

Maximum size of a table per partition (in gigabytes) c g 512

Maximum size of an index per partition (in gigabytes) 512

Most rows in a table per partition 4 x 10 9

Longest index key including all overhead (in bytes) 1 024

Most columns in an index key 16

Most indexes on a table 32 767 or storage

Most tables referenced in an SQL statement or a view storage

Most host variable declarations in a precompiled
program c

storage

Most host variable references in an SQL statement 32 767

Longest host variable value used for insert or update (in
bytes)

2 147 483 647

Longest SQL statement (in bytes) 65 535

Most elements in a select list g 1 012

Most predicates in a WHERE or HAVING clause storage

Maximum number of columns in a GROUP BY clause g 1 012

Maximum total length of columns in a GROUP BY
clause (in bytes) g

32 677

Maximum number of columns in an ORDER BY clause g 1 012

Maximum total length of columns in an ORDER BY
clause (in bytes) g

32 677

Maximum size of an SQLDA (in bytes) storage

Maximum number of prepared statements storage

Most declared cursors in a program storage

Maximum number of cursors opened at one time storage

Most tables in an SMS table space 65 534

Maximum number of constraints on a table storage

Maximum level of subquery nesting storage

Maximum number of subqueries in a single statement storage

Most values in an INSERT statement g 1 012

Most SET clauses in a single UPDATE statement g 1 012

Most columns in a UNIQUE constraint (supported via a
UNIQUE index)

16

SQL limits

610 SQL Reference, Volume 1

Table 45. Database Manager Limits (continued)

Description Limit

Maximum combined length of columns in a UNIQUE
constraint (supported via a UNIQUE index) (in bytes)

1 024

Most referencing columns in a foreign key 16

Maximum combined length of referencing columns in a
foreign key (in bytes)

1 024

Maximum length of a check constraint specification (in
bytes)

65 535

Maximum number of columns in a partitioning key e 500

Maximum number of rows changed in a unit of work storage

Maximum number of packages storage

Most constants in a statement storage

Maximum concurrent users of server d 64 000

Maximum number of parameters in a stored procedure 32 767

Maximum number of parameters in a user defined
function

90

Maximum run-time depth of cascading triggers 16

Maximum number of simultaneously active event
monitors

32

Maximum size of a regular DMS table space (in
gigabytes) c g

512

Maximum size of a long DMS table space (in terabytes) c 2

Maximum size of a temporary DMS table space (in
terabytes) c

2

Maximum number of databases per instance
concurrently in use

256

Maximum number of concurrent users per instance 64 000

Maximum number of concurrent applications per
database

60 000

Maximum number of connections per process within a
DB2 client

512

Maximum depth of cascaded triggers 16

Maximum partition number 999

Most table objects in DMS table space f 51 000

Longest variable index key part (in bytes) h 1022 or storage

Maximum number of columns in a data source table or
view that is referenced by a nickname

5 000

SQL limits

Appendix A. SQL limits 611

Table 45. Database Manager Limits (continued)

Description Limit

Maximum NPAGES in a buffer pool for 32-bit releases 524 288

Maximum NPAGES in a buffer pool for 64-bit releases 2 147 483 647

Maximum total size of all buffer pool slots (4K) 2 147 483 646

Maximum number of nested levels for stored procedures 16

Maximum number of tablespaces in a database 4096

Maximum number of attributes in a structured type 4082

Maximum number of simultaneously opened LOB
locators in a transaction

32 100

Notes:

1. a This maximum can be achieved using a join in the CREATE VIEW statement.
Selecting from such a view is subject to the limit of most elements in a select list.

2. b The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG
VARGRAPHIC columns is not included in this count. However, information about
the location of that data does take up some space in the row.

3. c The numbers shown are architectural limits and approximations. The practical
limits may be less.

4. d The actual value will be the value of the MAXAGENTS configuration parameter.

5. e This is an architectural limit. The limit on the most columns in an index key
should be used as the practical limit.

6. f Table objects include data, indexes, LONG VARCHAR or VARGRAPHIC columns,
and LOB columns. Table objects that are in the same table space as the table data
do not count extra toward the limit. However, each table object that is in a different
table space than the table data does contribute one toward the limit for each table
object type per table in the table space in which the table object resides.

7. g For page size-specific values, see Table 46.

8. h This is limited only by the longest index key, including all overhead (in bytes). As
the number of index key parts increases, the maximum length of each key part
decreases.

Table 46. Database Manager Page Size Specific Limits

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Most columns in a table 500 1 012 1 012 1 012

Maximum length of a row
including all overhead

4 005 8 101 16 293 32 677

Maximum size of a table per
partition (in gigabytes)

64 128 256 512

SQL limits

612 SQL Reference, Volume 1

Table 46. Database Manager Page Size Specific Limits (continued)

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Maximum size of an index per
partition (in gigabytes)

64 128 256 512

Most elements in a select list 500 1 012 1 012 1 012

Maximum number of columns
in a GROUP BY clause

500 1 012 1 012 1 012

Maximum total length of
columns in a GROUP BY clause
(in bytes)

4 005 8 101 16 293 32 677

Maximum number of columns
in an ORDER BY clause

500 1 012 1 012 1 012

Maximum total length of
columns in an ORDER BY clause
(in bytes)

4 005 8 101 16 293 32 677

Most values in an INSERT
statement

500 1 012 1 012 1 012

Most SET clauses in a single
UPDATE statement

500 1 012 1 012 1 012

Maximum size of a regular DMS
table space (in gigabytes)

64 128 256 512

Related reference:

v “Maximum Number of Agents configuration parameter - maxagents” in the
Administration Guide: Performance

SQL limits

Appendix A. SQL limits 613

SQL limits

614 SQL Reference, Volume 1

Appendix B. SQLCA (SQL communications area)

An SQLCA is a collection of variables that is updated at the end of the
execution of every SQL statement. A program that contains executable SQL
statements and is precompiled with option LANGLEVEL SAA1 (the default)
or MIA must provide exactly one SQLCA, though more than one SQLCA is
possible by having one SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an
SQLCODE or SQLSTATE variable may be declared in the SQL declare section
or an SQLCODE variable can be declared somewhere in the program.

An SQLCA should not be provided when using LANGLEVEL SQL92E. The
SQL INCLUDE statement can be used to provide the declaration of the
SQLCA in all languages but REXX. The SQLCA is automatically provided in
REXX.

To display the SQLCA after each command executed through the command
line processor, issue the command db2 -a. The SQLCA is then provided as
part of the output for subsequent commands. The SQLCA is also dumped in
the db2diag.log file.

SQLCA field descriptions

Table 47. Fields of the SQLCA. The field names shown are those present in an SQLCA
that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlcaid CHAR(8) An "eye catcher" for storage dumps containing
'SQLCA'. The sixth byte is 'L' if line number
information is returned from parsing an SQL procedure
body.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

© Copyright IBM Corp. 1993 - 2002 615

Table 47. Fields of the SQLCA (continued). The field names shown are those present
in an SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlcode INTEGER Contains the SQL return code.

Code Means

0 Successful execution (although one or more
SQLWARN indicators may be set).

positive
Successful execution, but with a warning
condition.

negative
Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70.
0 means that the value of sqlerrmc is not relevant.

sqlerrmc VARCHAR
(70)

Contains one or more tokens, separated by X'FF', which
are substituted for variables in the descriptions of error
conditions.

This field is also used when a successful connection is
completed.

When a NOT ATOMIC compound SQL statement is
issued, it may contain information on up to 7 errors.

sqlerrp CHAR(8) Begins with a three-letter identifier indicating the
product, followed by five digits indicating the version,
release, and modification level of the product. For
example, SQL08010 means DB2 Universal Database
Version 8 Release 1 Modification level 0.

If SQLCODE indicates an error condition, this field
identifies the module that returned the error.

This field is also used when a successful connection is
completed.

sqlerrd ARRAY Six INTEGER variables that provide diagnostic
information. These values are generally empty if there
are no errors, except for sqlerrd(6) from a partitioned
database.

SQLCA field descriptions

616 SQL Reference, Volume 1

Table 47. Fields of the SQLCA (continued). The field names shown are those present
in an SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrd(1) INTEGER If connection is invoked and successful, contains the
maximum expected difference in length of mixed
character data (CHAR data types) when converted to
the database code page from the application code page.
A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length;
a negative value indicates a possible contraction.

On successful return from an SQL procedure, contains
the return status value from the SQL procedure.

sqlerrd(2) INTEGER If connection is invoked and successful, contains the
maximum expected difference in length of mixed
character data (CHAR data types) when converted to
the application code page from the database code page.
A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length;
a negative value indicates a possible contraction. If the
SQLCA results from a NOT ATOMIC compound SQL
statement that encountered one or more errors, the
value is set to the number of statements that failed.

sqlerrd(3) INTEGER If PREPARE is invoked and successful, contains an
estimate of the number of rows that will be returned.
After INSERT, UPDATE, and DELETE, contains the
actual number of rows that qualified for the operation.
If compound SQL is invoked, contains an accumulation
of all sub-statement rows. If CONNECT is invoked,
contains 1 if the database can be updated; 2 if the
database is read only.

If CREATE PROCEDURE for an SQL procedure is
invoked and an error is encountered parsing the SQL
procedure body, contains the line number where the
error was encountered. The sixth byte of sqlcaid must
be ’L’ for this to be a valid line number.

sqlerrd(4) INTEGER If PREPARE is invoked and successful, contains a
relative cost estimate of the resources required to
process the statement. If compound SQL is invoked,
contains a count of the number of successful
sub-statements. If CONNECT is invoked, contains 0 for
a one-phase commit from a down-level client; 1 for a
one-phase commit; 2 for a one-phase, read-only commit;
and 3 for a two-phase commit.

SQLCA field descriptions

Appendix B. SQLCA (SQL communications area) 617

Table 47. Fields of the SQLCA (continued). The field names shown are those present
in an SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrd(5) INTEGER Contains the total number of rows deleted, inserted, or
updated as a result of both:
v The enforcement of constraints after a successful

delete operation
v The processing of triggered SQL statements from

activated triggers.

If compound SQL is invoked, contains an accumulation
of the number of such rows for all substatements. In
some cases when an error is encountered, this field
contains a negative value that is an internal error
pointer. If CONNECT is invoked, contains an
authentication type value of 0 for a server
authentication; 1 for client authentication; 2 for
authentication using DB2 Connect; 3 for DCE security
services authentication; 255 for unspecified
authentication.

sqlerrd(6) INTEGER For a partitioned database, contains the partition
number of the partition that encountered the error or
warning. If no errors or warnings were encountered,
this field contains the partition number of the
coordinator node. The number in this field is the same
as that specified for the partition in the db2nodes.cfg
file.

sqlwarn Array A set of warning indicators, each containing a blank or
W. If compound SQL is invoked, contains an
accumulation of the warning indicators set for all
substatements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains W if at
least one other indicator is not blank.

sqlwarn1 CHAR(1) Contains W if the value of a string column was
truncated when assigned to a host variable. Contains N
if the null terminator was truncated.

Contains A if the CONNECT or ATTACH is successful,
and the authorization name for the connection is longer
than 8 bytes.

sqlwarn2 CHAR(1) Contains W if null values were eliminated from the
argument of a function. a

sqlwarn3 CHAR(1) Contains W if the number of columns is not equal to
the number of host variables.

sqlwarn4 CHAR(1) Contains W if a prepared UPDATE or DELETE
statement does not include a WHERE clause.

SQLCA field descriptions

618 SQL Reference, Volume 1

Table 47. Fields of the SQLCA (continued). The field names shown are those present
in an SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlwarn5 CHAR(1) Reserved for future use.

sqlwarn6 CHAR(1) Contains W if the result of a date calculation was
adjusted to avoid an impossible date.

sqlwarn7 CHAR(1) Reserved for future use.

If CONNECT is invoked and successful, contains ’E’ if
the DYN_QUERY_MGMT database configuration
parameter is enabled.

sqlwarn8 CHAR(1) Contains W if a character that could not be converted
was replaced with a substitution character.

sqlwarn9 CHAR(1) Contains W if arithmetic expressions with errors were
ignored during column function processing.

sqlwarn10 CHAR(1) Contains W if there was a conversion error when
converting a character data value in one of the fields in
the SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most
recently executed SQL statement.

a Some functions may not set SQLWARN2 to W, even though null values were
eliminated, because the result was not dependent on the elimination of null values.

Error reporting

The order of error reporting is as follows:
1. Severe error conditions are always reported. When a severe error is

reported, there are no additions to the SQLCA.
2. If no severe error occurs, a deadlock error takes precedence over other

errors.
3. For all other errors, the SQLCA for the first negative SQL code is returned.
4. If no negative SQL codes are detected, the SQLCA for the first warning

(that is, positive SQL code) is returned.
In a partitioned database system, the exception to this rule occurs if a data
manipulation operation is invoked against a table that is empty on one
partition, but has data on other partitions. SQLCODE +100 is only
returned to the application if agents from all partitions return SQL0100W,
either because the table is empty on all partitions, or there are no more
rows that satisfy the WHERE clause in an UPDATE statement.

SQLCA field descriptions

Appendix B. SQLCA (SQL communications area) 619

SQLCA usage in partitioned database systems

In partitioned database systems, one SQL statement may be executed by a
number of agents on different partitions, and each agent may return a
different SQLCA for different errors or warnings. The coordinator agent also
has its own SQLCA.

To provide a consistent view for applications, all SQLCA values are merged
into one structure, and SQLCA fields indicate global counts, such that:
v For all errors and warnings, the sqlwarn field contains the warning flags

received from all agents.
v Values in the sqlerrd fields indicating row counts are accumulations from all

agents.

Note that SQLSTATE 09000 may not be returned every time an error occurs
during the processing of a triggered SQL statement.

SQLCA usage in partitioned database systems

620 SQL Reference, Volume 1

Appendix C. SQLDA (SQL descriptor area)

An SQLDA is a collection of variables that is required for execution of the
SQL DESCRIBE statement. The SQLDA variables are options that can be used
by the PREPARE, OPEN, FETCH, and EXECUTE statements. An SQLDA
communicates with dynamic SQL; it can be used in a DESCRIBE statement,
modified with the addresses of host variables, and then reused in a FETCH or
EXECUTE statement.

SQLDAs are supported for all languages, but predefined declarations are
provided only for C, REXX, FORTRAN, and COBOL.

The meaning of the information in an SQLDA depends on its use. In
PREPARE and DESCRIBE, an SQLDA provides information to an application
program about a prepared statement. In OPEN, EXECUTE, and FETCH, an
SQLDA describes host variables.

In DESCRIBE and PREPARE, if any one of the columns being described is
either a LOB type (LOB locators and file reference variables do not require
doubled SQLDAs), reference type, or a user-defined type, the number of
SQLVAR entries for the entire SQLDA will be doubled. For example:
v When describing a table with 3 VARCHAR columns and 1 INTEGER

column, there will be 4 SQLVAR entries
v When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1

integer column, there will be 8 SQLVAR entries

In EXECUTE, FETCH, and OPEN, if any one of the variables being described
is a LOB type (LOB locators and file reference variables do not require
doubled SQLDAs) or a structured type, the number of SQLVAR entries for the
entire SQLDA must be doubled. (Distinct types and reference types are not
relevant in these cases, because the additional information in the double
entries is not required by the database.)

SQLDA field descriptions

An SQLDA consists of four variables followed by an arbitrary number of
occurrences of a sequence of variables collectively named SQLVAR. In OPEN,
FETCH, and EXECUTE, each occurrence of SQLVAR describes a host variable.
In DESCRIBE and PREPARE, each occurrence of SQLVAR describes a column
of a result table or a parameter marker. There are two types of SQLVAR
entries:

© Copyright IBM Corp. 1993 - 2002 621

v Base SQLVARs: These entries are always present. They contain the base
information about the column, parameter marker, or host variable such as
data type code, length attribute, column name, host variable address, and
indicator variable address.

v Secondary SQLVARs: These entries are only present if the number of
SQLVAR entries is doubled as per the rules outlined above. For
user-defined types (distinct or structured), they contain the user-defined
type name. For reference types, they contain the target type of the reference.
For LOBs, they contain the length attribute of the host variable and a
pointer to the buffer that contains the actual length. (The distinct type and
LOB information does not overlap, so distinct types can be based on LOBs
without forcing the number of SQLVAR entries on a DESCRIBE to be
tripled.) If locators or file reference variables are used to represent LOBs,
these entries are not necessary.

In SQLDAs that contain both types of entries, the base SQLVARs are in a
block before the block of secondary SQLVARs. In each, the number of entries
is equal to the value in SQLD (even though many of the secondary SQLVAR
entries may be unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is
detailed in “Effect of DESCRIBE on the SQLDA” on page 627.

Fields in the SQLDA header

Table 48. Fields in the SQLDA Header

C Name SQL Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager except
for SQLN)

Usage in FETCH, OPEN, and
EXECUTE (set by the application
prior to executing the statement)

sqldaid CHAR(8) The seventh byte of this field is a flag
byte named SQLDOUBLED. The
database manager sets
SQLDOUBLED to the character ’2’ if
two SQLVAR entries have been
created for each column; otherwise it
is set to a blank (X'20' in ASCII, X'40'
in EBCDIC). See “Effect of DESCRIBE
on the SQLDA” on page 627 for
details on when SQLDOUBLED is
set.

The seventh byte of this field is used
when the number of SQLVARs is
doubled. It is named SQLDOUBLED.
If any of the host variables being
described is a structured type, BLOB,
CLOB, or DBCLOB, the seventh byte
must be set to the character ’2’;
otherwise it can be set to any
character but the use of a blank is
recommended.

sqldabc INTEGER For 32 bit, the length of the SQLDA,
equal to SQLN*44+16. For 64 bit, the
length of the SQLDA, equal to
SQLN*56+16

For 32 bit, the length of the SQLDA,
>= to SQLN*44+16. For 64 bit, the
length of the SQLDA, >= to
SQLN*56+16.

SQLDA field descriptions

622 SQL Reference, Volume 1

Table 48. Fields in the SQLDA Header (continued)

C Name SQL Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager except
for SQLN)

Usage in FETCH, OPEN, and
EXECUTE (set by the application
prior to executing the statement)

sqln SMALLINT Unchanged by the database manager.
Must be set to a value greater than or
equal to zero before the DESCRIBE
statement is executed. Indicates the
total number of occurrences of
SQLVAR.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

sqld SMALLINT Set by the database manager to the
number of columns in the result table
or to the number of parameter
markers.

The number of host variables
described by occurrences of SQLVAR.

Fields in an occurrence of a base SQLVAR

Table 49. Fields in a Base SQLVAR

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and
EXECUTE

sqltype SMALLINT Indicates the data type of the column
or parameter marker, and whether it
can contain nulls. Table 51 on
page 629 lists the allowable values
and their meanings.

Note that for a distinct or reference
type, the data type of the base type is
placed into this field. For a
structured type, the data type of the
result of the FROM SQL transform
function of the transform group
(based on the CURRENT DEFAULT
TRANSFORM GROUP special
register) for the type is placed into
this field. There is no indication in
the base SQLVAR that it is part of the
description of a user-defined type or
reference type.

Same for host variable. Host
variables for datetime values must be
character string variables. For
FETCH, a datetime type code means
a fixed-length character string. If
sqltype is an even number value, the
sqlind field is ignored.

Fields in the SQLDA header

Appendix C. SQLDA (SQL descriptor area) 623

Table 49. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and
EXECUTE

sqllen SMALLINT The length attribute of the column or
parameter marker. For datetime
columns and parameter markers, the
length of the string representation of
the values. See Table 51 on page 629.

Note that the value is set to 0 for
large object strings (even for those
whose length attribute is small
enough to fit into a two byte integer).

The length attribute of the host
variable. See Table 51 on page 629.

Note that the value is ignored by the
database manager for CLOB,
DBCLOB, and BLOB columns. The
len.sqllonglen field in the Secondary
SQLVAR is used instead.

sqldata pointer For string SQLVARS, sqldata contains
the code page. For character-string
SQLVARs where the column is
defined with the FOR BIT DATA
attribute, sqldata contains 0. For
other character-string SQLVARS,
sqldata contains either the SBCS code
page for SBCS data, or the SBCS code
page associated with the composite
MBCS code page for MBCS data. For
Japanese EUC, Traditional Chinese
EUC, and Unicode UTF-8
character-string SQLVARS, sqldata
contains 954, 964, and 1208
respectively.

For all other column types, sqldata is
undefined.

Contains the address of the host
variable (where the fetched data will
be stored).

sqlind pointer For character-string SQLVARS, sqlind
contains 0, except for MBCS data,
when sqlind contains the DBCS code
page associated with the composite
MBCS code page.

For all other types, sqlind is
undefined.

Contains the address of an associated
indicator variable, if there is one;
otherwise, not used. If sqltype is an
even number value, the sqlind field
is ignored.

Fields in an occurrence of a base SQLVAR

624 SQL Reference, Volume 1

Table 49. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and
EXECUTE

sqlname VARCHAR
(30)

Contains the unqualified name of the
column or parameter marker.

For columns and parameter markers
that have a system-generated name,
the thirtieth byte is set to X'FF'. For
column names specified by the AS
clause, this byte is X'00'.

When using DB2 Connect to access
the server, sqlname can be set to
indicate a FOR BIT DATA string as
follows:

v the length of sqlname is 8

v the first four bytes of sqlname are
X'00000000'

v the remaining four bytes of
sqlname are reserved (and
currently ignored).

Fields in an occurrence of a secondary SQLVAR

Table 50. Fields in a Secondary SQLVAR

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN, and
EXECUTE

len.sqllonglen INTEGER The length attribute of a
BLOB, CLOB, or
DBCLOB column or
parameter marker.

The length attribute of a BLOB,
CLOB, or DBCLOB host variable.
The database manager ignores
the SQLLEN field in the Base
SQLVAR for the data types. The
length attribute stores the
number of bytes for a BLOB or
CLOB, and the number of
characters for a DBCLOB.

reserve2 CHAR(3) for 32
bit, and
CHAR(11) for 64
bit.

Not used. Not used.

sqlflag4 CHAR(1) The value is X’01’ if the
SQLVAR represents a
reference type with a
target type named in
sqldatatype_name. The
value is X’12’ if the
SQLVAR represents a
structured type, with the
user-defined type name
in sqldatatype_name.
Otherwise, the value is
X’00’.

Set to X’01’ if the SQLVAR
represents a reference type with
a target type named in
sqldatatype_name. Set to X’12’ if
the SQLVAR represents a
structured type, with the
user-defined type name in
sqldatatype_name. Otherwise,
the value is X’00’.

Fields in an occurrence of a base SQLVAR

Appendix C. SQLDA (SQL descriptor area) 625

Table 50. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN, and
EXECUTE

sqldatalen pointer Not used. Used for BLOB, CLOB, and
DBCLOB host variables only.

If this field is NULL, then the
actual length (in characters)
should be stored in the 4 bytes
immediately before the start of
the data and SQLDATA should
point to the first byte of the field
length.

If this field is not NULL, it
contains a pointer to a 4 byte
long buffer that contains the
actual length in bytes (even for
DBCLOB) of the data in the
buffer pointed to from the
SQLDATA field in the matching
base SQLVAR.

Note that, whether or not this
field is used, the len.sqllonglen
field must be set.

sqldatatype_name VARCHAR(27) For a user-defined type,
the database manager
sets this to the fully
qualified user-defined
type name.1 For a
reference type, the
database manager sets
this to the fully qualified
type name of the target
type of the reference.

For structured types, set to the
fully qualified user-defined type
name in the format indicated in
the table note.1

reserved CHAR(3) Not used. Not used.

Fields in an occurrence of a secondary SQLVAR

626 SQL Reference, Volume 1

Table 50. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN, and
EXECUTE

1 The first 8 bytes contain the schema name of the type (extended to the right with spaces, if necessary).
Byte 9 contains a dot (.). Bytes 10 to 27 contain the low order portion of the type name, which is not
extended to the right with spaces.

Note that, although the prime purpose of this field is for the name of user-defined types, the field is also
set for IBM predefined data types. In this case, the schema name is SYSIBM, and the low order portion
of the name is the name stored in the TYPENAME column of the DATATYPES catalog view. For
example:

type name length sqldatatype_name
--------- ------ ----------------
A.B 10 A .B
INTEGER 16 SYSIBM .INTEGER
"Frank’s".SMINT 13 Frank’s .SMINT
MY."type " 15 MY .type

Effect of DESCRIBE on the SQLDA

For a DESCRIBE OUTPUT or PREPARE OUTPUT INTO statement, the
database manager always sets SQLD to the number of columns in the result
set, or the number of output parameter markers. For a DESCRIBE INPUT or
PREPARE INPUT INTO statement, the database manager always sets SQLD to
the number of input parameter markers in the statement. Note that a
parameter marker that corresponds to an INOUT parameter in a CALL
statement is described in both the input and output descriptors.

The SQLVARs in the SQLDA are set in the following cases:
v SQLN >= SQLD and no entry is either a LOB, user-defined type or

reference type
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.

v SQLN >= 2*SQLD and at least one entry is a LOB, user-defined type or
reference type
Two times SQLD SQLVAR entries are set, and SQLDOUBLED is set to ’2’.

v SQLD <= SQLN < 2*SQLD and at least one entry is a distinct type or
reference type, but there are no LOB entries or structured type entries
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
If the SQLWARN bind option is YES, a warning SQLCODE +237
(SQLSTATE 01594) is issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional
space and another DESCRIBE) in the following cases:

Fields in an occurrence of a secondary SQLVAR

Appendix C. SQLDA (SQL descriptor area) 627

v SQLN < SQLD and no entry is either a LOB, user-defined type or reference
type
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +236 (SQLSTATE
01005) is issued.
Allocate SQLD SQLVARs for a successful DESCRIBE.

v SQLN < SQLD and at least one entry is a distinct type or reference type,
but there are no LOB entries or structured type entries
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +239 (SQLSTATE
01005) is issued.
Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names
of the distinct types and target types of reference types.

v SQLN < 2*SQLD and at least one entry is a LOB or a structured type
No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of
the SQLWARN bind option).
Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

References in the above lists to LOB entries include distinct type entries
whose source type is a LOB type.

The SQLWARN option of the BIND or PREP command is used to control
whether the DESCRIBE (or PREPARE INTO) will return the warning
SQLCODEs +236, +237, +239. It is recommended that your application code
always consider that these SQLCODEs could be returned. The warning
SQLCODE +238 is always returned when there are LOB or structured type
entries in the select list and there are insufficient SQLVARs in the SQLDA.
This is the only way the application can know that the number of SQLVARs
must be doubled because of a LOB or structured type entry in the result set.

If a structured type entry is being described, but no FROM SQL transform is
defined (either because no TRANSFORM GROUP was specified using the
CURRENT DEFAULT TRANSFORM GROUP special register (SQLSTATE
42741), or because the name group does not have a FROM SQL transform
function defined (SQLSTATE 42744), the DESCRIBE will return an error. This
error is the same error returned for a DESCRIBE of a table with a structured
type entry.

Effect of DESCRIBE on the SQLDA

628 SQL Reference, Volume 1

SQLTYPE and SQLLEN

Table 51 shows the values that may appear in the SQLTYPE and SQLLEN
fields of the SQLDA. In DESCRIBE and PREPARE INTO, an even value of
SQLTYPE means that the column does not allow nulls, and an odd value
means the column does allow nulls. In FETCH, OPEN, and EXECUTE, an
even value of SQLTYPE means that no indicator variable is provided, and an
odd value means that SQLIND contains the address of an indicator variable.

Table 51. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN Host Variable Data
Type

SQLLEN

384/385 date 10 fixed-length
character string
representation of a
date

length attribute of
the host variable

388/389 time 8 fixed-length
character string
representation of a
time

length attribute of
the host variable

392/393 timestamp 26 fixed-length
character string
representation of a
timestamp

length attribute of
the host variable

396/397 DATALINK length attribute of
the column

DATALINK length attribute of
the host variable

400/401 N/A N/A NUL-terminated
graphic string

length attribute of
the host variable

404/405 BLOB 0 * BLOB Not used. *

408/409 CLOB 0 * CLOB Not used. *

412/413 DBCLOB 0 * DBCLOB Not used. *

448/449 varying-length
character string

length attribute of
the column

varying-length
character string

length attribute of
the host variable

452/453 fixed-length
character string

length attribute of
the column

fixed-length
character string

length attribute of
the host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of
the host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of
the host variable

464/465 varying-length
graphic string

length attribute of
the column

varying-length
graphic string

length attribute of
the host variable

SQLTYPE and SQLLEN

Appendix C. SQLDA (SQL descriptor area) 629

Table 51. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN Host Variable Data
Type

SQLLEN

468/469 fixed-length
graphic string

length attribute of
the column

fixed-length
graphic string

length attribute of
the host variable

472/473 long varying-length
graphic string

length attribute of
the column

long graphic string length attribute of
the host variable

480/481 floating point 8 for double
precision, 4 for
single precision

floating point 8 for double
precision, 4 for
single precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

916/917 Not applicable Not applicable BLOB file reference
variable.

267

920/921 Not applicable Not applicable CLOB file reference
variable.

267

924/925 Not applicable Not applicable DBCLOB file
reference variable.

267

960/961 Not applicable Not applicable BLOB locator 4

964/965 Not applicable Not applicable CLOB locator 4

968/969 Not applicable Not applicable DBCLOB locator 4

Note:

v The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

v The SQLTYPE has changed from the previous version for portability in DB2. The values from the
previous version (see previous version SQL Reference) will continue to be supported.

Unrecognized and unsupported SQLTYPEs
The values that appear in the SQLTYPE field of the SQLDA are dependent on
the level of data type support available at the sender as well as at the receiver
of the data. This is particularly important as new data types are added to the
product.

New data types may or may not be supported by the sender or receiver of the
data and may or may not even be recognized by the sender or receiver of the
data. Depending on the situation, the new data type may be returned, or a

SQLTYPE and SQLLEN

630 SQL Reference, Volume 1

compatible data type agreed upon by both the sender and receiver of the data
may be returned or an error may result.

When the sender and receiver agree to use a compatible data type, the
following indicates the mapping that will take place. This mapping will take
place when at least one of the sender or the receiver does not support the
data type provided. The unsupported data type can be provided by either the
application or the database manager.

Data Type Compatible Data Type

BIGINT DECIMAL(19, 0)

ROWID1 VARCHAR(40) FOR BIT DATA
1 ROWID is supported by DB2 Universal Database for z/OS and OS/390 Version 6.

Note that no indication is given in the SQLDA that the data type is
substituted.

Packed decimal numbers
Packed decimal numbers are stored in a variation of Binary Coded Decimal
(BCD) notation. In BCD, each nybble (four bits) represents one decimal digit.
For example, 0001 0111 1001 represents 179. Therefore, read a packed decimal
value nybble by nybble. Store the value in bytes and then read those bytes in
hexadecimal representation to return to decimal. For example, 0001 0111 1001
becomes 00000001 01111001 in binary representation. By reading this number
as hexadecimal, it becomes 0179.

The decimal point is determined by the scale. In the case of a DEC(12,5)
column, for example, the rightmost 5 digits are to the right of the decimal
point.

Sign is indicated by a nybble to the right of the nybbles representing the
digits. A positive or negative sign is indicated as follows:

Table 52. Values for Sign Indicator of a Packed Decimal Number

Sign

Representation

Binary Decimal Hexadecimal

Positive (+) 1100 12 C

Negative (-) 1101 13 D

In summary:
v To store any value, allocate p/2+1 bytes, where p is precision.

Unrecognized and unsupported SQLTYPEs

Appendix C. SQLDA (SQL descriptor area) 631

v Assign the nybbles from left to right to represent the value. If a number has
an even precision, a leading zero nybble is added. This assignment includes
leading (insignificant) and trailing (significant) zero digits.

v The sign nybble will be the second nybble of the last byte.

For example:

Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

SQLLEN field for decimal
The SQLLEN field contains the precision (first byte) and scale (second byte) of
the decimal column. If writing a portable application, the precision and scale
bytes should be set individually, versus setting them together as a short
integer. This will avoid integer byte reversal problems.

For example, in C:
((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;
((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

Related reference:

v “CHAR” on page 303

Packed decimal numbers

632 SQL Reference, Volume 1

Appendix D. Catalog views

This appendix contains a description of each system catalog view, including
column names and data types.

‘Road map’ to catalog views

Description Catalog View Page

attributes of structured data types SYSCAT.ATTRIBUTES 639

authorities on database SYSCAT.DBAUTH 661

buffer pool configuration on database
partition group

SYSCAT.BUFFERPOOLS 642

buffer pool size on database partition SYSCAT.BUFFERPOOLDBPARTITIONS 641

cast functions SYSCAT.CASTFUNCTIONS 643

check constraints SYSCAT.CHECKS 644

column privileges SYSCAT.COLAUTH 645

columns SYSCAT.COLUMNS 652

columns referenced by check
constraints

SYSCAT.COLCHECKS 646

columns used in dimensions SYSCAT.COLUSE 657

columns used in keys SYSCAT.KEYCOLUSE 688

detailed column options SYSCAT.COLOPTIONS 651

detailed column statistics SYSCAT.COLDIST 647

detailed column group statistics SYSCAT.COLGROUPDIST 648

detailed column group statistics SYSCAT.COLGROUPDISTCOUNTS 649

detailed column group statistics SYSCAT.COLGROUPS 650

constraint dependencies SYSCAT.CONSTDEP 658

data types SYSCAT.DATATYPES 659

event monitor definitions SYSCAT.EVENTMONITORS 665

events currently monitored SYSCAT.EVENTS 667

events currently monitored SYSCAT.EVENTTABLES 668

function dependencies1 SYSCAT.ROUTINEDEP 708

function mapping SYSCAT.FUNCMAPPINGS 672

function mapping options SYSCAT.FUNCMAPOPTIONS 670

© Copyright IBM Corp. 1993 - 2002 633

Description Catalog View Page

function parameter mapping options SYSCAT.FUNCMAPPARMOPTIONS 671

function parameters1 SYSCAT.ROUTINEPARMS 709

functions1 SYSCAT.ROUTINES 711

hierarchies (types, tables, views) SYSCAT.HIERARCHIES 673

hierarchies (types, tables, views) SYSCAT.FULLHIERARCHIES 669

index privileges SYSCAT.INDEXAUTH 674

index columns SYSCAT.INDEXCOLUSE 675

index dependencies SYSCAT.INDEXDEP 676

indexes SYSCAT.INDEXES 677

index exploitation SYSCAT.INDEXEXPLOITRULES 682

index extension dependencies SYSCAT.INDEXEXTENSIONDEP 683

index extension search methods SYSCAT.INDEXEXTENSIONMETHODS 684

index extension parameters SYSCAT.INDEXEXTENSIONPARMS 685

index extensions SYSCAT.INDEXEXTENSIONS 686

method dependencies1 SYSCAT.ROUTINEDEP 708

method parameters1 SYSCAT.ROUTINES 711

methods1 SYSCAT.ROUTINES 711

database partition group definitions SYSCAT.DBPARTITIONGROUPS 664

database partition group database
partitions

SYSCAT.DBPARTITIONGROUPDEF 663

object mapping SYSCAT.NAMEMAPPINGS 689

package dependencies SYSCAT.PACKAGEDEP 691

package privileges SYSCAT.PACKAGEAUTH 690

packages SYSCAT.PACKAGES 693

partitioning maps SYSCAT.PARTITIONMAPS 699

pass-through privileges SYSCAT.PASSTHRUAUTH 700

predicate specifications SYSCAT.PREDICATESPECS 701

procedure options SYSCAT.PROCOPTIONS 702

procedure parameter options SYSCAT.PROCPARMOPTIONS 703

procedure parameters1 SYSCAT.ROUTINEPARMS 709

procedures1 SYSCAT.ROUTINES 711

provides DB2 Universal Database for
z/OS and OS/390 compatibility

SYSIBM.SYSDUMMY1 638

referential constraints SYSCAT.REFERENCES 704

‘Road map’ to catalog views

634 SQL Reference, Volume 1

Description Catalog View Page

remote table options SYSCAT.TABOPTIONS 736

reverse data type mapping SYSCAT.REVTYPEMAPPINGS 705

routine dependencies SYSCAT.ROUTINEDEP 708

routine parameters1 SYSCAT.ROUTINEPARMS 709

routine privileges SYSCAT.ROUTINEAUTH 707

routines1 SYSCAT.ROUTINES 711

schema privileges SYSCAT.SCHEMAAUTH 718

schemas SYSCAT.SCHEMATA 719

sequence privileges SYSCAT.SEQUENCEAUTH 720

sequences SYSCAT.SEQUENCES 721

server options SYSCAT.SERVEROPTIONS 723

server options values SYSCAT.USEROPTIONS 743

statements in packages SYSCAT.STATEMENTS 725

stored procedures SYSCAT.ROUTINES 711

system servers SYSCAT.SERVERS 724

table constraints SYSCAT.TABCONST 728

table dependencies SYSCAT.TABDEP 729

table privileges SYSCAT.TABAUTH 726

tables SYSCAT.TABLES 730

table spaces SYSCAT.TABLESPACES 735

table spaces use privileges SYSCAT.TBSPACEAUTH 737

transforms SYSCAT.TRANSFORMS 738

trigger dependencies SYSCAT.TRIGDEP 739

triggers SYSCAT.TRIGGERS 740

type mapping SYSCAT.TYPEMAPPINGS 741

user-defined functions SYSCAT.ROUTINES 711

views SYSCAT.TABLES 730

SYSCAT.VIEWS 744

wrapper options SYSCAT.WRAPOPTIONS 745

wrappers SYSCAT.WRAPPERS 746

‘Road map’ to catalog views

Appendix D. Catalog views 635

Description Catalog View Page
1 The catalog views for functions, methods, and procedures from DB2 Version 7.1 and
earlier still exist. These views, however, do not reflect any changes since DB2 Version
7.1. The views are:

Functions: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
Methods: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
Procedures: SYSCAT.PROCEDURES, SYSCAT.PROCPARMS

‘Road map’ to updatable catalog views

Description Catalog View Page

columns SYSSTAT.COLUMNS 749

detailed column statistics SYSSTAT.COLDIST 747

indexes SYSSTAT.INDEXES 751

routines1 SYSSTAT.ROUTINES 755

tables SYSSTAT.TABLES 757
1 The SYSSTAT.FUNCTIONS catalog view still exists for updating the statistics for
functions and methods. This view, however, does not reflect any changes since DB2
Version 7.1.

System catalog views

The database manager creates and maintains two sets of system catalog views
that are defined on top of the base system catalog tables.
v SYSCAT views are read-only catalog views that are found in the SYSCAT

schema. SELECT privilege on these views is granted to PUBLIC by default.
v SYSSTAT views are updatable catalog views that are found in the SYSSTAT

schema. The updatable views contain statistical information that is used by
the optimizer. The values in some columns in these views can be changed
to test performance. (Before changing any statistics, it is recommended that
the RUNSTATS command be invoked so that all the statistics reflect the
current state.) Applications should be written to the SYSSTAT views rather
than the base catalog tables.

All the system catalog views are created at database creation time. The catalog
views cannot be explicitly created or dropped. The views are updated during
normal operation in response to SQL data definition statements, environment
routines, and certain utilities. Data in the system catalog views is available

‘Road map’ to catalog views

636 SQL Reference, Volume 1

through normal SQL query facilities. The system catalog views (with the
exception of some updatable catalog views) cannot be modified using normal
SQL data manipulation statements.

An object (table, column, function, or index) will appear in a user’s updatable
catalog view only if that user created the object, holds CONTROL privilege on
the object, or holds explicit DBADM authority.

The order of columns in the views may change from release to release. To
prevent this from affecting programming logic, specify the columns in a select
list explicitly, and avoid using SELECT *. Columns have consistent names
based on the types of objects that they describe.

Described Object Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

View VIEWSCHEMA, VIEWNAME

Constraint CONSTSCHEMA, CONSTNAME

Trigger TRIGSCHEMA, TRIGNAME

Package PKGSCHEMA, PKGNAME

Type TYPESCHEMA, TYPENAME, TYPEID

Function ROUTINESCHEMA, ROUTINENAME,
ROUTINEID

Method ROUTINESCHEMA, ROUTINENAME,
ROUTINEID

Procedure ROUTINESCHEMA, ROUTINENAME,
ROUTINEID

Column COLNAME

Schema SCHEMANAME

Table Space TBSPACE

Database partition group NGNAME

Buffer pool BPNAME

Event Monitor EVMONNAME

Creation Timestamp CREATE_TIME

System catalog views

Appendix D. Catalog views 637

SYSIBM.SYSDUMMY1

Contains one row. This view is available for applications that require
compatibility with DB2 Universal Database for z/OS and OS/390.

Table 53. SYSCAT.DUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR(1) Y

SYSIBM.SYSDUMMY1

638 SQL Reference, Volume 1

SYSCAT.ATTRIBUTES

Contains one row for each attribute (including inherited attributes where
applicable) that is defined for a user-defined structured data type.

Table 54. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the structured data type
that includes the attribute.TYPENAME VARCHAR(128)

ATTR_NAME VARCHAR(128) Attribute name.

ATTR_TYPESCHEMA VARCHAR(128) Qualified name of the type of the attribute.

ATTR_TYPENAME VARCHAR(128)

TARGET_TYPESCHEMA VARCHAR(128) Yes Qualified name of the target type, if the type
of the attribute is REFERENCE. Null value if
the type of the attribute is not REFERENCE.TARGET_TYPENAME VARCHAR(128) Yes

SOURCE_TYPESCHEMA VARCHAR(128) Qualified name of the data type in the data
type hierarchy where the attribute was
introduced. For non-inherited attributes,
these columns are the same as
TYPESCHEMA and TYPENAME.

SOURCE_TYPENAME VARCHAR(128)

ORDINAL SMALLINT Position of the attribute in the definition of
the structured data type, starting with zero.

LENGTH INTEGER Maximum length of data; 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

CODEPAGE SMALLINT Code page of the attribute. For
character-string attributes not defined with
FOR BIT DATA, the value is the database
code page. For graphic-string attributes, the
value is the DBCS code page implied by the
(composite) database code page. Otherwise,
the value is 0.

LOGGED CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB; otherwise blank.

Y = Attribute is logged.

N = Attribute is not logged.

COMPACT CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB; otherwise blank).

Y = Attribute is compacted in storage.

N = Attribute is not compacted.

SYSCAT.ATTRIBUTES

Appendix D. Catalog views 639

Table 54. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Applies to DATALINK type attributes only.
Blank for REFERENCE type attributes;
otherwise null. Encodes various DATALINK
features such as linktype, control mode,
recovery, and unlink properties.

SYSCAT.ATTRIBUTES

640 SQL Reference, Volume 1

SYSCAT.BUFFERPOOLDBPARTITIONS

Contains a row for each database partition in the buffer pool for which the
size of the buffer pool on the database partition is different from the default
size in SYSCAT.BUFFERPOOLS column NPAGES.

Table 55. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier

DBPARTITIONNUM SMALLINT Database partition number

NPAGES INTEGER Number of pages in this buffer pool on this
database partition

SYSCAT.BUFFERPOOLDBPARTITIONS

Appendix D. Catalog views 641

SYSCAT.BUFFERPOOLS

Contains a row for every buffer pool in every database partition group.

Table 56. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR(128) Name of the buffer pool

BUFFERPOOLID INTEGER Internal buffer pool identifier

NGNAME VARCHAR(128) Yes Database partition group name (NULL if the
buffer pool exists on all database partitions
in the database)

NPAGES INTEGER Number of pages in the buffer pool

PAGESIZE INTEGER Page size for this buffer pool

ESTORE CHAR(1) N = This buffer pool does not use
extended storage.

Y = This buffer pool uses extended
storage.

SYSCAT.BUFFERPOOLS

642 SQL Reference, Volume 1

SYSCAT.CASTFUNCTIONS

Contains a row for each cast function. It does not include built-in cast
functions.

Table 57. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the
parameter.FROM_TYPENAME VARCHAR(18)

TO_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the result
after casting.TO_TYPENAME VARCHAR(18)

FUNCSCHEMA VARCHAR(128) Qualified name of the function.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance.

ASSIGN_FUNCTION CHAR(1) Y = Implicit assignment function

N = Not an assignment function

SYSCAT.CASTFUNCTIONS

Appendix D. Catalog views 643

SYSCAT.CHECKS

Contains one row for each CHECK constraint.

Table 58. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint (unique within
a table.)

DEFINER VARCHAR(128) Authorization ID under which the check
constraint was defined.

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
constraint applies.TABNAME VARCHAR(128)

CREATE_TIME TIMESTAMP The time at which the constraint was
defined. Used in resolving functions that are
used in this constraint. No functions will be
chosen that were created after the definition
of the constraint.

QUALIFIER VARCHAR(128) Value of the default schema at time of object
definition. Used to complete any unqualified
references.

TYPE CHAR(1) Type of check constraint:

A = System generated check constraint
for GENERATED ALWAYS column

C = Check constraint

FUNC_PATH VARCHAR(254) The current SQL path that was used when
the constraint was created.

TEXT CLOB(64K) The text of the CHECK clause.

SYSCAT.CHECKS

644 SQL Reference, Volume 1

SYSCAT.COLAUTH

Contains one or more rows for each user or group who is granted a column
level privilege, indicating the type of privilege and whether or not it is
grantable.

Table 59. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this privilege
applies.

COLNO SMALLINT Number of this column in the table or view.

PRIVTYPE CHAR(1) Indicates the type of privilege held on the
table or view:

U = Update privilege

R = Reference privilege

GRANTABLE CHAR(1) Indicates if the privilege is grantable.

G = Grantable

N = Not grantable

SYSCAT.COLAUTH

Appendix D. Catalog views 645

SYSCAT.COLCHECKS

Each row represents some column that is referenced by a CHECK constraint.

Table 60. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint. (Unique
within a table. May be system generated.)

TABSCHEMA VARCHAR(128) Qualified name of table containing
referenced column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of column.

USAGE CHAR(1) R = Column is referenced in the check
constraint.

S = Column is a source column in the
system generated check constraint that
supports a generated column.

T = Column is a target column in the
system generated check constraint that
supports a generated column.

SYSCAT.COLCHECKS

646 SQL Reference, Volume 1

SYSCAT.COLDIST

Contains detailed column statistics for use by the optimizer. Each row
describes the Nth-most-frequent value of some column.

Table 61. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
entry applies.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this entry
applies.

TYPE CHAR(1) F = Frequency (most frequent value)

Q = Quantile value

SEQNO SMALLINT v If TYPE = F, then N in this column
identifies the Nth most frequent value.

v If TYPE = Q, then N in this column
identifies the Nth quantile value.

COLVALUE VARCHAR(254) Yes The data value, as a character literal or a
null value.

VALCOUNT BIGINT v If TYPE = F, then VALCOUNT is the
number of occurrences of COLVALUE in
the column.

v If TYPE = Q, then VALCOUNT is the
number of rows whose value is less than
or equal to COLVALUE.

DISTCOUNT BIGINT Yes If TYPE = Q, this column records the
number of distinct values that are less than
or equal to COLVALUE (null if unavailable).

SYSCAT.COLDIST

Appendix D. Catalog views 647

SYSCAT.COLGROUPDIST

Contains a row for every value of a column in a column group that makes up
the nth most frequent value of the column group or the nth quantile of the
column group.

Table 62. SYSCAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Internal identifier of the column group.

TYPE CHAR(1) F = Frequency value

Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the group.

SEQNO SMALLINT Sequence number n representing the nth
TYPE value.

COLVALUE VARCHAR(254) Yes Data value as a character literal or a null
value.

SYSCAT.COLGROUPDIST

648 SQL Reference, Volume 1

SYSCAT.COLGROUPDISTCOUNTS

Contains a row for the distribution statistics that apply to the nth most
frequent value of a column group, or the nth quantile of a column group.

Table 63. SYSCAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Internal identifier of the column group.

TYPE CHAR(1) F = Frequency value

Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth
TYPE value.

VALCOUNT BIGINT If TYPE = F, VALCOUNT is the number of
occurrences of COLVALUE for the column
group with this SEQNO. If TYPE = Q,
VALCOUNT is the number of rows whose
value is less than or equal to COLVALUE
for the column group with this SEQNO.

DISTCOUNT BIGINT Yes If TYPE = Q, this column records the
number of distinct values that are less than
or equal to COLVALUE for the column
group with this SEQNO (null if
unavailable).

SYSCAT.COLGROUPDISTCOUNTS

Appendix D. Catalog views 649

SYSCAT.COLGROUPS

Contains a row for every column group, and statistics that apply to the entire
column group.

Table 64. SYSCAT.COLGROUPS Catalog View

Column Name Data Type Nullable Description

COLGROUPSCHEMA VARCHAR(128) Qualified name of the column group.

COLGROUPNAME VARCHAR(128)

COLGROUPID INTEGER Internal identifier of the column group.

COLGROUPCARD BIGINT Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for the
column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the
column group.

SYSCAT.COLGROUPS

650 SQL Reference, Volume 1

SYSCAT.COLOPTIONS

Each row contains column specific option values.

Table 65. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified nickname for the column.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Local column name.

OPTION VARCHAR(128) Name of the column option.

SETTING VARCHAR(255) Value for the column option.

SYSCAT.COLOPTIONS

Appendix D. Catalog views 651

SYSCAT.COLUMNS

Contains one row for each column (including inherited columns where
applicable) that is defined for a table or view. All of the catalog views have
entries in the SYSCAT.COLUMNS table.

Table 66. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table or view that
contains the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLNO SMALLINT Numerical place of column in table or view,
beginning at zero.

TYPESCHEMA VARCHAR(128) Contains the qualified name of the type, if
the data type of the column is distinct.
Otherwise TYPESCHEMA contains the value
SYSIBM and TYPENAME contains the data
type of the column (in long form, for
example, CHARACTER). If FLOAT or
FLOAT(n) with n greater than 24 is specified,
TYPENAME is renamed to DOUBLE. If
FLOAT(n) with n less than 25 is specified,
TYPENAME is renamed to REAL. Also,
NUMERIC is renamed to DECIMAL.

TYPENAME VARCHAR(18)

LENGTH INTEGER Maximum length of data. 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table
expressed as a constant, special register, or
cast-function appropriate for the data type of
the column. May also be the keyword NULL.

Values may be converted from what was
specified as a default value. For example,
date and time constants are presented in ISO
format and cast-function names are qualified
with schema name and the identifiers are
delimited (see Note 3).

Null value if a DEFAULT clause was not
specified or the column is a view column.

SYSCAT.COLUMNS

652 SQL Reference, Volume 1

Table 66. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

NULLS CHAR(1) Y = Column is nullable.

N = Column is not nullable.

The value can be N for a view column that is
derived from an expression or function.
Nevertheless, such a column allows nulls
when the statement using the view is
processed with warnings for arithmetic
errors.

See Note 1.

CODEPAGE SMALLINT Code page of the column. For
character-string columns not defined with the
FOR BIT DATA attribute, the value is the
database code page. For graphic-string
columns, the value is the DBCS code page
implied by the (composite) database code
page. Otherwise, the value is 0.

LOGGED CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y=Column is logged.

N=Column is not logged.

COMPACT CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Column is compacted in storage.

N = Column is not compacted.

COLCARD BIGINT Number of distinct values in the column; −1
if statistics are not gathered; −2 for inherited
columns and columns of H-tables.

HIGH2KEY VARCHAR(254) Yes Second highest value of the column. This
field is empty if statistics are not gathered
and for inherited columns and columns of
H-tables. See Note 2.

LOW2KEY VARCHAR(254) Yes Second lowest value of the column. This field
is empty if statistics are not gathered and for
inherited columns and columns of H-tables.
See Note 2.

AVGCOLLEN INTEGER Average space required for the column
length. −1 if a long field or LOB, or statistics
have not been collected; −2 for inherited
columns and columns of H-tables.

SYSCAT.COLUMNS

Appendix D. Catalog views 653

Table 66. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

KEYSEQ SMALLINT Yes The column’s numerical position within the
table’s primary key. This field is null for
subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Yes The column’s numerical position within the
table’s partitioning key. This field is null or 0
if the column is not part of the partitioning
key. This field is also null for subtables and
hierarchy tables.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NUMNULLS BIGINT Contains the number of nulls in a column. −1
if statistics are not gathered.

TARGET_TYPESCHEMA VARCHAR(128) Yes Qualified name of the target type, if the type
of the column is REFERENCE. Null value if
the type of the column is not REFERENCE.TARGET_TYPENAME VARCHAR(18) Yes

SCOPE_TABSCHEMA VARCHAR(128) Yes Qualified name of the scope (target table), if
the type of the column is REFERENCE. Null
value if the type of the column is not
REFERENCE or the scope is not defined.

SCOPE_TABNAME VARCHAR(128) Yes

SOURCE_TABSCHEMA VARCHAR(128) Qualified name of the table or view in the
respective hierarchy where the column was
introduced. For non-inherited columns, the
values are the same as TBCREATOR and
TBNAME. Null for columns of non-typed
tables and views

SOURCE_TABNAME VARCHAR(128)

SYSCAT.COLUMNS

654 SQL Reference, Volume 1

Table 66. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Yes Applies to DATALINK type columns only.
Null otherwise. Each character position is
defined as follows:

1. Link type (U for URL)

2. Link control (F for file, N for no)

3. Integrity (A for all, N for none)

4. Read permission (F for file system, D for
database)

5. Write permission (F for file system, B for
blocked, A for admin requiring token for
update, N for admin not requiring token
for update)

6. Recovery (Y for yes, N for no)

7. On unlink (R for restore, D for delete, N
for not applicable)

Characters 8 through 10 are reserved for
future use.

SPECIAL_PROPS CHAR(8) Yes Applies to REFERENCE type columns only.
Null otherwise. Each character position is
defined as follows:

Object identifier (OID) column (Y for yes,
N for no)

User generated or system generated (U
for user, S for system)

HIDDEN CHAR(1) Type of hidden column

S = System managed hidden column

Blank if column is not hidden

INLINE_LENGTH INTEGER Length of structured type column that can be
kept with base table row. 0 if no value
explicitly set by ALTER/CREATE TABLE
statement.

IDENTITY CHAR(1) ’Y’ indicates that the column is an identity
column; ’N’ indicates that the column is not
an identity column.

GENERATED CHAR(1) Type of generated column

A = Column value is always generated

D = Column value is generated by default

Blank if column is not generated

SYSCAT.COLUMNS

Appendix D. Catalog views 655

Table 66. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

COMPRESS CHAR(1) S = Compress system default values

O = Compress off

TEXT CLOB(64K) Contains the text of the generated column,
starting with the keyword AS.

REMARKS VARCHAR(254) Yes User-supplied comment.

AVGDISTINCTPERPAGE DOUBLE Yes For future use.

PAGEVARIANCERATIO DOUBLE Yes For future use.

SUB_COUNT SMALLINT Average number of sub-elements. Only
applicable for character columns. For
example, consider the following string:
’database simulation analytical business
intelligence’. In this example, SUB_COUNT =
5, because there are 5 sub-elements in the
string.

SUB_DELIM_LENGTH SMALLINT Average length of each delimiter separating
each sub-element. Only applicable for
character columns. For example, consider the
following string: ’database simulation
analytical business intelligence’. In this
example, SUB_DELIM_LENGTH = 1, because
each delimiter is a single blank.

Notes:

1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of
WITH DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Starting with Version 2, representation of numeric data has been changed to character literals. The
size has been enlarged from 16 to 33 bytes.

3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the
DEFAULT column. Also, some view columns included default values which will still appear in the
DEFAULT column.

SYSCAT.COLUMNS

656 SQL Reference, Volume 1

SYSCAT.COLUSE

Contains a row for every column that participates in the DIMENSIONS clause
of the CREATE TABLE statement.

Table 67. SYSCAT.COLUSE Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table containing the
columnTABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column

DIMENSION SMALLINT Dimension number, based on the order of
dimensions specified in the DIMENSIONS
clause (initial position = 0). For a composite
dimension, this value will be the same for
each component of the dimension.

COLSEQ SMALLINT Numeric position of the column in the
dimension to which it belongs (initial
position = 0). The value is 0 for the single
column in a noncomposite dimension.

TYPE CHAR(1) Type of dimension.

C = clustering/multi-dimensional
clustering (MDC)

SYSCAT.COLUSE

Appendix D. Catalog views 657

SYSCAT.CONSTDEP

Contains a row for every dependency of a constraint on some other object.

Table 68. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA VARCHAR(128) Qualified name of the table to which the
constraint applies.TABNAME VARCHAR(128)

BTYPE CHAR(1) Type of object that the constraint depends
on. Possible values:

F = Function instance

I = Index instance

R = Structured type

BSCHEMA VARCHAR(128) Qualified name of object that the constraint
depends on.BNAME VARCHAR(18)

SYSCAT.CONSTDEP

658 SQL Reference, Volume 1

SYSCAT.DATATYPES

Contains a row for every data type, including built-in and user-defined types.

Table 69. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the data type (for
built-in types, TYPESCHEMA is
SYSIBM).TYPENAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which type was
created.

SOURCESCHEMA VARCHAR(128) Yes Qualified name of the source type for
distinct types. Qualified name of the
builtin type used as the reference type
that is used as the representation for
references to structured types. Null for
other types.

SOURCENAME VARCHAR(18) Yes

METATYPE CHAR(1) S = System predefined type

T = Distinct type

R = Structured type

TYPEID SMALLINT The system generated internal identifier
of the data type.

SOURCETYPEID SMALLINT Yes Internal type ID of source type (null for
built-in types). For user-defined
structured types, this is the internal
type ID of the reference representation
type.

LENGTH INTEGER Maximum length of the type. 0 for
system predefined parameterized types
(for example, DECIMAL and
VARCHAR). For user-defined
structured types, this indicates the
length of the reference representation
type.

SCALE SMALLINT Scale for distinct types or reference
representation types based on the
system predefined DECIMAL type. 0
for all other types (including DECIMAL
itself). For user-defined structured
types, this indicates the length of the
reference representation type.

CODEPAGE SMALLINT Code page for character and graphic
distinct types or reference
representation types; 0 otherwise.

SYSCAT.DATATYPES

Appendix D. Catalog views 659

Table 69. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Creation time of the data type.

ATTRCOUNT SMALLINT Number of attributes in data type.

INSTANTIABLE CHAR(1) Y = Type can be instantiated.

N = Type can not be instantiated.

WITH_FUNC_ACCESS CHAR(1) Y = All the methods for this type
can be invoked using function
notation.

N = Methods for this type can not
be invoked using function notation.

FINAL CHAR(1) Y = User-defined type can not have
subtypes.

N = User-defined type can have
subtypes.

INLINE_LENGTH INTEGER Length of structured type that can be
kept with base table row. 0 if no value
explicitly set by CREATE TYPE
statement.

NATURAL_INLINE_LENGTH INTEGER System-calculated inline length of the
structured type.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.DATATYPES

660 SQL Reference, Volume 1

SYSCAT.DBAUTH

Records the database authorities held by users.

Table 70. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) SYSIBM or authorization ID of the user
who granted the privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group
who holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

DBADMAUTH CHAR(1) Whether grantee holds DBADM
authority over the database:

Y = Authority is held.

N = Authority is not held.

CREATETABAUTH CHAR(1) Whether grantee can create tables in the
database (CREATETAB):

Y = Privilege is held.

N = Privilege is not held.

BINDADDAUTH CHAR(1) Whether grantee can create new
packages in the database (BINDADD):

Y = Privilege is held.

N = Privilege is not held.

CONNECTAUTH CHAR(1) Whether grantee can connect to the
database (CONNECT):

Y = Privilege is held.

N = Privilege is not held.

NOFENCEAUTH CHAR(1) Whether grantee holds privilege to
create non-fenced functions.

Y = Privilege is held.

N = Privilege is not held.

IMPLSCHEMAAUTH CHAR(1) Whether grantee can implicitly create
schemas in the database
(IMPLICIT_SCHEMA):

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.DBAUTH

Appendix D. Catalog views 661

Table 70. SYSCAT.DBAUTH Catalog View (continued)

Column Name Data Type Nullable Description

LOADAUTH CHAR(1) Whether grantee holds LOAD authority
over the database:

Y = Authority is held.

N = Authority is not held.

EXTERNALROUTINEAUTH CHAR(1) Whether grantee can create external
routines
(CREATE_EXTERNAL_ROUTINE):

Y = Authority is held.

N = Authority is not held.

QUIESCECONNECTAUTH CHAR(1) Whether grantee can connect to a
database (QUIESCE_CONNECT):

Y = Authority is held.

N = Authority is not held.

SYSCAT.DBAUTH

662 SQL Reference, Volume 1

SYSCAT.DBPARTITIONGROUPDEF

Contains a row for each partition that is contained in a database partition
group.

Table 71. SYSCAT.DBPARTITIONGROUPDEF Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR(18) The name of the database partition group
that contains the database partition.

DBPARTITIONNUM SMALLINT The partition number of a partition
contained in the database partition group. A
valid partition number is between 0 and 999
inclusive.

IN_USE CHAR(1) Status of the database partition.

A = The newly added partition is not in
the partitioning map but the containers
for the table spaces in the database
partition group are created. The partition
is added to the partitioning map when a
redistribute database partition group
operation is successfully completed.

D = The partition will be dropped when
a redistribute database partition group
operation is completed.

T = The newly added partition is not in
the partitioning map and it was added
using the WITHOUT TABLESPACES
clause. Containers must be specifically
added to the table spaces for the
database partition group.

Y = The partition is in the partitioning
map.

SYSCAT.DBPARTITIONGROUPDEF

Appendix D. Catalog views 663

SYSCAT.DBPARTITIONGROUPS

Contains a row for each database partition group.

Table 72. SYSCAT.DBPARTITIONGROUPS Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR(18) Name of the database partition group.

DEFINER VARCHAR(128) Authorization ID of the database partition
group definer.

PMAP_ID SMALLINT Identifier of the partitioning map in
SYSCAT.PARTITIONMAPS.

REDISTRIBUTE_PMAP_ID SMALLINT Identifier of the partitioning map currently
being used for redistribution. Value is -1 if
redistribution is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of database partition group.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.DBPARTITIONGROUPS

664 SQL Reference, Volume 1

SYSCAT.EVENTMONITORS

Contains a row for every event monitor that has been defined.

Table 73. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor.

DEFINER VARCHAR(128) Authorization ID of definer of event
monitor.

TARGET_TYPE CHAR(1) The type of target to which event data is
written. Values:

F = File

P = Pipe

T = Table

TARGET VARCHAR(246) Name of the target to which event data is
written. Absolute pathname of file, or
absolute name of pipe.

MAXFILES INTEGER Yes Maximum number of event files that this
event monitor permits in an event path.
Null if there is no maximum, or if the
target-type is not FILE.

MAXFILESIZE INTEGER Yes Maximum size (in 4K pages) that each event
file can reach before the event monitor
creates a new file. Null if there is no
maximum, or if the target-type is not FILE.

BUFFERSIZE INTEGER Yes Size of buffers (in 4K pages) used by event
monitors with file targets; otherwise null.

IO_MODE CHAR(1) Yes Mode of file I/O.

B = Blocked

N = Not blocked

Null if target-type is not FILE.

WRITE_MODE CHAR(1) Yes Indicates how this monitor handles existing
event data when the monitor is activated.
Values:

A = Append

R = Replace

Null if target-type is not FILE.

AUTOSTART CHAR(1) The event monitor will be activated
automatically when the database starts.

Y = Yes

N = No

SYSCAT.EVENTMONITORS

Appendix D. Catalog views 665

Table 73. SYSCAT.EVENTMONITORS Catalog View (continued)

Column Name Data Type Nullable Description

DBPARTITIONNUM SMALLINT The number of the database partition on
which the event monitor runs and logs
events.

MONSCOPE CHAR(1) Monitoring scope:

L = Local

G = Global

T = Per node where table space exists

A blank character, valid only for WRITE
TO TABLE event monitors.

EVMON_ACTIVATES INTEGER The number of times this event monitor has
been activated.

REMARKS VARCHAR(254) Yes Reserved for future use.

SYSCAT.EVENTMONITORS

666 SQL Reference, Volume 1

SYSCAT.EVENTS

Contains a row for every event that is being monitored. An event monitor, in
general, monitors multiple events.

Table 74. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor that is monitoring
this event.

TYPE VARCHAR(18) Type of event being monitored. Possible
values:

DATABASE

CONNECTIONS

TABLES

STATEMENTS

TRANSACTIONS

DEADLOCKS

DETAILDEADLOCKS

TABLESPACES

FILTER CLOB(32K) Yes The full text of the WHERE-clause that
applies to this event.

SYSCAT.EVENTS

Appendix D. Catalog views 667

SYSCAT.EVENTTABLES

Contains a row for every target table of an event monitor that writes to SQL
tables.

Table 75. SYSCAT.EVENTTABLES Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(128) Name of event monitor.

LOGICAL_GROUP VARCHAR(18) Name of the logical data group. This can be
one of:

BUFFERPOOL

CONN

CONNHEADER

CONTROL

DB

DEADLOCK

DLCONN

DLLOCK

STMT

SUBSECTION

TABLE

TABLESPACE

XACT

TABSCHEMA VARCHAR(128) Qualified name of the target table.

TABNAME VARCHAR(128)

PCTDEACTIVATE SMALLINT A percent value that specifies how full a
DMS table space must be before an event
monitor automatically deactivates. Set to 100
for SMS table spaces.

SYSCAT.EVENTTABLES

668 SQL Reference, Volume 1

SYSCAT.FULLHIERARCHIES

Each row represents the relationship between a subtable and a supertable, a
subtype and a supertype, or a subview and a superview. All hierarchical
relationships, including immediate ones, are included in this view

Table 76. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable or
subview.SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type
that is at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.FULLHIERARCHIES

Appendix D. Catalog views 669

SYSCAT.FUNCMAPOPTIONS

Each row contains function mapping option values.

Table 77. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Function mapping name.

OPTION VARCHAR(128) Name of the function mapping option.

SETTING VARCHAR(255) Value of the function mapping option.

SYSCAT.FUNCMAPOPTIONS

670 SQL Reference, Volume 1

SYSCAT.FUNCMAPPARMOPTIONS

Each row contains function mapping parameter option values.

Table 78. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Name of function mapping.

ORDINAL SMALLINT Position of parameter

LOCATION CHAR(1) L = Local

R = Remote

OPTION VARCHAR(128) Name of the function mapping
parameter option.

SETTING VARCHAR(255) Value of the function mapping
parameter option.

SYSCAT.FUNCMAPPARMOPTIONS

Appendix D. Catalog views 671

SYSCAT.FUNCMAPPINGS

Each row contains function mappings.

Table 79. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_
MAPPING

VARCHAR(18) Name of function mapping (may be system
generated).

FUNCSCHEMA VARCHAR(128) Yes Function schema. Null if system built-in
function.

FUNCNAME VARCHAR(1024) Yes Name of the local function (built-in or
user-defined).

FUNCID INTEGER Yes Internally assigned identifier.

SPECIFICNAME VARCHAR(18) Yes Name of the local function instance.

DEFINER VARCHAR(128) Authorization ID under which this mapping
was created.

WRAPNAME VARCHAR(128) Yes Wrapper name to which the mapping is
applied.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Type of data source to which mapping is
applied.

SERVERVERSION VARCHAR(18) Yes Version of the server type to which mapping
is applied.

CREATE_TIME TIMESTAMP Yes Time at which the mapping is created.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.FUNCMAPPINGS

672 SQL Reference, Volume 1

SYSCAT.HIERARCHIES

Each row represents the relationship between a subtable and its immediate
supertable, a subtype and its immediate supertype, or a subview and its
immediate superview. Only immediate hierarchical relationships are included
in this view.

Table 80. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable, or
subview.SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable, or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type
that is at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.HIERARCHIES

Appendix D. Catalog views 673

SYSCAT.INDEXAUTH

Contains a row for every privilege held on an index.

Table 81. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Whether grantee holds CONTROL privilege
over the index:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.INDEXAUTH

674 SQL Reference, Volume 1

SYSCAT.INDEXCOLUSE

Lists all columns that participate in an index.

Table 82. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index
(initial position = 1).

COLORDER CHAR(1) Order of the values in this column in the
index. Values:

A = Ascending

D = Descending

I = INCLUDE column(ordering ignored)

SYSCAT.INDEXCOLUSE

Appendix D. Catalog views 675

SYSCAT.INDEXDEP

Each row represents a dependency of an index on some other object.

Table 83. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index that has
dependencies on another object.INDNAME VARCHAR(18)

BTYPE CHAR(1) Type of object on which the index depends.

A = Alias

F = Function instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object on which the index
has a dependency.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V, or W, encodes the
privileges on the table or view that are required
by the dependent index; otherwise null.

SYSCAT.INDEXDEP

676 SQL Reference, Volume 1

SYSCAT.INDEXES

Contains one row for each index (including inherited indexes, where
applicable) that is defined for a table.

Table 84. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

DEFINER VARCHAR(128) User who created the index.

TABSCHEMA VARCHAR(128) Qualified name of the table or
nickname on which the index is
defined.TABNAME VARCHAR(128)

COLNAMES VARCHAR(640) List of column names, each preceded by
+ or − to indicate ascending or
descending order respectively. Warning:
This column will be removed in the
future. Use SYSCAT.INDEXCOLUSE for
this information.

UNIQUERULE CHAR(1) Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

MADE_UNIQUE CHAR(1) Y = Index was originally non-unique
but was converted to a unique index
to support a unique or primary key
constraint. If the constraint is
dropped, the index will revert to
non-unique.

N = Index remains as it was created.

COLCOUNT SMALLINT Number of columns in the key, plus the
number of include columns, if any.

UNIQUE_COLCOUNT SMALLINT The number of columns required for a
unique key. Always <=COLCOUNT. <
COLCOUNT only if there are include
columns. −1 if the index has no unique
key (permits duplicates).

INDEXTYPE CHAR(4) Type of index.

CLUS = Clustering

REG = Regular

DIM = dimension block index

BLOK = block index

SYSCAT.INDEXES

Appendix D. Catalog views 677

Table 84. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

ENTRYTYPE CHAR(1) H = An index on a hierarchy table
(H-table)

L = Logical index on a typed table

blank if an index on an untyped
table

PCTFREE SMALLINT Percentage of each index leaf page to be
reserved during initial building of the
index. This space is available for future
inserts after the index is built.

IID SMALLINT Internal index ID.

NLEAF INTEGER Number of leaf pages; −1 if statistics are
not gathered.

NLEVELS SMALLINT Number of index levels; −1 if statistics
are not gathered.

FIRSTKEYCARD BIGINT Number of distinct first key values; −1
if statistics are not gathered.

FIRST2KEYCARD BIGINT Number of distinct keys using the first
two columns of the index; −1 if no
statistics, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first
three columns of the index; −1 if no
statistics, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first
four columns of the index; −1 if no
statistics, or if not applicable.

FULLKEYCARD BIGINT Number of distinct full key values; −1 if
statistics are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the
index; −1 if statistics are not gathered,
or if detailed index statistics are
gathered (in which case,
CLUSTERFACTOR will be used
instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of
clustering, or −1 if detailed index
statistics have not been gathered, or if
the index is defined on a nickname.

SYSCAT.INDEXES

678 SQL Reference, Volume 1

Table 84. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in
index key order with few or no large
gaps between them; −1 if no statistics
are available.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to
number of pages in the range of pages
occupied by the index, expressed as a
percent (integer between 0 and 100; −1
if no statistics are available.)

USER_DEFINED SMALLINT 1 if this index was defined by a user
and has not been dropped; otherwise 0.

SYSTEM_REQUIRED SMALLINT Valid values are:

1 if one or the other of the following
conditions is met:

– This index is required for a
primary or unique key constraint,
or this index is a dimension block
index or composite block index
for a multi-dimensional clustering
(MDC) table.

– This is an index on the (OID)
column of a typed table.

2 if both of the following conditions
are met:

– This index is required for a
primary or unique key constraint,
or this index is a dimension block
index or composite block index
for an MDC table.

– This is an index on the (OID)
column of a typed table.

0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made
to recorded statistics for this index. Null
if no statistics available.

SYSCAT.INDEXES

Appendix D. Catalog views 679

Table 84. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical
buffer, and the number of page fetches
required to scan the table with this
index using that hypothetical buffer.
(Zero-length string if no data available.)

MINPCTUSED SMALLINT If not zero, online index
defragmentation is enabled, and the
value is the threshold of minimum used
space before merging pages.

REVERSE_SCANS CHAR(1) Y = Index supports reverse scans

N = Index does not support reverse
scans

INTERNAL_FORMAT SMALLINT Valid values are:

1 if the index does not have
backward pointers

>= 2 if the index has backward
pointers

6 if the index is a composite block
index

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

IESCHEMA VARCHAR(128) Yes Qualified name of index extension. Null
for ordinary indexes.

IENAME VARCHAR(18) Yes

IEARGUMENTS CLOB(32K) Yes External information of the parameter
specified when the index is created.
Null for ordinary indexes.

INDEX_OBJECTID INTEGER Index object identifier for the table.

NUMRIDS BIGINT Total number of row identifiers (RIDs)
in the index.

NUMRIDS_DELETED BIGINT Total number of row identifiers in the
index that are marked as deleted,
excluding those row identifiers on leaf
pages on which all row identifiers are
as marked deleted.

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages that
have all of their row identifiers marked
as deleted.

SYSCAT.INDEXES

680 SQL Reference, Volume 1

Table 84. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

AVERAGE_RANDOM_
FETCH_PAGES

DOUBLE Average number of random table pages
between sequential page accesses when
fetching using the index; −1 if it is not
known.

AVERAGE_RANDOM_
PAGES

DOUBLE Average number of random index
pages between sequential index page
accesses; −1 if it is not known.

AVERAGE_SEQUENCE_
GAP

DOUBLE Gap between index page sequences.
Detected through a scan of index leaf
pages, each gap represents the average
number of index pages that must be
randomly fetched between sequences of
index pages; −1 if it is not known.

AVERAGE_SEQUENCE_
FETCH_GAP

DOUBLE Gap between table page sequences
when fetching using the index. Detected
through a scan of index leaf pages, each
gap represents the average number of
table pages that must be randomly
fetched between sequences of table
pages; −1 if it is not known.

AVERAGE_SEQUENCE_
PAGES

DOUBLE Average number of index pages
accessible in sequence (that is, the
number of index pages that the
prefetchers would detect as being in
sequence); −1 if it is not known.

AVERAGE_SEQUENCE_
FETCH_PAGES

DOUBLE Average number of table pages
accessible in sequence (that is, the
number of table pages that the
prefetchers would detect as being in
sequence) when fetching using the
index; −1 if it is not known.

TBSPACEID INTEGER Internal identifier for the index table
space.

Related reference:

v “SYSCAT.INDEXCOLUSE” on page 675

SYSCAT.INDEXES

Appendix D. Catalog views 681

SYSCAT.INDEXEXPLOITRULES

Each row represents an index exploitation.

Table 85. SYSCAT.INDEXEXPLOITRULES Catalog View

Column Name Data Type Nullable Description

FUNCID INTEGER Function ID.

SPECID SMALLINT Number of the predicate specification in the
CREATE FUNCTION statement.

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

RULEID SMALLINT Unique exploitation rule ID.

SEARCHMETHODID SMALLINT The search method ID in the specific index
extension.

SEARCHKEY VARCHAR(320) Key used to exploit index.

SEARCHARGUMENT VARCHAR(1800) Search arguments used in the index
exploitation.

SYSCAT.INDEXEXPLOITRULES

682 SQL Reference, Volume 1

SYSCAT.INDEXEXTENSIONDEP

Contains a row for each dependency that index extensions have on various
database objects.

Table 86. SYSCAT.INDEXEXTENSIONDEP Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of the index extension that
has dependencies on another object.IENAME VARCHAR(18)

BTYPE CHAR(1) Type of object on which the index extension
is dependent:

A = Alias

F = Function instance or method instance

J = Server definition

O = "Outer" dependency on hierarchic
SELECT privilege

R = Structured type

S = Materialized query table

T = Table (not typed)

U = Typed table

V = View (not typed)

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object on which the
index extension depends. (If BTYPE='F', this
is the specific name of a function.)BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE='O', 'T', 'U', 'V', or 'W', encodes the
privileges on the table (or view) that are
required by a dependent trigger; otherwise
null.

SYSCAT.INDEXEXTENSIONDEP

Appendix D. Catalog views 683

SYSCAT.INDEXEXTENSIONMETHODS

Each row represents a search method. One index extension may include
multiple search methods.

Table 87. SYSCAT.INDEXEXTENSIONMETHODS Catalog View

Column Name Data Type Nullable Description

METHODNAME VARCHAR(18) Name of search method.

METHODID SMALLINT Number of the method in the index
extension.

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

RANGEFUNCSCHEMA VARCHAR(128) Qualified name of range-through function.

RANGEFUNCNAME VARCHAR(18)

RANGESPECIFICNAME VARCHAR(18) Range-through function specific name.

FILTERFUNCSCHEMA VARCHAR(128) Qualified name of filter function.

FILTERFUNCNAME VARCHAR(18)

FILTERSPECIFICNAME VARCHAR(18) Function specific name of filter function.

REMARKS VARCHAR(254) Yes User-supplied or null.

SYSCAT.INDEXEXTENSIONMETHODS

684 SQL Reference, Volume 1

SYSCAT.INDEXEXTENSIONPARMS

Each row represents an index extension instance parameter or source key
definition.

Table 88. SYSCAT.INDEXEXTENSIONPARMS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

ORDINAL SMALLINT Sequence number of parameter or source key.

PARMNAME VARCHAR(18) Name of parameter or source key.

TYPESCHEMA VARCHAR(128) Qualified name of the instance parameter or
source key data type.TYPENAME VARCHAR(18)

LENGTH INTEGER Length of the instance parameter or source
key data type.

SCALE SMALLINT Scale of the instance parameter or source key
data type. Zero (0) when not applicable.

PARMTYPE CHAR(1) Type represented by the row:

P = index extension parameter

K = key column

CODEPAGE SMALLINT Code page of the index extension parameter.
Zero if not a string type.

SYSCAT.INDEXEXTENSIONPARMS

Appendix D. Catalog views 685

SYSCAT.INDEXEXTENSIONS

Contains a row for each index extension.

Table 89. SYSCAT.INDEXEXTENSIONS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which the index
extension was defined.

CREATE_TIME TIMESTAMP Time at which the index extension was
defined.

KEYGENFUNCSCHEMA VARCHAR(128) Qualified name of key generation function.

KEYGENFUNCNAME VARCHAR(18)

KEYGENSPECIFICNAME VARCHAR(18) Key generation function specific name.

TEXT CLOB(64K) The full text of the CREATE INDEX
EXTENSION statement.

REMARKS VARCHAR(254) User-supplied comment, or null.

SYSCAT.INDEXEXTENSIONS

686 SQL Reference, Volume 1

SYSCAT.INDEXOPTIONS

Each row contains index specific option values.

Table 90. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Schema name of the index.

INDNAME VARCHAR(18) Local name of the index.

OPTION VARCHAR(128) Name of the index option.

SETTING VARCHAR(255) Value.

SYSCAT.INDEXOPTIONS

Appendix D. Catalog views 687

SYSCAT.KEYCOLUSE

Lists all columns that participate in a key (including inherited primary or
unique keys where applicable) defined by a unique, primary key, or foreign
key constraint.

Table 91. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a
table).

TABSCHEMA VARCHAR(128) Qualified name of the table containing the
column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key
(initial position=1).

SYSCAT.KEYCOLUSE

688 SQL Reference, Volume 1

SYSCAT.NAMEMAPPINGS

Each row represents the mapping between logical objects and the
corresponding implementation objects that implement the logical objects.

Table 92. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR(1) C = Column

I = Index

U = Typed table

LOGICAL_SCHEMA VARCHAR(128) Qualified name of the logical object.

LOGICAL_NAME VARCHAR(128)

LOGICAL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the logical
column. Otherwise null.

IMPL_SCHEMA VARCHAR(128) Qualified name of the implementation object
that implements the logical object.IMPL_NAME VARCHAR(128)

IMPL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the
implementation column. Otherwise null.

SYSCAT.NAMEMAPPINGS

Appendix D. Catalog views 689

SYSCAT.PACKAGEAUTH

Contains a row for every privilege held on a package.

Table 93. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

PKGSCHEMA VARCHAR(128) Name of the package on which the
privileges are held.PKGNAME CHAR(8)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

BINDAUTH CHAR(1) Indicates whether grantee holds BIND
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.PACKAGEAUTH

690 SQL Reference, Volume 1

SYSCAT.PACKAGEDEP

Contains a row for each dependency that packages have on indexes, tables,
views, triggers, functions, aliases, types, and hierarchies.

Table 94. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

UNIQUEID CHAR(8) Internal date and time information
indicating when the package was first
created. Useful for identifying a specific
package when multiple packages having the
same name exist.

PKGVERSION VARCHAR(64) Version identifier of the package.

BINDER VARCHAR(128) Yes Binder of the package.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

B = Trigger

D = Server definition

F = Function instance

I = Index

M = Function mapping

N = Nickname

O = Privilege dependency on all
subtables or subviews in a table or view
hierarchy

P = Page size

R = Structured type

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of an object on which the
package depends.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE is O, S, T, U, V or W then it
encodes the privileges that are required by
this package (Select, Insert, Delete, Update).

SYSCAT.PACKAGEDEP

Appendix D. Catalog views 691

Table 94. SYSCAT.PACKAGEDEP Catalog View (continued)

Column Name Data Type Nullable Description

Note: If a function instance with dependencies is dropped, the package is put into an “inoperative”
state, and it must be explicitly rebound. If any other object with dependencies is dropped, the package is
put into an “invalid” state, and the system will attempt to rebind the package automatically when it is
first referenced.

SYSCAT.PACKAGEDEP

692 SQL Reference, Volume 1

SYSCAT.PACKAGES

Contains a row for each package that has been created by binding an
application program.

Table 95. SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

PKGVERSION VARCHAR(64) Version identifier of the package.

BOUNDBY VARCHAR(128) Authorization ID (OWNER) of the binder of
the package.

DEFINER VARCHAR(128) User ID under which the package was
bound.

DEFAULT_SCHEMA VARCHAR(128) Default schema (QUALIFIER) name used for
unqualified names in static SQL statements.

VALID CHAR(1) Y = Valid

N = Not valid

X = Package is inoperative because some
function instance on which it depends
has been dropped. Explicit rebind is
needed. (If a function instance with
dependencies is dropped, the package is
put into an “inoperative” state, and it
must be explicitly rebound. If any other
object with dependencies is dropped, the
package is put into an “invalid” state,
and the system will attempt to rebind
the package automatically when it is first
referenced.)

UNIQUE_ID CHAR(8) Internal date and time information
indicating when the package was first
created. Useful for identifying a specific
package when multiple packages having the
same name exist.

TOTAL_SECT SMALLINT Total number of sections in the package.

SYSCAT.PACKAGES

Appendix D. Catalog views 693

Table 95. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

FORMAT CHAR(1) Date and time format associated with the
package:

0 = Format associated with the territory
code of the client

1 = USA date and time

2 = EUR date, EUR time

3 = ISO date, ISO time

4 = JIS date, JIS time

5 = LOCAL date, LOCAL time

ISOLATION CHAR(2) Yes Isolation level:

RR = Repeatable read

RS = Read stability

CS = Cursor stability

UR = Uncommitted read

BLOCKING CHAR(1) Yes Cursor blocking option:

N = No blocking

U = Block unambiguous cursors

B = Block all cursors

INSERT_BUF CHAR(1) Insert option used during bind:

Y = Inserts are buffered

N = Inserts are not buffered

LANG_LEVEL CHAR(1) Yes LANGLEVEL value used during BIND:

0 = SAA1

1 = SQL92E or MIA

FUNC_PATH VARCHAR(254) The SQL path used by the last BIND
command for this package. This is used as
the default path for REBIND. SYSIBM for
pre-Version 2 packages.

QUERYOPT INTEGER Optimization class under which this
package was bound. Used for REBIND. The
classes are: 0, 1, 3, 5 and 9.

EXPLAIN_LEVEL CHAR(1) Indicates whether Explain was requested
using the EXPLAIN or EXPLSNAP bind
option.

P = Plan Selection level

Blank if ’No’ Explain requested

SYSCAT.PACKAGES

694 SQL Reference, Volume 1

Table 95. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

EXPLAIN_MODE CHAR(1) Value of EXPLAIN bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

EXPLAIN_SNAPSHOT CHAR(1) Value of EXPLSNAP bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

SQLWARN CHAR(1) Are positive SQLCODEs resulting from
dynamic SQL statements returned to the
application?

Y = Yes

N = No, they are suppressed.

SQLMATHWARN CHAR(1) Value of the database configuration
parameter DFT_SQLMATHWARN at the
time of bind. Are arithmetic errors and
retrieval conversion errors in static SQL
statements handled as nulls with a warning?

Y = Yes

N = No, they are suppressed.

EXPLICIT_BIND_TIME TIMESTAMP The time at which this package was last
explicitly bound or rebound. When the
package is implicitly rebound, no function
instance will be selected that was created
later than this time.

LAST_BIND_TIME TIMESTAMP Time at which the package last explicitly or
implicitly bound or rebound.

CODEPAGE SMALLINT Application code page at bind time (-1 if not
known).

DEGREE CHAR(5) Indicates the limit on intra-partition
parallelism (as a bind option) when package
was bound.

1 = No intra-partition parallelism.

2 - 32 767 = Degree of intra-partition
parallelism.

ANY = Degree was determined by the
database manager.

SYSCAT.PACKAGES

Appendix D. Catalog views 695

Table 95. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

MULTINODE_PLANS CHAR(1) Y = Package was bound in a multiple
partition environment.

N =Package was bound in a single
partition environment.

INTRA_PARALLEL CHAR(1) Indicates the use of intra-partition
parallelism by static SQL statements within
the package.

Y = one or more static SQL statement in
package uses intra-partition parallelism.

N = no static SQL statement in package
uses intra-partition parallelism.

F = one or more static SQL statement in
package can use intra-partition
parallelism; this parallelism has been
disabled for use on a system that is not
configured for intra-partition parallelism.

VALIDATE CHAR(1) B = All checking must be performed
during BIND

R = Reserved

SYSCAT.PACKAGES

696 SQL Reference, Volume 1

Table 95. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

DYNAMICRULES CHAR(1) B = BIND. Dynamic SQL statements are
executed with bind behavior.

D = DEFINEBIND. When the package is
run within a routine context, dynamic
SQL statements in the package are
executed with define behavior. When the
package is not run within a routine
context, dynamic SQL statements in the
package are executed with bind behavior.

E = DEFINERUN. When the package is
run within a routine context, dynamic
SQL statements in the package are
executed with define behavior. When the
package is not run within a routine
context, dynamic SQL statements in the
package are executed with run behavior.

H = INVOKEBIND. When the package is
run within a routine context, dynamic
SQL statements in the package are
executed with invoke behavior. When
the package is not run within a routine
context, dynamic SQL statements in the
package are executed with bind behavior.

I = INVOKERUN. When the package is
run within a routine context, dynamic
SQL statements in the package are
executed with invoke behavior. When
the package is not run within a routine
context, dynamic SQL statements in the
package are executed with run behavior.

R = RUN. Dynamic SQL statements are
executed with run behavior. This is the
default.

SQLERROR CHAR(1) Indicates SQLERROR option on the most
recent subcommand that bound or rebound
the package.

C = Reserved

N = No package

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the
maximum length of time between when a
REFRESH TABLE statement is run for a
materialized query table and when the
materialized query table is used in place of
a base table.

SYSCAT.PACKAGES

Appendix D. Catalog views 697

Table 95. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

TRANSFORMGROUP CHAR(1024) Yes String containing the transform group bind
option.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.PACKAGES

698 SQL Reference, Volume 1

SYSCAT.PARTITIONMAPS

Contains a row for each partitioning map that is used to distribute table rows
among the partitions in a database partition group, based on hashing the
table’s partitioning key.

Table 96. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier of the partitioning map.

PARTITIONMAP LONG VARCHAR
FOR BIT DATA

The actual partitioning map, a vector of
4 096 two-byte integers for a multiple
partition database partition group. For a
single partition database partition group,
there is one entry denoting the partition
number of the single partition.

SYSCAT.PARTITIONMAPS

Appendix D. Catalog views 699

SYSCAT.PASSTHRUAUTH

This catalog view contains information about authorizations to query data
sources in pass-through sessions. A constraint on the base table requires that
the values in SERVER correspond to the values in the SERVER column of
SYSCAT.SERVERS. None of the fields in SYSCAT.PASSTHRUAUTH are
nullable.

Table 97. Columns in SYSCAT.PASSTHRUAUTHCatalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privilege.

GRANTEETYPE CHAR(1) A letter that specifies the type of grantee:

U = Grantee is an individual user.

G = Grantee is a group.

SERVERNAME VARCHAR(128) Name of the data source that the user or group
is being granted authorization to.

SYSCAT.PASSTHRUAUTH

700 SQL Reference, Volume 1

SYSCAT.PREDICATESPECS

Each row represents a predicate specification.

Table 98. SYSCAT.PREDICATESPECS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified name of function.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance.

FUNCID INTEGER Function ID.

SPECID SMALLINT ID of this predicate specification.

CONTEXTOP CHAR(8) Comparison operator is one of the built-in
relational operators (=, <, >=, and so on).

CONTEXTEXP CLOB(32K) Constant, or an SQL expression.

FILTERTEXT CLOB(32K) Yes Text of data filter expression.

SYSCAT.PREDICATESPECS

Appendix D. Catalog views 701

SYSCAT.PROCOPTIONS

Each row contains procedure specific option values.

Table 99. SYSCAT.PROCOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualifier for the stored procedure name or
nickname.

PROCNAME VARCHAR(128) Name or nickname of the stored procedure.

OPTION VARCHAR(128) Name of the stored procedure option.

SETTING VARCHAR(255) Value of the stored procedure option.

SYSCAT.PROCOPTIONS

702 SQL Reference, Volume 1

SYSCAT.PROCPARMOPTIONS

Each row contains procedure parameter specific option values.

Table 100. SYSCAT.PROCPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name or nickname.

PROCNAME VARCHAR(128)

ORDINAL SMALLINT The parameter’s numerical position within the
procedure signature.

OPTION VARCHAR(128) Name of the stored procedure parameter option.

SETTING VARCHAR(255) Value of the stored procedure parameter option.

SYSCAT.PROCPARMOPTIONS

Appendix D. Catalog views 703

SYSCAT.REFERENCES

Contains a row for each defined referential constraint.

Table 101. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA VARCHAR(128) Qualified name of the table.

TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the constraint.

REFKEYNAME VARCHAR(18) Name of parent key.

REFTABSCHEMA VARCHAR(128) Qualified name of the parent table.

REFTABNAME VARCHAR(128)

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR(1) Delete rule:

A = NO ACTION

C = CASCADE

N = SET NULL

R = RESTRICT

UPDATERULE CHAR(1) Update rule:

A = NO ACTION

R = RESTRICT

CREATE_TIME TIMESTAMP The timestamp when the referential
constraint was defined.

FK_COLNAMES VARCHAR (640) List of foreign key column names. Warning:
This column will be removed in the future.
Use SYSCAT.KEYCOLUSE for this
information.

PK_COLNAMES VARCHAR (640) List of parent key column names. Warning:
This column will be removed in the future.
Use SYSCAT.KEYCOLUSE for this
information.

Note: The SYSCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

Related reference:

v “SYSCAT.KEYCOLUSE” on page 688

SYSCAT.REFERENCES

704 SQL Reference, Volume 1

SYSCAT.REVTYPEMAPPINGS

Each row contains reverse data type mappings (mappings from data types
defined locally to data source data types). No data in this version. Defined for
possible future use with data type mappings.

Table 102. SYSCAT.REVTYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the reverse type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a reverse type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
local type.

UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
local type. If null then the system determines
the best length/precision attribute.

LOWER_SCALE SMALLINT Yes Lower bound of the scale for local decimal
data types.

UPPER_SCALE SMALLINT Yes Upper bound of the scale for local decimal
data types. If null, then the system
determines the best scale attribute.

S_OPR_P CHAR(2) Yes Relationship between local scale and local
precision. Basic comparison operators can be
used. A null indicates that no specific
relationship is required.

BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SYSCAT.REVTYPEMAPPINGS

Appendix D. Catalog views 705

Table 102. SYSCAT.REVTYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

REMOTE_LENGTH INTEGER Yes Maximum number of digits for remote
decimal type, and maximum number of
characters for remote character type.
Otherwise null.

REMOTE_SCALE SMALLINT Yes Maximum number of digits allowed to the
right of the decimal point (for remote
decimal types). Otherwise null.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Defined by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.REVTYPEMAPPINGS

706 SQL Reference, Volume 1

SYSCAT.ROUTINEAUTH

Contains one or more rows for each user or group who is granted EXECUTE
privilege on a particular routine in the database.

Table 103. SYSCAT.ROUTINEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privilege or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privilege.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

SCHEMA VARCHAR(128) Qualifier of the routine.

SPECIFICNAME VARCHAR(128) Yes Specific name of the routine. If
SPECIFICNAME is null and ROUTINETYPE
is not M, the privilege applies to all routines
in the schema of the type specified in
ROUTINETYPE. If SPECIFICNAME is null
and ROUTINETYPE is M, the privilege
applies to all methods in the schema of
subject type TYPENAME.

TYPESCHEMA VARCHAR(128) Yes Qualifier of the type name for the method.
If ROUTINETYPE is not M, TYPESCHEMA
is null.

TYPENAME VARCHAR(18) Yes Type name for the method. If
ROUTINETYPE is not M, TYPENAME is
null. If TYPENAME is null and
ROUTINETYPE is M, the privilege applies
to subject types in the schema
TYPESCHEMA.

ROUTINETYPE CHAR(1) Type of routine:

F = Function

M = Method

P = Procedure

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE
privilege on the function or method:

Y = Privilege is held.

G = Privilege is held and grantable.

N = Privilege is not held.

GRANT_TIME TIMESTAMP Time at which the EXECUTE privilege is
granted.

SYSCAT.ROUTINEAUTH

Appendix D. Catalog views 707

SYSCAT.ROUTINEDEP

Each row represents a dependency of a routine on some other object. (This
catalog view supercedes SYSCAT.FUNCDEP. The other view exists, but will
remain as it was in DB2 Version 7.1.)

Table 104. SYSCAT.FUNCDEP Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR(128) Qualified name of the routine that has
dependencies on another object.ROUTINENAME VARCHAR(128)

BTYPE CHAR(1) Type of object on which the routine depends.

A = Alias

F = Routine instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object on which the
function or method depends (if BTYPE = F, this
is the specific name of a routine).BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V or W, it encodes the
privileges on the table or view that are required
by the dependent routine. Otherwise null.

SYSCAT.ROUTINEDEP

708 SQL Reference, Volume 1

SYSCAT.ROUTINEPARMS

Contains a row for every parameter or result of a routine defined in
SYSCAT.ROUTINES. (This catalog view supercedes SYSCAT.FUNCPARMS
and SYSCAT.PROCPARMS. The other views exist, but will remain as they
were in DB2 Version 7.1.)

Table 105. SYSCAT.ROUTINEPARMS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR(128) Qualified routine name.

ROUTINENAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the routine instance (may be
system-generated).

PARMNAME VARCHAR(128) Yes Name of parameter or result column, or null
if no name exists.

ROWTYPE CHAR(1) B = Both input and output parameter

C = Result after casting

O = Output parameter

P = Input parameter

R = Result before casting

ORDINAL SMALLINT If ROWTYPE = B, O, or P, the parameter’s
numerical position within the routine
signature. If ROWTYPE = R, and the routine
is a table function, the column’s numerical
position within the result table. Otherwise 0.

TYPESCHEMA VARCHAR(128) Qualified name of data type of parameter or
result.TYPENAME VARCHAR(18)

LOCATOR CHAR(1) Y = Parameter or result is passed in the
form of a locator.

N = Parameter or result is not passed in
the form of a locator.

LENGTH INTEGER Length of parameter or result. 0 if parameter
or result is a distinct type. See Note 1.

SCALE SMALLINT Scale of parameter or result. 0 if parameter or
result is a distinct type. See Note 1.

CODEPAGE SMALLINT Code page of parameter or result. 0 denotes
either not applicable, or a parameter or result
for character data declared with the FOR BIT
DATA attribute.

SYSCAT.ROUTINEPARMS

Appendix D. Catalog views 709

Table 105. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

CAST_FUNCSCHEMA VARCHAR(128) Yes Qualified name of the function used to cast
an argument or a result. Applies to sourced
and external functions; null otherwise.CAST_FUNCSPECIFIC VARCHAR(18) Yes

TARGET_TYPESCHEMA VARCHAR(128) Yes Qualified name of the target type, if the type
of the parameter or result is REFERENCE.
Null value if the type of the parameter or
result is not REFERENCE.

TARGET_TYPENAME VARCHAR(18) Yes

SCOPE_TABSCHEMA VARCHAR(128) Yes Qualified name of the scope (target table), if
the type of the parameter or result is
REFERENCE. Null value if the type of the
parameter or result is not REFERENCE, or
the scope is not defined.

SCOPE_TABNAME VARCHAR(128) Yes

TRANSFORM_GRPNAME VARCHAR(18) Yes Name of transform group for a structured
type parameter or result.

REMARKS VARCHAR(254) Yes Parameter remarks.

Notes:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to
another function), because they inherit the length and scale of parameters from their source.

SYSCAT.ROUTINEPARMS

710 SQL Reference, Volume 1

SYSCAT.ROUTINES

Contains a row for each user-defined function (scalar, table, or source),
system-generated method, user-defined method, or procedure. Does not
include built-in functions. (This catalog view supercedes
SYSCAT.FUNCTIONS and SYSCAT.PROCEDURES. The other views exist, but
will remain as they were in DB2 Version 7.1.)

Table 106. SYSCAT.ROUTINES Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR(128) Qualified routine name.

ROUTINENAME VARCHAR(18)

ROUTINETYPE CHAR(1) F = Function

M = Method

P = Procedure.

DEFINER VARCHAR(128) Authorization ID of routine definer.

SPECIFICNAME VARCHAR(18) The name of the routine instance (may
be system-generated).

ROUTINEID INTEGER Internally-assigned routine ID.

RETURN_TYPESCHEMA VARCHAR(128) Yes Qualified name of the return type for a
scalar function or method.RETURN_TYPENAME VARCHAR(128) Yes

ORIGIN CHAR(1) B = Built-in

E = User-defined, external

M = Template

Q = SQL-bodied

U = User-defined, based on a source

S = System-generated

T = System-generated transform

FUNCTIONTYPE CHAR(1) C = Column function

R = Row function

S = Scalar function or method

T = Table function

Blank = Procedure

PARM_COUNT SMALLINT Number of parameters.

LANGUAGE CHAR(8) Implementation language of routine
body. Possible values are C, COBOL,
JAVA, OLE, OLEDB, or SQL. Blank if
ORIGIN is not E or Q.

SYSCAT.ROUTINES

Appendix D. Catalog views 711

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCESCHEMA VARCHAR(128) Yes If ORIGIN = U and the routine is a
user-defined function, contains the
qualified name of the source function. If
ORIGIN = U and the source function is
built-in, SOURCESCHEMA is 'SYSIBM'
and SOURCESPECIFIC is 'N/A for
built-in'. Null if ORIGIN is not U.

SOURCESPECIFIC VARCHAR(18) Yes

DETERMINISTIC CHAR(1) Y = Deterministic (results are
consistent)

N = Non-deterministic (results may
differ)

Blank if ORIGIN is not E or Q.

EXTERNAL_ACTION CHAR(1) E = Function has external
side-effects (number of invocations
is important)

N = No side-effects

Blank if ORIGIN is not E or Q.

NULLCALL CHAR(1) Y = CALLED ON NULL INPUT

N = RETURNS NULL ON NULL
INPUT (result is implicitly null if
operand(s) are null).

Blank if ORIGIN is not E or Q.

CAST_FUNCTION CHAR(1) Y = This is a cast function

N = This is not a cast function

ASSIGN_FUNCTION CHAR(1) Y = Implicit assignment function

N = Not an assignment function

SCRATCHPAD CHAR(1) Y = This routine has a scratch pad

N = This routine does not have a
scratch pad

Blank if ORIGIN is not E or
ROUTINETYPE is P.

SCRATCHPAD_LENGTH SMALLINT n = Length of the scratch pad in
bytes

0 = SCRATCHPAD is N

-1 = LANGUAGE is OLEDB

SYSCAT.ROUTINES

712 SQL Reference, Volume 1

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

FINALCALL CHAR(1) Y = Final call is made to this
function at runtime
end-of-statement.

N = No final call is made.

Blank if ORIGIN is not E.

PARALLEL CHAR(1) Y = Function can be executed in
parallel.

N = Function cannot be executed in
parallel.

Blank if ORIGIN is not E.

PARAMETER_STYLE CHAR(8) Indicates the parameter style declared
when the routine was created. Values:

DB2SQL

SQL

DB2GENRL

GENERAL

JAVA

DB2DARI

GNRLNULL

Blank if ORIGIN is not E.

FENCED CHAR(1) Y = Fenced

N = Not fenced

Blank if ORIGIN is not E.

SQL_DATA_ACCESS CHAR(1) C = CONTAINS SQL: only SQL that
does not read or modify SQL data is
allowed.

M = MODIFIES SQL DATA: all SQL
allowed in routines is allowed.

N = NO SQL: SQL is not allowed.

R = READS SQL DATA: only SQL
that reads SQL data is allowed.

DBINFO CHAR(1) Y = DBINFO is passed.

N = DBINFO is not passed.

PROGRAMTYPE CHAR(1) M = Main

S = Subroutine

SYSCAT.ROUTINES

Appendix D. Catalog views 713

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

COMMIT_ON_RETURN CHAR(1) N = Changes are not committed
after the procedure completes.

Blank if ROUTINETYPE is not P.

RESULT_SETS SMALLINT Estimated upper limit of returned result
sets.

SPEC_REG CHAR(1) I = INHERIT SPECIAL REGISTERS:
special registers start with their
values from the invoking statement.

Blank if ORIGIN is not E or Q.

FEDERATED CHAR(1) Y = Routine can access federated
objects.

N = Routine may not access
federated objects.

Blank if ORIGIN is not E or Q.

THREADSAFE CHAR(1) Y = Routine can run in the same
process as other routines.

N = Routine must be run in a
separate process from other routines.

Blank if ORIGIN is not E.

VALID CHAR(1) Y = SQL procedure is valid.

N = SQL procedure is invalid.

X = SQL procedure is inoperative
because some object it requires has
been dropped. The SQL procedure
must be explicitly dropped and
recreated.

Blank if ORIGIN is not Q.

METHODIMPLEMENTED CHAR(1) Y = Method is implemented.

N = Method specification without
an implementation.

Blank if ROUTINETYPE is not M.

METHODEFFECT CHAR(2) MU = Mutator method

OB = Observer method

CN = Constructor method

Blanks if FUNCTIONTYPE is not T.

SYSCAT.ROUTINES

714 SQL Reference, Volume 1

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

TYPE_PRESERVING CHAR(1) Y = Return type is governed by a
″type-preserving″ parameter. All
system-generated mutator methods
are type-preserving.

N = Return type is the declared
return type of the method.

Blank if ROUTINETYPE is not M.

WITH_FUNC_ACCESS CHAR(1) Y = This method can be invoked by
using functional notation.

N = This method cannot be invoked
by using functional notation.

Blank if ROUTINETYPE is not M.

OVERRIDEN_METHODID INTEGER Yes Reserved for future use.

SUBJECT_TYPESCHEMA VARCHAR(128) Yes Subject type for method.

SUBJECT_TYPENAME VARCHAR(18) Yes

CLASS VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the
class that implements this routine. Null
otherwise.

JAR_ID VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the
jar file that implements this routine.
Null otherwise.

JARSCHEMA VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the
schema of the jar file that implements
this routine. Null otherwise.

JAR_SIGNATURE VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the
signature of the Java method that
implements this routine. Null
otherwise.

CREATE_TIME TIMESTAMP Timestamp of routine creation. Set to 0
for Version 1 functions.

ALTER_TIME TIMESTAMP Timestamp of most recent routine
alteration. If the routine has not been
altered, set to CREATE_TIME.

FUNC_PATH VARCHAR(254) Yes SQL path at the time the routine was
defined.

QUALIFIER VARCHAR(128) Value of default schema at object
definition time.

IOS_PER_INVOC DOUBLE Estimated number of I/Os per
invocation; -1 if not known (0 default).

SYSCAT.ROUTINES

Appendix D. Catalog views 715

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; -1 if not known (450
default).

IOS_PER_ARGBYTE DOUBLE Estimated number of I/Os per input
argument byte; -1 if not known (0
default).

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per
input argument byte; -1 if not known (0
default).

PERCENT_ARGBYTES SMALLINT Estimated average percent of input
argument bytes that the routine will
actually read; -1 if not known (100
default).

INITIAL_IOS DOUBLE Estimated number of I/Os performed
the first/last time the routine is
invoked; -1 if not known (0 default).

INITIAL_INSTS DOUBLE Estimated number of instructions
executed the first/last time the routine
is invoked; -1 if not known (0 default).

CARDINALITY BIGINT The predicted cardinality of a table
function; -1 if not known, or if the
routine is not a table function.

SELECTIVITY DOUBLE Used for user-defined predicates; -1 if
there are no user-defined predicates.
See Note 1.

RESULT_COLS SMALLINT For a table function (ROUTINETYPE =
F and TYPE = T) contains the number
of columns in the result table. For other
functions and methods (ROUTINETYPE
= F or M), contains 1. For procedures
(ROUTINETYPE = P), contains 0.

IMPLEMENTATION VARCHAR(254) Yes If ORIGIN = E, identifies the
path/module/function that implements
this function. If ORIGIN = U and the
source function is built-in, this column
contains the name and signature of the
source function. Null otherwise.

LIB_ID INTEGER Yes Reserved for future use.

TEXT_BODY_OFFSET INTEGER If LANGUAGE = SQL, the offset to the
start of the SQL procedure body in the
full text of the CREATE statement; 0 if
LANGUAGE is not SQL.

SYSCAT.ROUTINES

716 SQL Reference, Volume 1

Table 106. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

TEXT CLOB(1M) Yes If LANGUAGE = SQL, the text of the
CREATE FUNCTION, CREATE
METHOD, or CREATE PROCEDURE
statement.

NEWSAVEPOINTLEVEL CHAR(1) Indicates whether the routine initiates a
new savepoint level when it is invoked.

Y = A new savepoint level is
initiated when the routine is
invoked.

N = A new savepoint level is not
initiated when the routine is
invoked. The routine uses the
existing savepoint level.

Blank - not applicable.

DEBUG_MODE CHAR(1) 0 = Debugging is off for this routine.

1 = Debugging is on for this routine.

TRACE_LEVEL CHAR(1) Reserved for future use.

DIAGNOSTIC_LEVEL CHAR(1) Reserved for future use.

CHECKOUT_USERID VARCHAR(128) Yes User ID of the user who performed a
checkout of the object. Null if not
checked out.

PRECOMPILE_OPTIONS VARCHAR(1024) Yes Precompile options specified for the
routine.

COMPILE_OPTIONS VARCHAR(1024) Yes Compile options specified for the
routine.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

Notes:

1. This column will be set to -1 during migration in the packed descriptor and system catalogs for all
user-defined routines. For a user-defined predicate, the selectivity in the system catalog will be -1. In
this case, the selectivity value used by the optimizer is 0.01.

SYSCAT.ROUTINES

Appendix D. Catalog views 717

SYSCAT.SCHEMAAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular schema in the database. All schema privileges for a single
schema granted by a specific grantor to a specific grantee appear in a single
row.

Table 107. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.
G = Grantee is a group.

SCHEMANAME VARCHAR(128) Name of the schema.

ALTERINAUTH CHAR(1) Indicates whether grantee holds ALTERIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

CREATEINAUTH CHAR(1) Indicates whether grantee holds CREATEIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

DROPINAUTH CHAR(1) Indicates whether grantee holds DROPIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

SYSCAT.SCHEMAAUTH

718 SQL Reference, Volume 1

SYSCAT.SCHEMATA

Contains a row for each schema.

Table 108. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR(128) Name of the schema.

OWNER VARCHAR(128) Authorization id of the schema. The value
for implicitly created schemas is SYSIBM.

DEFINER VARCHAR(128) User who created the schema.

CREATE_TIME TIMESTAMP Timestamp indicating when the object was
created.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.SCHEMATA

Appendix D. Catalog views 719

SYSCAT.SEQUENCEAUTH

Contains a row for each authorization ID that can be used to use or to alter a
sequence.

Table 109. SYSCAT.SEQUENCEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) SYSIBM or authorization ID that granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID that holds the privilege.

GRANTEETYPE CHAR(1) Type of authorization ID that holds the
privilege.

U = grantee is an individual user

SEQSCHEMA VARCHAR(128) Qualified name of the sequence.

SEQNAME VARCHAR(128)

USAGEAUTH CHAR(1) Y = privilege is held

N = privilege is not held

G = privilege is held and is grantable

ALTERAUTH CHAR(1) Y = privilege is held

N = privilege is not held

G = privilege is held and is grantable

SYSCAT.SEQUENCEAUTH

720 SQL Reference, Volume 1

SYSCAT.SEQUENCES

Contains a row for each sequence defined in the database. This catalog view
is updated during normal operations, in response to SQL data definition
statements, environment routines, and certain utilities. Data in the catalog
view is available through normal SQL query facilities. Columns have
consistent names based on the type of objects that they describe.

Table 110. Columns in SYSCAT.SEQUENCES Catalog View

Column Name Data Type Nullable Description

SEQSCHEMA VARCHAR(128) Qualified name of the sequence (generated by
DB2 for an identity column).SEQNAME VARCHAR(128)

DEFINER VARCHAR(128) Definer of the sequence.

OWNER VARCHAR(128) Owner of the sequence.

SEQID INTEGER Internal ID of the sequence.

SEQTYPE CHAR(1) Sequence type

S = Regular sequence

I = Identity sequence

INCREMENT DECIMAL(31,0) Increment value.

START DECIMAL(31,0) Starting value.

MAXVALUE DECIMAL(31,0) Maximal value.

MINVALUE DECIMAL(31,0) Minimum value.

CYCLE CHAR(1) Whether cycling will occur when a boundary is
reached:

Y - cycling will occur

N - cycling will not occur

CACHE INTEGER Number of sequence values to preallocate in
memory for faster access. 0 indicates that values
are not preallocated.

ORDER CHAR(1) Whether or not the sequence numbers must be
generated in order of request:

Y - sequence numbers must be generated in
order of request

N - sequence numbers are not required to be
generated in order of request

DATATYPEID INTEGER For built-in types, the internal ID of the built-in
type. For distinct types, the internal ID of the
distinct type.

SYSCAT.SEQUENCES

Appendix D. Catalog views 721

Table 110. Columns in SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCETYPEID INTEGER For a built-in type, this has a value of 0. For a
distinct type, this is the internal ID of the
built-in type that is the source type for the
distinct type.

CREATE_TIME TIMESTAMP Time when the sequence was created.

ALTER_TIME TIMESTAMP Time when the last ALTER SEQUENCE
statement was executed for this sequence.

PRECISION SMALLINT The precision of the data type of the sequence.
Values are: 5 for a SMALLINT, 10 for INTEGER,
and 19 for BIGINT. For DECIMAL, it is the
precision of the specified DECIMAL data type.

ORIGIN CHAR(1) Sequence Origin

U - User generated sequence

S - System generated sequence

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SEQUENCES

722 SQL Reference, Volume 1

SYSCAT.SERVEROPTIONS

Each row contains configuration options at the server level.

Table 111. Columns in SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Yes Wrapper name.

SERVERNAME VARCHAR(128) Yes Name of the server.

SERVERTYPE VARCHAR(30) Yes Server type.

SERVERVERSION VARCHAR(18) Yes Server version.

CREATE_TIME TIMESTAMP Time when entry is created.

OPTION VARCHAR(128) Name of the server option.

SETTING VARCHAR(2048) Value of the server option.

SERVEROPTIONKEY VARCHAR(18) Uniquely identifies a row.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVEROPTIONS

Appendix D. Catalog views 723

SYSCAT.SERVERS

Each row represents a data source. Catalog entries are not necessary for tables
that are stored in the same instance that contains this catalog table.

Table 112. Columns in SYSCAT.SERVERS Catalog View

Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

SERVERNAME VARCHAR(128) Name of data source as it is known to the
system.

SERVERTYPE VARCHAR(30) Yes Type of data source (always uppercase).

SERVERVERSION VARCHAR(18) Yes Version of data source.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVERS

724 SQL Reference, Volume 1

SYSCAT.STATEMENTS

Contains one or more rows for each SQL statement in each package in the
database.

Table 113. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

UNIQUEID CHAR(8) Internal date and time information
indicating when the package was first
created. Useful for identifying a specific
package when multiple packages having the
same name exist.

PKGVERSION VARCHAR(64) Version identifier of the package.

STMTNO INTEGER Line number of the SQL statement in the
source module of the application program.

SECTNO SMALLINT Number of the package section containing
the SQL statement.

SEQNO SMALLINT Always 1.

TEXT CLOB (64K) Text of the SQL statement.

SYSCAT.STATEMENTS

Appendix D. Catalog views 725

SYSCAT.TABAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular table or view in the database. All the table privileges for a
single table or view granted by a specific grantor to a specific grantee appear
in a single row.

Table 114. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

ALTERAUTH CHAR(1) Indicates whether grantee holds ALTER
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

DELETEAUTH CHAR(1) Indicates whether grantee holds DELETE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

INDEXAUTH CHAR(1) Indicates whether grantee holds INDEX
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

726 SQL Reference, Volume 1

Table 114. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

INSERTAUTH CHAR(1) Indicates whether grantee holds INSERT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SELECTAUTH CHAR(1) Indicates whether grantee holds SELECT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

REFAUTH CHAR(1) Indicates whether grantee holds
REFERENCE privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

UPDATEAUTH CHAR(1) Indicates whether grantee holds UPDATE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

Appendix D. Catalog views 727

SYSCAT.TABCONST

Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY
KEY, or FOREIGN KEY.

Table 115. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a
table).

TABSCHEMA VARCHAR(128) Qualified name of the table to which
this constraint applies.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID under which the
constraint was defined.

TYPE CHAR(1) Indicates the constraint type:

F = FOREIGN KEY

K = CHECK

P = PRIMARY KEY

U = UNIQUE

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

ENFORCED CHAR(1) Y = Enforce constraint

N = Do not enforce constraint

CHECKEXISTINGDATA CHAR(1) D = Defer checking of existing data

I = Immediately check existing data

N = Never check existing data

ENABLEQUERYOPT CHAR(1) Y = Query optimization is enabled

N = Query optimization is disabled

SYSCAT.TABCONST

728 SQL Reference, Volume 1

SYSCAT.TABDEP

Contains a row for every dependency of a view or a materialized query table
on some other object. Also encodes how privileges on this view depend on
privileges on underlying tables and views. (The VIEWDEP catalog view is still
available, but only at the Version 7.1 level.)

Table 116. SYSCAT.TABDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Name of the view or materialized query
table with dependencies on a base table.TABNAME VARCHAR(128)

DTYPE CHAR(1) S = Materialized query table

V = View (untyped)

W = Typed view

DEFINER VARCHAR(128) Yes Authorization ID of the creator of the view.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

F = Function instance

N = Nickname

O = Privilege dependency on all
subtables or subviews in a table or view
hierarchy

I = Index if recording dependency on a
base table

R = Structured type

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of the object on which the
view depends.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V, W, encodes the
privileges on the underlying table or view
on which this table depends. Otherwise
null.

SYSCAT.TABDEP

Appendix D. Catalog views 729

SYSCAT.TABLES

Contains one row for each table, view, nickname or alias that is created. All of
the catalog tables and views have entries in the SYSCAT.TABLES catalog view.

Table 117. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table, view, nickname,
or alias.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the table, view, nickname
or alias.

TYPE CHAR(1) The type of object:

A = Alias

H = Hierarchy table

N = Nickname

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

STATUS CHAR(1) The check pending status of the object:

N = Normal table, view, alias or
nickname

C = Check pending on table or nickname

X = Inoperative view or nickname

DROPRULE CHAR(1) N = No rule

R = Restrict rule applies on drop

BASE_TABSCHEMA VARCHAR(128) Yes If TYPE = A, these columns identify the
table, view, alias, or nickname that is
referenced by this alias; otherwise they are
null.

BASE_TABNAME VARCHAR(128) Yes

ROWTYPESCHEMA VARCHAR(128) Yes Contains the qualified name of the rowtype
of this table, where applicable. Null
otherwise.ROWTYPENAME VARCHAR(18)

CREATE_TIME TIMESTAMP The timestamp indicating when the object
was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this table. Null if no
statistics available.

COLCOUNT SMALLINT Number of columns in the table.

SYSCAT.TABLES

730 SQL Reference, Volume 1

Table 117. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

TABLEID SMALLINT Internal table identifier.

TBSPACEID SMALLINT Internal identifier of primary table space for
this table.

CARD BIGINT Total number of rows in the table. For tables
in a table hierarchy, the number of rows at
the given level of the hierarchy; −1 if
statistics are not gathered, or the row
describes a view or alias; −2 for hierarchy
tables (H-tables).

NPAGES INTEGER Total number of pages on which the rows of
the table exist; −1 if statistics are not
gathered, or the row describes a view or
alias; −2 for subtables or H-tables.

FPAGES INTEGER Total number of pages; −1 if statistics are
not gathered, or the row describes a view or
alias; −2 for subtables or H-tables.

OVERFLOW INTEGER Total number of overflow records in the
table; −1 if statistics are not gathered, or the
row describes a view or alias; −2 for
subtables or H-tables.

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If
no other table space is specified, all parts of
the table are stored in this table space. Null
for aliases and views.

INDEX_TBSPACE VARCHAR(18) Yes Name of table space that holds all indexes
created on this table. Null for aliases and
views, or if the INDEX IN clause was
omitted or specified with the same value as
the IN clause of the CREATE TABLE
statement.

LONG_TBSPACE VARCHAR(18) Yes Name of table space that holds all long data
(LONG or LOB column types) for this table.
Null for aliases and views, or if the LONG
IN clause was omitted or specified with the
same value as the IN clause of the CREATE
TABLE statement.

PARENTS SMALLINT Yes Number of parent tables of this table (the
number of referential constraints in which
this table is a dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table
(the number of referential constraints in
which this table is a parent).

SYSCAT.TABLES

Appendix D. Catalog views 731

Table 117. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

SELFREFS SMALLINT Yes Number of self-referencing referential
constraints for this table (the number of
referential constraints in which this table is
both a parent and a dependent).

KEYCOLUMNS SMALLINT Yes Number of columns in the primary key of
the table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is
null or 0 if there is no primary key.

KEYUNIQUE SMALLINT Number of unique constraints (other than
primary key) defined on this table.

CHECKCOUNT SMALLINT Number of check constraints defined on this
table.

DATACAPTURE CHAR(1) Y = Table participates in data replication

N = Does not participate

L = Table participates in data replication,
including replication of LONG
VARCHAR and LONG VARGRAPHIC
columns

CONST_CHECKED CHAR(32) Byte 1 represents foreign key constraints.
Byte 2 represents check constraints. Byte 5
represents materialized query table. Byte 6
represents generated columns. Byte 7
represents staging table. Other bytes are
reserved. Encodes constraint information on
checking. Values:

Y = Checked by system

U = Checked by user

N = Not checked (pending)

W = Was in a ’U’ state when the table
was placed in check pending (pending)

F = In byte 5, the materialized query
table cannot be refreshed incrementally.
In byte 7, the content of the staging table
is incomplete and cannot be used for
incremental refresh of the associated
materialized query table.

PMAP_ID SMALLINT Yes Identifier of the partitioning map used by
this table. Null for aliases and views.

SYSCAT.TABLES

732 SQL Reference, Volume 1

Table 117. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

PARTITION_MODE CHAR(1) Mode used for tables in a partitioned
database.

H = Hash on the partitioning key

R = Table replicated across database
partitions

Blank for aliases, views and tables in
single partition database partition groups
with no partitioning key defined. Also
blank for nicknames.

LOG_ATTRIBUTE CHAR(1) 0 = Default logging

1 = Table created not logged initially

PCTFREE SMALLINT Percentage of each page to be reserved for
future inserts. Can be changed by ALTER
TABLE.

APPEND_MODE CHAR(1) Controls how rows are inserted on pages:

N = New rows are inserted into existing
spaces if available

Y = New rows are appended at end of
data

Initial value is N.

REFRESH CHAR(1) Refresh mode:

D = Deferred

I = Immediate

O = Once

Blank if not a materialized query table

REFRESH_TIME TIMESTAMP Yes For REFRESH = D or O, timestamp of the
REFRESH TABLE statement that last
refreshed the data. Otherwise null.

LOCKSIZE CHAR(1) Indicates preferred lock granularity for
tables when accessed by DML statements.
Only applies to tables. Possible values are:

R = Row

T = Table

Blank if not applicable

Initial value is R.

VOLATILE CHAR(1) C = Cardinality of the table is volatile

Blank if not applicable

SYSCAT.TABLES

Appendix D. Catalog views 733

Table 117. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

ROW_FORMAT CHAR(1) Version of the row format. Possible values
are:

O = Object does not physically exist on
disk (for example, a view)

1 = Row format starting with DB2
Version 8

2 = Row format prior to DB2 Version 8

PROPERTY VARCHAR(32) Properties for the table. A single blank
indicates that the table has no properties.

STATISTICS_PROFILE CLOB(32K) Yes RUNSTATS command used to register a
statistical profile of the table.

COMPRESSION CHAR(1) V = Value compression is activated, and
a row format that supports compression
is used

N = No compression. A row format that
does not support compression is used

ACCESS_MODE CHAR(1) Access mode of the object. This access mode
is used in conjunction with the STATUS
field to represent one of four states. Possible
values are:

N = No access (corresponds to a status
value of C)

R = Read-only (corresponds to a status
value of C)

D = No data movement (corresponds to
a status value of N)

F = Full access (corresponds to a status
value of N)

CLUSTERED CHAR(1) Yes Y = multi-dimensional clustering (MDC)
table

Null for a non-MDC table

ACTIVE_BLOCKS INTEGER Yes Total number of in-use blocks in an MDC
table; −1 if statistics are not gathered.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLES

734 SQL Reference, Volume 1

SYSCAT.TABLESPACES

Contains a row for each table space.

Table 118. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR(18) Name of table space.

DEFINER VARCHAR(128) Authorization ID of table space definer.

CREATE_TIME TIMESTAMP Creation time of table space.

TBSPACEID INTEGER Internal table space identifier.

TBSPACETYPE CHAR(1) The type of the table space:

S = System managed space

D = Database managed space

DATATYPE CHAR(1) Type of data that can be stored:

A = All types of permanent data

L = Large data - long data or index data

T = System temporary tables only

U = Declared temporary tables only

EXTENTSIZE INTEGER Size of extent, in pages of size PAGESIZE.
This many pages are written to one
container in the table space before switching
to the next container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be
read when prefetch is performed.

OVERHEAD DOUBLE Controller overhead and disk seek and
latency time in milliseconds.

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE
into the buffer.

PAGESIZE INTEGER Size (in bytes) of pages in the table space.

DBPGNAME VARCHAR(18) Name of the database partition group for
the table space.

BUFFERPOOLID INTEGER ID of buffer pool used by this tablespace (1
indicates default buffer pool).

DROP_RECOVERY CHAR(1) N = table is not recoverable after a
DROP TABLE statement

Y = table is recoverable after a DROP
TABLE statement

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLESPACES

Appendix D. Catalog views 735

SYSCAT.TABOPTIONS

Each row contains option associated with a remote table.

Table 119. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of table, view, alias or
nickname.TABNAME VARCHAR(128)

OPTION VARCHAR(128) Name of the table, view, alias or nickname
option.

SETTING VARCHAR(255) Value.

SYSCAT.TABOPTIONS

736 SQL Reference, Volume 1

SYSCAT.TBSPACEAUTH

Contains one row for each user or group who is granted USE privilege on a
particular table space in the database.

Table 120. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE CHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TBSPACE VARCHAR(18) Name of the table space.

USEAUTH CHAR(1) Indicates whether grantee holds USE privilege
on the table space:

G = Privilege is held and grantable.

N = Privilege is not held.

Y = Privilege is held.

SYSCAT.TBSPACEAUTH

Appendix D. Catalog views 737

SYSCAT.TRANSFORMS

Contains a row for each transform function type within a user-defined type
contained in a named transform group.

Table 121. SYSCAT.TRANSFORMS Catalog View

Column Name Data Type Nullable Description

TYPEID SMALLINT Internal type ID as defined in
SYSCAT.DATATYPES

TYPESCHEMA VARCHAR(128) Qualified name of the given user-defined
structured type.TYPENAME VARCHAR(18)

GROUPNAME VARCHAR(18) Transform group name.

FUNCID INTEGER Yes Internal function ID for the associated
transform function, as defined in
SYSCAT.FUNCTIONS. Null only for internal
system functions.

FUNCSCHEMA VARCHAR(128) Qualified name of the associated transform
functions.FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

TRANSFORMTYPE VARCHAR(8) 'FROM SQL' = Transform function
transforms a structured type from SQL

'TO SQL' = Transform function transforms
a structured type to SQL

FORMAT CHAR(1) 'U' = User defined

MAXLENGTH INTEGER Yes Maximum length (in bytes) of output from
the FROM SQL transform. Null for TO SQL
transforms.

ORIGIN CHAR(1) 'O' = Original transform group (user- or
system-defined)

'R' = Redefined

REMARKS VARCHAR(254) Yes User-supplied comment or null.

SYSCAT.TRANSFORMS

738 SQL Reference, Volume 1

SYSCAT.TRIGDEP

Contains a row for every dependency of a trigger on some other object.

Table 122. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

BTYPE CHAR(1) Type of object BNAME:

A = Alias

B = Trigger

F = Function instance

N = Nickname

O = Privilege dependency on all
subtables or subviews in a table or view
hierarchy

R = Structured type

S = Materialized query table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of object depended on by a
trigger.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE= O, S, T, U, V or W encodes the
privileges on the table or view that are
required by this trigger; otherwise null.

SYSCAT.TRIGDEP

Appendix D. Catalog views 739

SYSCAT.TRIGGERS

Contains one row for each trigger. For table hierarchies, each trigger is
recorded only at the level of the hierarchy where it was created.

Table 123. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which the trigger was
defined.

TABSCHEMA VARCHAR(128) Qualified name of the table or view to which
this trigger applies.

TABNAME VARCHAR(128)

TRIGTIME CHAR(1) Time when triggered actions are applied to the
base table, relative to the event that fired the
trigger:

A = Trigger applied after event

B = Trigger applied before event

I = Trigger applied instead of event

TRIGEVENT CHAR(1) Event that fires the trigger.

I = Insert

D = Delete

U = Update

GRANULARITY CHAR(1) Trigger is executed once per:

S = Statement

R = Row

VALID CHAR(1) Y = Trigger is valid

X = Trigger is inoperative; must be
re-created.

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used
in resolving functions and types.

QUALIFIER VARCHAR(128) Contains value of the default schema at the
time of object definition.

FUNC_PATH VARCHAR(254) Function path at the time the trigger was
defined. Used in resolving functions and
types.

TEXT CLOB(64K) The full text of the CREATE TRIGGER
statement, exactly as typed.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.TRIGGERS

740 SQL Reference, Volume 1

SYSCAT.TYPEMAPPINGS

Each row contains a user-defined mapping of a remote built-in data type to a
local built-in data type.

Table 124. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a data type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LENGTH INTEGER Yes Maximum length or precision of the data
type. If null, the system determines the best
length/precision.

SCALE SMALLINT Yes Scale for DECIMAL fields. If null, the system
determines the best scale attribute.

BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

SYSCAT.TYPEMAPPINGS

Appendix D. Catalog views 741

Table 124. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

REMOTE_UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

REMOTE_LOWER_SCALE SMALLINT Yes Lower bound of the scale of the remote type.

REMOTE_UPPER_SCALE SMALLINT Yes Upper bound of the scale of the remote type.

REMOTE_S_OPR_P CHAR(2) Yes Relationship between remote scale and
remote precision. Basic comparison operators
can be used. A null indicated that no specific
relationship is required.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Definition supplied by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.TYPEMAPPINGS

742 SQL Reference, Volume 1

SYSCAT.USEROPTIONS

Each row contains server specific option values.

Table 125. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR(128) Local authorization ID (always uppercase)

SERVERNAME VARCHAR(128) Name of the server for which the user is
defined.

OPTION VARCHAR(128) Name of the user options.

SETTING VARCHAR(255) Value.

SYSCAT.USEROPTIONS

Appendix D. Catalog views 743

SYSCAT.VIEWS

Contains one or more rows for each view that is created.

Table 126. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR(128) Qualified name of a view or the qualified
name of a table that is used to define a
materialized query table or a staging table.VIEWNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID of the creator of the view.

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR(1) States the type of view checking:

N = No check option

L = Local check option

C = Cascaded check option

READONLY CHAR(1) Y = View is read-only because of its
definition.

N = View is not read-only.

VALID CHAR(1) Y = View or materialized query table
definition is valid.

X = View or materialized query table
definition is inoperative; must be
re-created.

QUALIFIER VARCHAR(128) Contains value of the default schema at the
time of object definition.

FUNC_PATH VARCHAR(254) The SQL path of the view creator at the
time the view was defined. When the view
is used in data manipulation statements,
this path must be used to resolve function
calls in the view. SYSIBM for views created
before Version 2.

TEXT CLOB(64k) Text of the CREATE VIEW statement.

SYSCAT.VIEWS

744 SQL Reference, Volume 1

SYSCAT.WRAPOPTIONS

Each row contains wrapper specific options.

Table 127. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

OPTION VARCHAR(128) Name of wrapper option.

SETTING VARCHAR(255) Value.

SYSCAT.WRAPOPTIONS

Appendix D. Catalog views 745

SYSCAT.WRAPPERS

Each row contains information on the registered wrapper.

Table 128. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

WRAPTYPE CHAR(1) N = Non-relational

R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR(255) Name of the file that contains the code used to
communicate with the data sources associated
with this wrapper.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.WRAPPERS

746 SQL Reference, Volume 1

SYSSTAT.COLDIST

Each row describes the Nth-most-frequent value or Nth quantile value of
some column. Statistics are not recorded for inherited columns of typed tables.

Table 129. SYSSTAT.COLDIST Catalog View

Column Name Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table to
which this entry applies.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which
this entry applies.

TYPE CHAR(1) Type of statistic collected:

F = Frequency (most frequent
value)

Q = Quantile value

SEQNO SMALLINT If TYPE = F, then N in this
column identifies the Nth most
frequent value. If TYPE = Q,
then N in this column identifies
the Nth quantile value.

COLVALUE VARCHAR(254) Yes The data value, as a character
literal or a null value.

This column can be updated
with a valid representation of
the value appropriate to the
column that the statistic is
associated with. If null is the
required frequency value, the
column should be set to NULL.

Yes

VALCOUNT BIGINT If TYPE = F, then VALCOUNT is
the number of occurrences of
COLVALUE in the column. If
TYPE = Q, then VALCOUNT is
the number of rows whose value
is less than or equal to
COLVALUE.

This column can be only
updated with the following
values:

v >= 0 (zero)

Yes

SYSSTAT.COLDIST

Appendix D. Catalog views 747

Table 129. SYSSTAT.COLDIST Catalog View (continued)

Column Name Data Type Nullable Description Updatable

DISTCOUNT BIGINT If TYPE = q, this column records
the number of distinct values
that are less than or equal to
COLVALUE (null if unavailable.)
the number of rows whose value
is less than or equal to
COLVALUE.

Yes

SYSSTAT.COLDIST

748 SQL Reference, Volume 1

SYSSTAT.COLUMNS

Contains one row for each column for which statistics can be updated.
Statistics are not recorded for inherited columns of typed tables.

Table 130. SYSSTAT.COLUMNS Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table that contains
the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLCARD BIGINT Number of distinct values in the column;
−1 if statistics are not gathered; −2 for
inherited columns and columns of
H-tables.

For any column, COLCARD cannot have
a value higher than the cardinality of the
table containing that column.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

HIGH2KEY VARCHAR(33) Yes Second highest value of the column. This
field is empty if statistics are not gathered
and for inherited columns and columns of
H-tables.

This column can be updated with a valid
representation of the value appropriate to
the column that the statistic is associated
with.

LOWKEY2 should not be greater than
HIGH2KEY.

Yes

LOW2KEY VARCHAR(33) Yes Second lowest value of the column.
Empty if statistics not gathered and for
inherited columns and columns of
H-tables.

This column can be updated with a valid
representation of the value appropriate to
the column that the statistic is associated
with.

Yes

SYSSTAT.COLUMNS

Appendix D. Catalog views 749

Table 130. SYSSTAT.COLUMNS Catalog View (continued)

Column
Name

Data Type Nullable Description Updatable

AVGCOLLEN INTEGER Average column length. −1 if a long field
or LOB, or statistics have not been
collected; −2 for inherited columns and
columns of H-tables.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

NUMNULLS BIGINT Contains the number of nulls in a column.
−1 if statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

SUB_COUNT SMALLINT Average number of sub-elements. Only
applicable for character columns. For
example, consider the following string:
’database simulation analytical business
intelligence’. In this example,
SUB_COUNT = 5, because there are 5
sub-elements in the string.

SUB_DELIM_
LENGTH

SMALLINT Average length of each delimiter
separating each sub-element. Only
applicable for character columns. For
example, consider the following string:
’database simulation analytical business
intelligence’. In this example,
SUB_DELIM_LENGTH = 1, because each
delimiter is a single blank.

SYSSTAT.COLUMNS

750 SQL Reference, Volume 1

SYSSTAT.INDEXES

Contains one row for each index that is defined for a table.

Table 131. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

TABSCHEMA VARCHAR(128) Qualifier of the table name.

TABNAME VARCHAR(128) Name of the table or nickname on
which the index is defined.

COLNAMES CLOB(1M) List of column names with + or −
prefixes.

NLEAF INTEGER Number of leaf pages; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

NLEVELS SMALLINT Number of index levels; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

FIRSTKEYCARD BIGINT Number of distinct first key values; −1
if statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST2KEYCARD BIGINT Number of distinct keys using the first
two columns of the index (−1 if no
statistics, or not applicable).

This column can only be updated with
the following values;

v −1 or >= 0 (zero)

Yes

SYSSTAT.INDEXES

Appendix D. Catalog views 751

Table 131. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

FIRST3KEYCARD BIGINT Number of distinct keys using the first
three columns of the index (−1 if no
statistics, or not applicable).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST4KEYCARD BIGINT Number of distinct keys using the first
four columns of the index (−1 if no
statistics, or not applicable).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FULLKEYCARD BIGINT Number of distinct full key values; −1
if statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

CLUSTERRATIO SMALLINT This column is used by the optimizer.
It indicates the degree of data
clustering with the index; −1 if
statistics are not gathered, or if
detailed index statistics have been
gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

CLUSTERFACTOR DOUBLE This column is used by the optimizer.
It is a finer measurement of degree of
clustering, or −1 if detailed index
statistics have not been gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 1

Yes

SYSSTAT.INDEXES

752 SQL Reference, Volume 1

Table 131. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk
in index key order with few or no
large gaps between them; −1 if no
statistics are available.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to
number of pages in the range of pages
occupied by the index, expressed as a
percent (integer between 0 and 100; −1
if no statistics are available.)

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented
in character form. Each pair represents
the number of pages in a hypothetical
buffer, and the number of page fetches
required to scan the index using that
hypothetical buffer. (Zero-length string
if no data available.)

This column can be updated with the
following input values:

v The pair delimiter and pair
separator characters are the only
non-numeric characters accepted.

v Blanks are the only characters
recognized as a pair delimiter and
pair separator.

v Each number entry must have an
accompanying partner number entry
with the two being separated by the
pair separator character.

v Each pair must be separated from
any other pairs by the pair delimiter
character.

v Each expected number entry must
between 0-9 (positive values only).

Yes

NUMRIDS BIGINT Number of RIDs in the index; −1 if
statistics are not gathered.

Yes

SYSSTAT.INDEXES

Appendix D. Catalog views 753

Table 131. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

NUMRIDS_DELETED BIGINT Number of RIDs in the index that are
marked deleted, excluding the ones on
pages on which all RIDs are marked
deleted; −1 if statistics are not
gathered.

Yes

NUM_EMPTY_LEAFS BIGINT Number of leaf pages in the index on
which all RIDs are marked deleted; −1
if statistics are not gathered.

Yes

AVERAGE_RANDOM_
FETCH_PAGES

DOUBLE Average number of random table
pages between sequential page
accesses when fetching using the
index; −1 if it is not known.

AVERAGE_RANDOM_
PAGES

DOUBLE Average number of random index
pages between sequential index page
accesses; −1 if it is not known.

AVERAGE_SEQUENCE_
GAP

DOUBLE Gap between index page sequences.
Detected through a scan of index leaf
pages, each gap represents the average
number of index pages that must be
randomly fetched between sequences
of index pages; −1 if it is not known.

AVERAGE_SEQUENCE_
FETCH_GAP

DOUBLE Gap between table page sequences
when fetching using the index.
Detected through a scan of index leaf
pages, each gap represents the average
number of table pages that must be
randomly fetched between sequences
of table pages; −1 if it is not known.

AVERAGE_SEQUENCE_
PAGES

DOUBLE Average number of index pages
accessible in sequence (that is, the
number of index pages that the
prefetchers would detect as being in
sequence); −1 if it is not known.

AVERAGE_SEQUENCE_
FETCH_PAGES

DOUBLE Average number of table pages
accessible in sequence (that is, the
number of table pages that the
prefetchers would detect as being in
sequence) when fetching using the
index; −1 if it is not known.

SYSSTAT.INDEXES

754 SQL Reference, Volume 1

SYSSTAT.ROUTINES

Contains a row for each user-defined function (scalar, table, or source),
system-generated method, user-defined method, or procedure. Does not
include built-in functions. (This catalog view supercedes
SYSSTAT.FUNCTIONS. The other view exists, but will remain as it was in
DB2 Version 7.1.)

Table 132. SYSSTAT.ROUTINES Catalog View

Column Name Data Type Nullable Description Updatable

ROUTINESCHEMA VARCHAR(128) Qualified routine name.

ROUTINENAME VARCHAR(18)

ROUTINETYPE CHAR(1) F = Function

M = Method

P = Procedure.

SPECIFICNAME VARCHAR(18) The name of the routine instance (may
be system-generated).

IOS_PER_INVOC DOUBLE Estimated number of I/Os per
invocation; −1 if not known (0 default).
This column can only be updated with
−1 or >= 0 (zero).

Yes

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; −1 if not known (450
default). This column can only be
updated with −1 or >= 0 (zero).

Yes

IOS_PER_ARGBYTE DOUBLE Estimated number of I/Os per input
argument byte; −1 if not known (0
default). This column can only be
updated with −1 or >= 0 (zero).

Yes

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per
input argument byte; −1 if not known
(0 default). This column can only be
updated with −1 or >= 0 (zero).

Yes

PERCENT_ARGBYTE SMALLINT Estimated average percent of input
argument bytes that the routine will
actually read; −1 if not known (100
default). This column can only be
updated with −1 or a number between
0 (zero) and 100.

Yes

SYSSTAT.ROUTINES

Appendix D. Catalog views 755

Table 132. SYSSTAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

INITIAL_IOS DOUBLE Estimated number of I/Os performed
the first/last time the routine is
invoked; −1 if not known (0 default).
This column can only be updated with
−1 or >= 0 (zero).

Yes

INITIAL_INSTS DOUBLE Estimated number of instructions
executed the first/last time the routine
is invoked; −1 if not known (0 default).
This column can only be updated with
−1 or >= 0 (zero).

Yes

CARDINALITY BIGINT The predicted cardinality of a table
function; −1 if not known, or if the
routine is not a table function. This
column can only be updated with −1 or
>= 0 (zero).

Yes

SELECTIVITY DOUBLE Used for user-defined predicates; −1 if
there are no user-defined predicates.
See Note 1.

Notes:

1. This column will be set to −1 during migration from DB2 Version 5.2 to 8.1 in the system catalogs for
all user-defined functions. For a user-defined predicate, the selectivity in the system catalog will be
−1. In this case, the selectivity value used by the optimizer is 0.01.

SYSSTAT.ROUTINES

756 SQL Reference, Volume 1

SYSSTAT.TABLES

Contains one row for each base table. Views or aliases are, therefore, not
included. For typed tables, only the root table of a table hierarchy is included
in this view. Statistics are not recorded for inherited columns of typed tables.
The CARD value applies to the root table only while the other statistics apply
to the entire table hierarchy.

Table 133. SYSSTAT.TABLES Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table.

TABNAME VARCHAR(128)

CARD BIGINT Total number of rows in the table; −1 if
statistics are not gathered. An update to
CARD for a table should not attempt to
assign it a value less than the COLCARD
value of any of the columns in that table.
A value of −2 cannot be changed and a
column value cannot be directly set to −2.
This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

NPAGES INTEGER Total number of pages on which the rows
of the table exist; −1 if statistics are not
gathered, and −2 for subtables and
H-tables. A value of −2 cannot be changed
and a column value cannot be directly set
to −2. This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

FPAGES INTEGER Total number of pages in the file; −1 if
statistics are not gathered, and −2 for
subtables and H-tables. A value of −2
cannot be changed and a column value
cannot be directly set to −2. This column
can only be updated with the following
values:

v −1 or > 0 (zero)

Yes

ACTIVE_
BLOCKS

INTEGER Total number of in-use blocks in a
multi-dimensional clustering (MDC) table;
−1 if statistics are not gathered.

Yes

SYSSTAT.TABLES

Appendix D. Catalog views 757

Table 133. SYSSTAT.TABLES Catalog View (continued)

Column
Name

Data Type Nullable Description Updatable

OVERFLOW INTEGER Total number of overflow records in the
table; −1 if statistics are not gathered, and
−2 for subtables and H-tables. A value of
−2 cannot be changed and a column value
cannot be directly set to −2. This column
can only be updated with the following
values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.TABLES

758 SQL Reference, Volume 1

Appendix E. Federated systems

Valid server types in SQL statements

Server types indicate what kind of data source the server will represent.
Server types vary by vendor, purpose, and operating system. Supported
values depend on the wrapper being used.

You need to specify a valid server type in the CREATE SERVER statement.

CTLIB wrapper
Sybase data sources supported by Sybase CTLIB client software

Server Type Data Source

SYBASE Sybase

DBLIB wrapper
Sybase or Microsoft SQL Server data sources supported by DBLIB client
software

Server Type Data Source

SYBASE Sybase

DJXMSSQL3 wrapper
Microsoft SQL Server data sources supported by ODBC 3.0 (or higher) driver

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

DRDA wrapper
DB2 Family

Table 134. IBM DB2 for UNIX and Windows

Server Type Data Source

DB2/UDB IBM DB2 Universal Database

DATAJOINER IBM DB2 DataJoiner V2.1 and V2.1.1

DB2/6000 IBM DB2 for AIX

DB2/AIX IBM DB2 for AIX

© Copyright IBM Corp. 1993 - 2002 759

Table 134. IBM DB2 for UNIX and Windows (continued)

Server Type Data Source

DB2/HPUX IBM DB2 for HP-UX V1.2

DB2/HP IBM DB2 for HP-UX

DB2/NT IBM DB2 for Windows NT

DB2/EEE IBM DB2 Enterprise-Extended Edition

DB2/CS IBM DB2 for Common Server

DB2/SUN IBM DB2 for Solaris V1 and V1.2

DB2/PE IBM DB2 for Personal Edition

DB2/2 IBM DB2 for OS/2

DB2/LINUX IBM DB2 for Linux

DB2/PTX IBM DB2 for NUMA-Q

DB2/SCO IBM DB2 for SCO Unixware

Table 135. IBM DB2 for iSeries (and AS/400)

Server Type Data Source

DB2/400 IBM DB2 for iSeries and AS/400

Table 136. IBM DB2 for z/OS and OS/390

Server Type Data Source

DB2/ZOS IBM DB2 for z/OS

DB2/390 IBM DB2 for OS/390

DB2/MVS IBM DB2 for MVS

Table 137. IBM DB2 Server for VM and VSE

Server Type Data Source

DB2/VM IBM DB2 for VM

DB2/VSE IBM DB2 for VSE

SQL/DS IBM SQL/DS

760 SQL Reference, Volume 1

Informix wrapper
Informix data sources supported by Informix Client SDK software

Server Type Data Source

INFORMIX Informix

MSSQLODBC3 wrapper
Microsoft SQL Server data sources supported by DataDirect Connect ODBC
3.6 driver

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

NET8 wrapper
Oracle data sources supported by Oracle Net8 client software.

Server Type Data Source

ORACLE Oracle Version 8.0. or later

ODBC wrapper
ODBC data sources supported by the ODBC 3.0 driver.

Server Type Data Source

ODBCSERVER ODBC

OLE DB wrapper
OLE DB providers compliant with Microsoft OLE DB 2.0 or later.

Server Type Data Source

none required Any OLE DB provider

SQLNET wrapper
Oracle data sources supported by Oracle SQL*Net V1 or V2 client software.

Server Type Data Source

ORACLE Oracle V7.3. or later

Appendix E. Federated systems 761

Column options for federated systems

You can specify column information in the CREATE NICKNAME or ALTER
NICKNAME statements using parameters called column options. The primary
purpose of column options is to provide information about nickname columns
to the SQL Compiler. Setting column options for one or more columns to ’Y’
allows the SQL Compiler to consider additional pushdown possibilities for
predicates that perform evaluation operation. This assists the Compiler in
reaching global optimization.You can specify any of these values in either
upper- or lowercase.

Note: The Life Sciences Data Connect wrappers allow additional column
options.

Table 138. Column options and their settings

Option Valid settings Default
setting

NUMERIC_STRING
‘Y’ Yes, this column contains strings of numeric characters

’0’, ’1’, ’2’, ’9’. It does not contain blanks.
IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is either not a numeric string column
or is a numeric string column that contains blanks.

By setting NUMERIC_STRING to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from remote evaluation because of a different
collating sequence.

‘N’

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have variable
character data types that do not pad the lenght with trailing
blanks.

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are present in this VARCHAR
column.

Some data sources, such as Oracle, have non-blank-padded
comparison semantics that return the same results as the DB2
for UNIX and Windows comparison semantics. Set this option
when you want it to apply only to a specifc VARCHAR or
VARCHAR2 column in a data source object.

‘N‘

762 SQL Reference, Volume 1

Related concepts:

v “Fast track to configuring your data sources” in the Federated Systems Guide

v “Column options” on page 53
v “Pushdown analysis” in the Federated Systems Guide

Related tasks:

v “Global optimization” in the Federated Systems Guide

Function mapping options for federated systems

DB2 supplies default mappings between existing built-in data source functions
and built-in DB2 functions. For most data sources, the default function
mappings are in the wrappers. To use a data source function that the
federated server does not recognize, you must create a function mapping
between a data source function and a counterpart function at the federated
database.

The primary purpose of function mapping options, is to provide information
about the potential cost of executing a data source function at the data source.
Pushdown analysis determines if a function at the data source is able to
execute a function in a query. The query optimizer decides if pushing down
the function processing to the data source is the least cost alternative.

The statistical information provided in the function mapping definition helps
the query optimizer compare the estimated cost of executing the data source
function with the estimated cost of executing the DB2 function.

Table 139. Function mapping options and their settings

Option Valid settings Default
setting

DISABLE Disable a default function mapping. Valid values are
‘Y’ and ‘N’.

‘N’

INITIAL_INSTS Estimated number of instructions processed the first
and last time that the data source function is
invoked.

‘0’

INITIAL_IOS Estimated number of I/Os performed the first and
last time that the data source function is invoked.

‘0’

IOS_PER_ARGBYTE Estimated number of I/Os expended for each byte of
the argument set that’s passed to the data source
function.

‘0’

IOS_PER_INVOC Estimated number of I/Os per invocation of a data
source function.

‘0’

Appendix E. Federated systems 763

Table 139. Function mapping options and their settings (continued)

Option Valid settings Default
setting

INSTS_PER_ARGBYTE Estimated number of instructions processed for each
byte of the argument set that’s passed to the data
source function.

‘0’

INSTS_PER_INVOC Estimated number of instructions processed per
invocation of the data source function.

‘450’

PERCENT_ARGBYTES Estimated average percent of input argument bytes
that the data source function will actually read.

‘100’

REMOTE_NAME Name of the data source function. local
name

Server options for federated systems

Server options are used with the CREATE SERVER statement to describe a
data source server. Server options specify data integrity, location, security, and
performance information. Some server options are data source specific, and
are noted in the following table. Life Sciences data sources have additional,
very specific server options.

The common federated server options are:
v Compatibility options. COLLATING_SEQUENCE, IGNORE_UDT
v Data integrity options. IUD_APP_SVPT_ENFORCE
v Location options. CONNECTSTRING, DBNAME, IFILE
v Security options. FOLD_ID, FOLD_PW, PASSWORD
v Performance options. COMM_RATE, CPU_RATIO, IO_RATIO,

LOGIN_TIMEOUT, PACKET_SIZE, PLAN_HINTS, PUSHDOWN,
TIMEOUT, VARCHAR_NO_TRAILING_BLANKS

764 SQL Reference, Volume 1

Table 140. Server options and their settings

Option Valid settings Default
setting

Applies to

COLLATING_SEQUENCE Specifies whether the data source uses the same
default collating sequence as the federated
database, based on the NLS code set and the
country information.

’Y’ The data source has the same collating
sequence as the DB2 federated
database.

’N’ The data source has a different
collating sequence than the DB2
federated database collating sequence.

’I’ The data source has a different
collating sequence than the DB2
federated database collating sequence,
and the data source collating sequence
is insensitive to case (for example,
’STEWART’ and ’StewART’ are
considered equal).

’N’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

COMM_RATE Specifies the communication rate between the
federated server and the data source server.
Expressed in megabytes per second.

Valid values are greater than 0 and less than
2147483648. Values may be expressed as whole
numbers only, for example 12.

’2’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

CONNECTSTRING Specifies initialization properties needed to
connect to an OLE DB provider.

None OLE DB

Appendix E. Federated systems 765

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

CPU_RATIO Indicates how much faster or slower a data
source’s CPU runs than the federated server’s
CPU.

Valid values are greater than 0 and less than
1x1023 . Values may be expressed in any valid
double notation, for example 123E10, 123, or
1.21E4.

’1.0’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

DBNAME Name of the data source database that you
want the federated server to access. For DB2,
this value corresponds to a specific database
within an instance or, with DB2 for z/OS or
OS/390, the database LOCATION value. Does
not apply to Oracle data sources because Oracle
instances contain only one database.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Sybase

766 SQL Reference, Volume 1

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

FOLD_ID

(See notes 1 and 4 at the
end of this table.)

Applies to user IDs that the federated server
sends to the data source server for
authentication. Valid values are:

’U’ The federated server folds the user ID
to uppercase before sending it to the
data source. This is a logical choice for
DB2 family and Oracle data sources
(See note 2 at end of this table.)

’N’ The federated server does nothing to
the user ID before sending it to the
data source. (See note 2 at end of this
table.)

’L’ The federated server folds the user ID
to lowercase before sending it to the
data source.

If none of these settings are used, the federated
server tries to send the user ID to the data
source in uppercase. If the user ID fails, the
server tries sending it in lowercase.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

FOLD_PW

(See notes 1, 3 and 4 at the
end of this table.)

Applies to passwords that the federated server
sends to data sources for authentication. Valid
values are:

’U’ The federated server folds the
password to uppercase before sending
it to the data source. This is a logical
choice for DB2 family and Oracle data
sources.

’N’ The federated server does nothing to
the password before sending it to the
data source.

’L’ The federated server folds the
password to lowercase before sending
it to the data source.

If none of these settings are used, the federated
server tries to send the password to the data
source in uppercase. If the password fails, the
server tries sending it in lowercase.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

Appendix E. Federated systems 767

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

IFILE Specifies the path and name of the Sybase Open
Client interfaces file. On Windows NT federated
servers, the default is %DB2PATH%\interfaces.
On UNIX federated servers, the default path
and name value is
$DB2INSTANCE/sqllib/interfaces.

None. Sybase

768 SQL Reference, Volume 1

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

IGNORE_UDT Specifies whether the federated server should
determine the built-in type that underlies a
UDT without strong typing. Applies only to
data sources accessed through the CTLIB and
DBLIB protocols. Valid values are:

’Y’ Ignore the fact that UDTs are
user-defined and determine what
built-in types under lie them.

’N’ Do not ignore user-defined
specifications of UDTs.

When DB2 creates nicknames, it looks for and
catalogs information about the objects (tables,
views, stored procedures) that the nicknames
point to. As it looks for the information, it
might find that some objects have data types
that it doesn’t recognize (that is, data types that
don’t map to counterparts at the federated
database). Such unrecognizable types can
include:

v New built-in types

v UDTs with strong typing

v UDTs without strong typing. These are
built-in types that the user has simply
renamed. These types are supported only by
certain data sources, such as Sybase and
Microsoft SQL Server.

When the federated server data types that it
doesn’t recognize, it returns the error message,
SQL3324N. However, it can make an exception
to this practice. For data sources accessible
through the CTLIB or DBLIB protocols, you can
set the IGNORE_UDT server option so that
when the federated database encounters an
unrecognizable UDT without strong typing, the
federated database determines what the UDT’s
underlying built-in type is. Then, if the
federated database recognizes this built-in type,
the federated database returns information
about the built-in type to the catalog. To have
the federated database determine the
underlying built-in types of UDTs that do not
have strong typing, set IGNORE_UDT to ’Y’.

’N’ Sybase

Appendix E. Federated systems 769

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

IO_RATIO Denotes how much faster or slower a data
source’s I/O system runs than the federated
server’s I/O system.

Valid values are greater than 0 and less than
1x1023 . Values may be expressed in any valid
double notation, for example 123E10, 123, or
1.21E4.

’1.0’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

IUD_APP_SVPT_ENFORCE Specifies whether DB2 federated system should
enforce detecting or building of application
savepoint statements.

’Y’ The federated server will not allow
INSERT, UPDATE, or DELETE
statements on nicknames if the data
source does not support application
savepoint statements. A SQL error code
(SQL20190) will be generated when
DB2 cannot perform atomic INSERT,
UPDATE, or DELETE.

’N’ The federated server will allow
INSERT, UPDATE, or DELETE
statements on nicknames.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

LOGIN_TIMOUT Specifies the number of seconds for the DB2
federated server to wait for a response from
Sybase Open Client to the login request. The
default values are the same as for TIMEOUT.

’0’ Sybase

NODE Name by which a data source is defined as an
instance to its RDBMS.

None. Informix,
MS SQL
Server,
Oracle,
Sybase

770 SQL Reference, Volume 1

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

PACKET_SIZE Specifies the packet size of the Sybase interfaces
file in bytes. If the data source does not support
the specified packet size, the connection will
fail. Increasing the packet size when each record
is very large (for example, when inserting rows
into large tables) significantly increases
performance. The byte size is a numeric value.

Sybase

PASSWORD Specifies whether passwords are sent to a data
source.

’Y’ Passwords are always sent to the data
source and validated. This is the
default value.

’N’ Passwords are not sent to the data
source (regardless of any user
mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data
source in encrypted form and
validated. Valid only for DB2 family
data sources that support encrypted
passwords.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

PLAN_HINTS Specifies whether plan hints are to be enabled.
Plan hints are statement fragments that provide
extra information for data source optimizers.
This information can, for certain query types,
improve query performance. The plan hints can
help the data source optimizer decide whether
to use an index, which index to use, or which
table join sequence to use.

’Y’ Plan hints are to be enabled at the data
source if the data source supports plan
hints.

’N’ Plan hints are not to be enabled at the
data source.

’N’ Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

Appendix E. Federated systems 771

Table 140. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

PUSHDOWN
’Y’ DB2 will consider letting the data

source evaluate operations.

’N’ DB2 will only retrieve columns from
the remote data source and will not let
the data source evaluate other
operations, such as joins.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

TIMEOUT Specifies the number of seconds the DB2
federated server will wait for a response from
Sybase Open Client for any SQL statement. The
value of seconds is a positive whole number in
DB2 Universal Database’s integer range. The
timeout value that you specify depends on
which wrapper you are using. The default
behavior of the TIMEOUT option for the Sybase
wrappers is 0, which causes DB2 to wait
indefinitely for a response.

’0’ Sybase

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have
variable character data types that do not pad
the length with trailing blanks. Some data
sources, such as Oracle, have non-blank-padded
comparison semantics that return the same
results as the DB2 for UNIX and Windows
comparison semantics. Set this option when you
want it to apply to all the VARCHAR and
VARCHAR2 columns in the data source objects
that will be accessed from the designated
server. This includes views.

’Y’ This data source has non-blank-padded
comparison semantics similar to the
federated server.

’N’ This data source has different
varying-length character comparison
semantics than the federated server.

’N’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

772 SQL Reference, Volume 1

Notes on this table:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for FOLD_PW has no effect when the setting for password is

‘N’. Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

Related concepts:

v “Server definitions and server options” on page 50
v “Server characteristics affecting pushdown opportunities” in the Federated

Systems Guide

v “Server characteristics affecting global optimization” in the Federated Systems
Guide

Related tasks:

v “Registering the server for table-structured files” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for Documentum data sources” in the DB2 Life
Sciences Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for an Excel data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for a BLAST data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for an XML data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

User options for federated systems

User options provide authorization and accounting string information for user
mappings between the federated server and a data source. These options can
be used with any data source that supports user ID and password
authorization.

These options are used with the CREATE USER MAPPING statement.

Appendix E. Federated systems 773

Table 141. User Options and their settings

Option Valid settings Default
setting

ACCOUNTING_STRING Used to specify a DRDA accounting string. Valid settings
include any string of length 255 or less. This option is required
only if accounting information needs to be passed. See the DB2
Connect Users Guide for more information.

None

REMOTE_AUTHID Indicates the authorization ID used at the data source. Valid
settings include any string of length 255 or less. If this option is
not specified, the ID used to connect to database is used.

None

REMOTE_DOMAIN Indicates the Windows NT domain used to authenticate users
connecting to this data source. Valid settings include any valid
Windows NT domain name. If this option is not specified, the
data source will authenticate using the default authentication
domain for that database.

None

REMOTE_PASSWORD Indicates the authorization password used at the data source.
Valid settings include any string of length 32 or less. If this
option is not specified, the password used to connect to the
database is used.

None

Related concepts:

v “DB2 Connect and DRDA” in the DB2 Connect User’s Guide

v “DRDA and data access” in the DB2 Connect User’s Guide

Wrapper options for federated systems

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper. Currently, there is only one wrapper option, DB2_FENCED. The
DB2_FENCED wrapper option indicates if the wrapper is fenced or trusted by
DB2. A fenced wrapper operates under some restrictions.

If you did not explicitly set the DB2_FENCED wrapper option to ’N’, you can
alter the wrapper to include this option. If you have scripts or applications
that you use for DDL statements, consider using this option. Even though the
current default setting for DB2_FENCED is ’N’, it is possible that IBM will
change the default setting in the future. When the default changes, any
wrappers created without this option will adhere to the new default. If you
explicitly set the DB2_FENCED wrapper to ’N’, you can ensure that the
behavior of the wrapper will not change when you run the scripts or
applications.

774 SQL Reference, Volume 1

Table 142. Wrapper options and their settings

Option Valid settings Default
setting

DB2_FENCED Indicates if the wrapper is fenced or trusted by
DB2.

’N’ The tasks performed by the wrapper are
not restricted.

’N’

Related concepts:

v “Create the wrapper” in the Federated Systems Guide

v “Wrappers and wrapper modules” on page 48
v “Modifying wrappers” in the Federated Systems Guide

Default forward data type mappings

When a nickname is created for a data source object, DB2 for UNIX and
Windows populates the global catalog with information about the table.

This information includes the remote data type for each column, and the
corresponding DB2 for UNIX and Windows data type. The DB2 for UNIX and
Windows data type is referred to as the local data type.

The federated database uses data type mappings to determine which DB2 for
UNIX and Windows data type should be defined for the column of a data
source object.

The data types at the data source must map to corresponding DB2 for UNIX
and Windows data types so that the federated server can retrieve data from
data sources. For most data sources, the default type mappings are in the
wrappers. The default type mappings for DB2 family data sources are in the
DRDA wrapper. The default type mappings for Informix are in the
INFORMIX wrapper, and so forth.

DB2 for UNIX and Windows federated servers do not support mappings for
these data types: LONG VARCHAR, LONG VARGRAPHIC, DATALINK, and
user-defined types.

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type.

Appendix E. Federated systems 775

You can override a default type mapping, or create a new type mapping with
the CREATE TYPE MAPPING statement.

The following tables show the default forward mappings between DB2 for
UNIX and Windows data types and data source data types.

These mappings are valid with all the supported versions, unless otherwise
noted.

Note: For all default forward data types mapping from a data source to DB2
for UNIX and Windows, the DB2 federated schema is SYSIBM.

DB2 for z/OS and OS/390 data sources

Table 143. DB2 for z/OS and OS/390 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARG 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

776 SQL Reference, Volume 1

Table 143. DB2 for z/OS and OS/390 forward default data type mappings (Not all columns
shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

DB2 for iSeries data sources

Table 144. DB2 for iSeries forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

NUMERIC - - - - - - DECIMAL - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

Appendix E. Federated systems 777

Table 144. DB2 for iSeries forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

GRAPHIC 128 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARG 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

778 SQL Reference, Volume 1

DB2 Server for VM and VSE data sources

Table 145. DB2 Server for VM and VSE forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - - -

INTEGER - - - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPH 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

DBAHW - - - - - - SMALLINT - 0 -

DBAINT - - - - - - INTEGER - 0 -

Appendix E. Federated systems 779

DB2 for UNIX and Windows data sources

Table 146. DB2 for UNIX and Windows forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

BIGINT - - - - - - BIGINT - 0 -

DECIMAL - - - - - - DECIMAL - - -

REAL - - - - - - REAL - - -

FLOAT - - - - - - DOUBLE - - -

DOUBLE - - - - - - DOUBLE - - -

CHAR - - - - - - CHAR - 0 N

VARCHAR - - - - - - VARCHAR - 0 N

CHAR - - - - Y - CHAR - 0 Y

VARCHAR - - - - Y - VARCHAR - 0 Y

GRAPHIC - - - - - - GRAPHIC - 0 N

VARGRAPHIC - - - - - - VARGRAPHIC - 0 N

VARGRAPH - - - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

780 SQL Reference, Volume 1

Informix data sources

Table 147. Informix forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB - - - - - - BLOB 2147483647 - -

BOOLEAN - - - - - - SMALLINT 2 - -

BYTE - - - - - - BLOB 2147483647 - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CLOB - - - - - - CLOB 2147483647 - -

DATE - - - - - - DATE 4 - -

DATETIME 0 4 0 4 - - DATE 4 - -

DATETIME 6 10 6 10 - - TIME 3 - -

DATETIME 0 4 6 15 - - TIMESTAMP 10 - -

DATETIME 6 10 11 15 - - TIMESTAMP 10 - -

DECIMAL 1 31 0 31 - - DECIMAL - - -

DECIMAL 32 32 - - - - DOUBLE 8 - -

FLOAT - - - - - - DOUBLE 8 - -

INTEGER - - - - - - INTEGER 4 - -

INTERVAL - - - - - - DECIMAL 19 5 -

INT8 - - - - - - BIGINT 19 0 -

LVARCHAR 1 32672 - - - - VARCHAR - - -

MONEY 1 31 0 31 - - DECIMAL - - -

MONEY 32 32 - - - - DOUBLE 8 - -

NCHAR 1 254 - - - - CHARACTER - - -

NCHAR 255 32672 - - - - VARCHAR - - -

NVARCHAR 1 32672 - - - - VARCHAR - - -

Appendix E. Federated systems 781

Table 147. Informix forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

REAL - - - - - - REAL 4 - -

SERIAL - - - - - - INTEGER 4 - -

SERIAL8 - - - - - - BIGINT 19 0

SMALLFLOAT - - - - - - REAL 4 - -

SMALLINT - - - - - - SMALLINT 2 - -

TEXT - - - - - - CLOB 2147483647 - -

VARCHAR 1 32672 - - - - VARCHAR - - -

Oracle SQLNET data sources

Table 148. Oracle SQLNET forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

782 SQL Reference, Volume 1

Table 148. Oracle SQLNET forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

LONG 0 0 0 0 - \0 CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - \0 BLOB 2147483647 0 Y

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

ROWID 0 0 0 NULL- \0 CHAR 18 0 N

Oracle NET8 data sources

Table 149. Oracle NET8 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

Appendix E. Federated systems 783

Table 149. Oracle NET8 forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

CLOB 0 0 0 0 - \0 CLOB 2147483647 0 N

BLOB 0 0 0 0 - \0 BLOB 2147483647 0 Y

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

784 SQL Reference, Volume 1

Microsoft SQL Server data sources

Table 150. Microsoft SQL Server forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

int - - - - - - INTEGER 4 - -

intn - - - - - - INTEGER 4 - -

smallint - - - - - - SMALLINT 2 - -

tinyint - - - - - - SMALLINT 2 - -

bit - - - - - - SMALLINT 2 - -

float - 8 - - - - DOUBLE 8 - -

floatn - 8 - - - - DOUBLE 8 - -

float - 4 - - - - REAL 4 - -

floatn - 4 - - - - REAL 4 - -

real - - - - - - REAL 4 - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

smallmoney - - - - - - DECIMAL 10 4 -

smallmoneyn - - - - - - DECIMAL 10 4 -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE 8 - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 38 0 38 - - DOUBLE - - -

char 1 254 - - - - CHAR - - N

Appendix E. Federated systems 785

Table 150. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

sysname 1 254 - - - - CHAR - - N

char 255 8000 - - - - VARCHAR - - N

varchar 1 8000 - - - - VARCHAR - - N

text - - - - - - CLOB - - N

nchar 1 127 - - - - GRAPHIC - - N

nchar 128 4000 - - - - VARGRAPHIC - - N

nvarchar 1 4000 - - - - VARGRAPHIC - - N

binary 1 254 - - - - CHARACTER - - Y

binary 255 8000 - - - - VARCHAR - - Y

varbinary 1 8000 - - - - VARCHAR - - Y

image - - - - - - BLOB 2147483647 - Y

datetime - - - - - - TIMESTAMP 10 - -

datetimen - - - - - - TIMESTAMP 10 - -

smalldatetime - - - - - - TIMESTAMP 10 - -

timestamp - - - - - - VARCHAR 8 Y

sysname - - - - - - VARCHAR 30 Y

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 32 0 31 - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

786 SQL Reference, Volume 1

Table 150. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 8000 - - - - VARCHAR - - N

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 8000 - - - - VARCHAR - - Y

SQL_VARCHAR 1 8000 - - - - VARCHAR - - N

SQL_VARBINARY 1 8000 - - - - VARCHAR - - Y

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY- - - - - - BLOB - - Y

SQL_DATE - - - - - - DATE 4 - -

SQL_TIME - - - - - - TIME 3 - -

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_BIGINT - - - - - - DECIMAL - - -

DUMMY65 1 1 38 -84 127 - - DOUBLE - - -

uniqueidentifier 2 1 4000 - - Y - VARCHAR 16 - Y

SQL_GUID 2 1 4000 - - Y - VARCHAR 16 - Y

ntext 2 - - - - - - CLOB 2147483647 - Y

DUMMY2000 3 1 38 -84 127 - - DOUBLE - - -

Notes:

1. This type mapping is only valid with Microsoft SQL Server Version 6.5.

2. This type mapping is only valid with Microsoft SQL Server Version 7.

3. This type mapping is only valid with Windows 2000 operating systems.

Appendix E. Federated systems 787

ODBC data sources

Table 151. ODBC forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 32 0 31 - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 32672 - - - - VARCHAR - - N

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 32672 - - - - VARCHAR - - Y

SQL_VARCHAR 1 32672 - - - - VARCHAR - - N

SQL_VARBINARY 1 32672 - - - - VARCHAR - - Y

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY- - - - - - BLOB - - Y

SQL_DATE - - - - - - DATE 4 - Y

SQL_TIME - - - - - - TIME 3 - Y

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_BIGINT - - - - - - DECIMAL - - -

788 SQL Reference, Volume 1

Table 151. ODBC forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_WCHAR 1 127 - - - - GRAPHIC - - N

SQL_WCHAR 128 16336 - - - - VARGRAPHIC - - N

SQL_WVARCHAR 1 16336 - - - - VARGRAPHIC - - N

SQL_WLONGVARCHAR- - - - - - DBCLOB 1073741823 -
NY

Sybase data sources

Table 152. Sybase CTLIB forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
int - - - - - - INTEGER - - -

intn - - - - - - INTEGER - - -

smallint - - - - - - SMALLINT - - -

tinyint - - - - - - SMALLINT - - -

bit - - - - - - SMALLINT - - -

float - 8 - - - - DOUBLE - - -

floatn - 8 - - - - DOUBLE - - -

float - 4 - - - - REAL - - -

Appendix E. Federated systems 789

Table 152. Sybase CTLIB forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

floatn - 4 - - - - REAL - - -

real - - - - - - REAL - - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

smallmoney - - - - - - DECIMAL 10 4 -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 32 - - - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 32 - - - - DOUBLE - - -

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 32 - - - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 32 - - - - DOUBLE - - -

char 1 254 - - - - CHAR - - Y

sysname 1 254 - - - - CHAR - - Y

char 255 255 - - - - VARCHAR - - Y

varchar 1 255 - - - - VARCHAR - - Y

nchar 1 127 - - - - GRAPHIC - - -

nchar 128 255 - - - - VARGRAPHIC - - -

nvarchar 1 255 - - - - VARGRAPHIC - - -

binary 1 254 - - - - CHAR - - Y

binary 255 255 - - - - VARCHAR - - Y

text - - - - - - CLOB - - -

image - - - - - - BLOB - - -

790 SQL Reference, Volume 1

Table 152. Sybase CTLIB forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

varbinary 1 255 - - - - VARCHAR - - Y

datetime - - - - - - TIMESTAMP - - -

datetimen - - - - - - TIMESTAMP - - -

smalldatetime - - - - - - TIMESTAMP - - -

timestamp - - - - - - VARCHAR 8 - Y

Default reverse data type mappings

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. The other type of mapping is a reverse type mapping,
which is used with transparent DDL to create or modify remote tables.

For most data sources, the default type mappings are in the wrappers. The
default type mappings for DB2 family data sources are in the DRDA wrapper.
The default type mappings for Informix are in the INFORMIX wrapper, and
so forth.

When you define a remote table or view to the DB2 federated database, the
definition includes a reverse type mapping. The mapping is from a local DB2
for UNIX and Windows data type for each column, and the corresponding
remote data type. For example, there is a default reverse type mapping in
which the local type REAL points to the Informix type SMALLFLOAT.

DB2 for UNIX and Windows federated servers do not support mappings for
these local data types: LONG VARCHAR, LONG VARGRAPHIC, DATALINK,
and user-defined types.

Appendix E. Federated systems 791

When you use the CREATE TABLE statement to create a remote table, you
specify the local data types you want to include in the remote table. These
default reverse type mappings will assign corresponding remote types to
these columns. For example, suppose that you use the CREATE TABLE
statement to define an Informix table with a column C2. You specify BIGINT
as the data type for C2 in the statement. The default reverse type mapping of
BIGINT depends on which version of Informix you are creating the table on.
The mapping for C2 in the Informix table will be to DECIMAL in Informix
Version 7 and to INT8 in Informix Version 8.

You can override a default type mapping, or create a new type mapping with
the CREATE TYPE MAPPING statement.

The following tables show the default reverse mappings between DB2 for
UNIX and Windows local data types and remote data source data types.

These mappings are valid with all the supported versions, unless otherwise
noted.

DB2 for z/OS and OS/390 data sources

Table 153. DB2 for z/OS and OS/390 reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - 8 - - - - DOUBLE - - -

CHARACTER - - - - - - CHAR - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

792 SQL Reference, Volume 1

Table 153. DB2 for z/OS and OS/390 reverse default data type mappings (Not all columns
shown) (continued)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPHIC - - - - - - VARGRAPHIC - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

DB2 for iSeries data sources

Table 154. DB2 for iSeries reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

Appendix E. Federated systems 793

Table 154. DB2 for iSeries reverse default data type mappings (Not all columns shown) (continued)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

DECIMAL - - - - - - NUMERIC - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

CHARACTER - - - - - - CHARACTER - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHARACTER - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPHIC - - - - - - VARG - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

794 SQL Reference, Volume 1

DB2 Server for VM and VSE data sources

Table 155. DB2 Server for VM and VSE reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

CHARACTER - - - - - - CHAR - - -

VARCHAR - - - - - - VARCHAR - - -

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPH - - - - - - VARGRAPH - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

Appendix E. Federated systems 795

DB2 for UNIX and Windows data sources

Table 156. DB2 for UNIX and Windows reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

BIGINT - 8 - - - - BIGINT - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - 8 - - - - DOUBLE - - -

DOUBLE - 8 - - - - DOUBLE - - -

CHARACTER - - - - - - CHAR - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPH - - - - - - VARGRAPHIC - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

796 SQL Reference, Volume 1

Informix data sources

Table 157. Informix reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT1 - 19 0 - - - DECIMAL 21 - -

BIGINT 2 - - - - - - INT8 - - -

BLOB 1 2147483647- - - - BYTE - - -

CHARACTER - - - - N - CHAR - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 1 2147483647- - - - TEXT - - -

DATE - 4 - - - - DATE - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

INTEGER - 4 - - - - INTEGER - - -

LONG
VARCHAR

- 32700 - - N - TEXT - - -

LONG
VARCHAR

- 32700 - - Y - BYTE - - -

REAL - 4 - - - - SMALLFLOAT - - -

SMALLINT - 2 - - - - INTEGER - - -

TIME - 3 - - - - DATETIME 6 10 -

TIMESTAMP - 10 - - - - DATETIME 0 15 -

VARCHAR 1 254 - - N - VARCHAR - - -

VARCHAR 255 32672 - - N - TEXT - - -

VARCHAR - - - - Y - BYTE - - -

VARCHAR 2 255 32672 - - N - LVARCHAR - - -

Appendix E. Federated systems 797

Table 157. Informix reverse default data type mappings (Not all columns shown) (continued)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

Notes:

1. This type mapping is only valid with Informix server Version 7 (or lower).

2. This type mapping is only valid with Informix server Version 8 (or higher).

Oracle SQLNET data sources
Note: The DB2 for UNIX and Windows BIGINT data type is not available for
transparent DDL. You cannot specify the BIGINT data type in a CREATE
TABLE statement when creating a remote Oracle table.

Table 158. Oracle SQLNET reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

798 SQL Reference, Volume 1

Table 158. Oracle SQLNET reverse default data type mappings (Not all columns shown) (continued)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

CLOB 0 21474836470 0 N \0 LONG 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

BLOB 0 21474836470 0 Y \0 LONG RAW 0 0 Y

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

Oracle NET8 data sources
Note: The DB2 for UNIX and Windows BIGINT data type is not available for
transparent DDL. You cannot specify the BIGINT data type in a CREATE
TABLE statement when creating a remote Oracle table.

Appendix E. Federated systems 799

Table 159. Oracle NET8 reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

CLOB 0 21474836470 0 N \0 CLOB 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

BLOB 0 21474836470 0 Y \0 BLOB 0 0 Y

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

800 SQL Reference, Volume 1

Microsoft SQL Server data sources

Table 160. Microsoft SQL Server reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

INTEGER - - - - - - int - - -

SMALLINT - - - - - - smallint - - -

DOUBLE - 8 - - - - float - - -

DECIMAL - - - - - - decimal - - -

CHARACTER - - - - N - char - - -

VARCHAR 1 8000 - - N - varchar - - -

VARCHAR 8001 32672 - - N - text - - -

CLOB - - - - - - text - - -

CHARACTER - - - - Y - binary - - -

VARCHAR 1 8000 - - Y - varbinary - - -

VARCHAR 8001 32672 - - Y - image - - -

LONG
VARCHAR

- 32700 - - Y - image
- - -

BLOB - - - - - - image - - -

TIMESTAMP - 10 - - - - datetime - - -

TIME - 3 - - - - datetime - - -

DATE - 4 - - - - datetime - - -

Sybase data sources
These data type mappings only apply to the CTLIB wrapper. The DBLIB
wrapper is read-only and does not support transparent DDL in a Version 8
federated system.

Appendix E. Federated systems 801

Table 161. Sybase CTLIB reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

INTEGER - - - - - - integer - - -

SMALLINT - - - - - - smallint - - -

BIGINT - - - - - - decimal 19 0 -

DOUBLE - - - - - - float - - -

REAL - - - - - - real - - -

DECIMAL - - - - - - decimal - - -

CHARACTER - - - - N - char - - -

VARCHAR 1 255 - - N - varchar - - -

VARCHAR 256 32672 - - N - text - - -

CHARACTER - - - - Y - binary - - -

CLOB - - - - - - text - - -

BLOB - - - - - - image - - -

VARCHAR 1 255 - - Y - varbinary - - -

VARCHAR 256 32672 - - Y - image - - -

GRAPHIC - - - - - - nchar - - -

VARGRAPHIC 1 255 - - - - nvarchar - - -

DATE - - - - - - datetime - - -

TIME - - - - - - datetime - - -

TIMESTAMP - - - - - - datetime - - -

802 SQL Reference, Volume 1

Appendix F. The SAMPLE database

Many of the code examples in the DB2 documentation use the SAMPLE
database. Following is a description of each of the tables in the SAMPLE
database. Instructions for creating and dropping the database are also
provided. Initial data values for each table are given; a dash (−) indicates a
NULL value.

Creating the SAMPLE database

Use the DB2SAMPL command to create the SAMPLE database. To create a
database you must have SYSADM authority.
v When using UNIX-based platforms

If you are using the operating system command prompt, issue:
sqllib/bin/db2sampl <path>

from the home directory of the database manager instance owner, where
path is an optional parameter specifying the path where the SAMPLE
database is to be created. If the path parameter is not specified, the sample
database is created in the default path specified by the DFTDBPATH
parameter in the database manager configuration file. The schema for
DB2SAMPL is the value of the CURRENT SCHEMA special register.

v When using Windows platforms

If you are using the operating system command prompt, issue:
db2sampl e

where e is an optional parameter specifying the drive where the database is
to be created. If the drive parameter is not specified, the sample database is
created on the same drive as DB2.

Erasing the SAMPLE database

If you do not need to access the SAMPLE database, you can erase it by using
the DROP DATABASE command:

db2 drop database sample

CL_SCHED table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

© Copyright IBM Corp. 1993 - 2002 803

Name: CLASS_CODE DAY STARTING ENDING

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

DEPARTMENT table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not null varchar(29) not null char(6) char(3) not null char(16)

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

B01 PLANNING 000020 A00 -

C01 INFORMATION CENTER 000030 A00 -

D01 DEVELOPMENT CENTER - A00 -

D11 MANUFACTURING SYSTEMS 000060 D01 -

D21 ADMINISTRATION SYSTEMS 000070 D01 -

E01 SUPPORT SERVICES 000050 A00 -

E11 OPERATIONS 000090 E01 -

E21 SOFTWARE SUPPORT 000100 E01 -

EMPLOYEE table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly salary Yearly bonus Yearly
commission

CL_SCHED table

804 SQL Reference, Volume 1

The following table contains the values in the EMPLOYEE table.

EMPLOYEE table

Appendix F. The SAMPLE database 805

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

ch
ar

(6
)

no
t

nu
ll

va
rc

ha
r(

12
)

no
t

nu
ll

ch
ar

(1
)

no
t

nu
ll

va
rc

ha
r(

15
)

no
t

nu
ll

ch
ar

(3
)

ch
ar

(4
)

d
at

e
ch

ar
(8

)
sm

al
lin

t
no

t
nu

ll
ch

ar
(1

)
d

at
e

d
ec

(9
,2

)
d

ec
(9

,2
)

d
ec

(9
,2

)

00
00

10
C

H
R

IS
T

IN
E

I
H

A
A

S
A

00
39

78
19

65
-0

1-
01

PR
E

S
18

F
19

33
-0

8-
24

52
75

0
10

00
42

20

00
00

20
M

IC
H

A
E

L
L

T
H

O
M

PS
O

N
B

01
34

76
19

73
-1

0-
10

M
A

N
A

G
E

R
18

M
19

48
-0

2-
02

41
25

0
80

0
33

00

00
00

30
SA

L
LY

A
K

W
A

N
C

01
47

38
19

75
-0

4-
05

M
A

N
A

G
E

R
20

F
19

41
-0

5-
11

38
25

0
80

0
30

60

00
00

50
JO

H
N

B
G

E
Y

E
R

E
01

67
89

19
49

-0
8-

17
M

A
N

A
G

E
R

16
M

19
25

-0
9-

15
40

17
5

80
0

32
14

00
00

60
IR

V
IN

G
F

ST
E

R
N

D
11

64
23

19
73

-0
9-

14
M

A
N

A
G

E
R

16
M

19
45

-0
7-

07
32

25
0

50
0

25
80

00
00

70
E

V
A

D
PU

L
A

SK
I

D
21

78
31

19
80

-0
9-

30
M

A
N

A
G

E
R

16
F

19
53

-0
5-

26
36

17
0

70
0

28
93

00
00

90
E

IL
E

E
N

W
H

E
N

D
E

R
SO

N
E

11
54

98
19

70
-0

8-
15

M
A

N
A

G
E

R
16

F
19

41
-0

5-
15

29
75

0
60

0
23

80

00
01

00
T

H
E

O
D

O
R

E
Q

SP
E

N
SE

R
E

21
09

72
19

80
-0

6-
19

M
A

N
A

G
E

R
14

M
19

56
-1

2-
18

26
15

0
50

0
20

92

00
01

10
V

IN
C

E
N

Z
O

G
L

U
C

C
H

E
SS

I
A

00
34

90
19

58
-0

5-
16

SA
L

E
SR

E
P

19
M

19
29

-1
1-

05
46

50
0

90
0

37
20

00
01

20
SE

A
N

O
’C

O
N

N
E

L
L

A
00

21
67

19
63

-1
2-

05
C

L
E

R
K

14
M

19
42

-1
0-

18
29

25
0

60
0

23
40

00
01

30
D

O
L

O
R

E
S

M
Q

U
IN

TA
N

A
C

01
45

78
19

71
-0

7-
28

A
N

A
LY

ST
16

F
19

25
-0

9-
15

23
80

0
50

0
19

04

00
01

40
H

E
A

T
H

E
R

A
N

IC
H

O
L

L
S

C
01

17
93

19
76

-1
2-

15
A

N
A

LY
ST

18
F

19
46

-0
1-

19
28

42
0

60
0

22
74

00
01

50
B

R
U

C
E

A
D

A
M

SO
N

D
11

45
10

19
72

-0
2-

12
D

E
SI

G
N

E
R

16
M

19
47

-0
5-

17
25

28
0

50
0

20
22

00
01

60
E

L
IZ

A
B

E
T

H
R

PI
A

N
K

A
D

11
37

82
19

77
-1

0-
11

D
E

SI
G

N
E

R
17

F
19

55
-0

4-
12

22
25

0
40

0
17

80

00
01

70
M

A
SA

TO
SH

I
J

Y
O

SH
IM

U
R

A
D

11
28

90
19

78
-0

9-
15

D
E

SI
G

N
E

R
16

M
19

51
-0

1-
05

24
68

0
50

0
19

74

00
01

80
M

A
R

IL
Y

N
S

SC
O

U
T

T
E

N
D

11
16

82
19

73
-0

7-
07

D
E

SI
G

N
E

R
17

F
19

49
-0

2-
21

21
34

0
50

0
17

07

00
01

90
JA

M
E

S
H

W
A

L
K

E
R

D
11

29
86

19
74

-0
7-

26
D

E
SI

G
N

E
R

16
M

19
52

-0
6-

25
20

45
0

40
0

16
36

00
02

00
D

A
V

ID
B

R
O

W
N

D
11

45
01

19
66

-0
3-

03
D

E
SI

G
N

E
R

16
M

19
41

-0
5-

29
27

74
0

60
0

22
17

00
02

10
W

IL
L

IA
M

T
JO

N
E

S
D

11
09

42
19

79
-0

4-
11

D
E

SI
G

N
E

R
17

M
19

53
-0

2-
23

18
27

0
40

0
14

62

00
02

20
JE

N
N

IF
E

R
K

L
U

T
Z

D
11

06
72

19
68

-0
8-

29
D

E
SI

G
N

E
R

18
F

19
48

-0
3-

19
29

84
0

60
0

23
87

00
02

30
JA

M
E

S
J

JE
FF

E
R

SO
N

D
21

20
94

19
66

-1
1-

21
C

L
E

R
K

14
M

19
35

-0
5-

30
22

18
0

40
0

17
74

00
02

40
SA

LV
A

TO
R

E
M

M
A

R
IN

O
D

21
37

80
19

79
-1

2-
05

C
L

E
R

K
17

M
19

54
-0

3-
31

28
76

0
60

0
23

01

00
02

50
D

A
N

IE
L

S
SM

IT
H

D
21

09
61

19
69

-1
0-

30
C

L
E

R
K

15
M

19
39

-1
1-

12
19

18
0

40
0

15
34

00
02

60
SY

B
IL

P
JO

H
N

SO
N

D
21

89
53

19
75

-0
9-

11
C

L
E

R
K

16
F

19
36

-1
0-

05
17

25
0

30
0

13
80

00
02

70
M

A
R

IA
L

PE
R

E
Z

D
21

90
01

19
80

-0
9-

30
C

L
E

R
K

15
F

19
53

-0
5-

26
27

38
0

50
0

21
90

00
02

80
E

T
H

E
L

R
SC

H
N

E
ID

E
R

E
11

89
97

19
67

-0
3-

24
O

PE
R

A
TO

R
17

F
19

36
-0

3-
28

26
25

0
50

0
21

00

00
02

90
JO

H
N

R
PA

R
K

E
R

E
11

45
02

19
80

-0
5-

30
O

PE
R

A
TO

R
12

M
19

46
-0

7-
09

15
34

0
30

0
12

27

00
03

00
PH

IL
IP

X
SM

IT
H

E
11

20
95

19
72

-0
6-

19
O

PE
R

A
TO

R
14

M
19

36
-1

0-
27

17
75

0
40

0
14

20

00
03

10
M

A
U

D
E

F
SE

T
R

IG
H

T
E

11
33

32
19

64
-0

9-
12

O
PE

R
A

TO
R

12
F

19
31

-0
4-

21
15

90
0

30
0

12
72

00
03

20
R

A
M

L
A

L
V

M
E

H
TA

E
21

99
90

19
65

-0
7-

07
FI

E
L

D
R

E
P

16
M

19
32

-0
8-

11
19

95
0

40
0

15
96

EMPLOYEE table

806 SQL Reference, Volume 1

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
03

30
W

IN
G

L
E

E
E

21
21

03
19

76
-0

2-
23

FI
E

L
D

R
E

P
14

M
19

41
-0

7-
18

25
37

0
50

0
20

30

00
03

40
JA

SO
N

R
G

O
U

N
O

T
E

21
56

98
19

47
-0

5-
05

FI
E

L
D

R
E

P
16

M
19

26
-0

5-
17

23
84

0
50

0
19

07

EMPLOYEE table

Appendix F. The SAMPLE database 807

EMP_ACT table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not null char(6) not null smallint not
null

dec(5,2) date date

Desc: Employee
number

Project number Activity
number

Proportion of
employee’s

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

000070 AD3110 10 1.00 1982-01-01 1983-02-01

000230 AD3111 60 1.00 1982-01-01 1982-03-15

000230 AD3111 60 .50 1982-03-15 1982-04-15

000230 AD3111 70 .50 1982-03-15 1982-10-15

000230 AD3111 80 .50 1982-04-15 1982-10-15

000230 AD3111 180 1.00 1982-10-15 1983-01-01

000240 AD3111 70 1.00 1982-02-15 1982-09-15

000240 AD3111 80 1.00 1982-09-15 1983-01-01

000250 AD3112 60 1.00 1982-01-01 1982-02-01

000250 AD3112 60 .50 1982-02-01 1982-03-15

000250 AD3112 60 .50 1982-12-01 1983-01-01

000250 AD3112 60 1.00 1983-01-01 1983-02-01

000250 AD3112 70 .50 1982-02-01 1982-03-15

000250 AD3112 70 1.00 1982-03-15 1982-08-15

000250 AD3112 70 .25 1982-08-15 1982-10-15

000250 AD3112 80 .25 1982-08-15 1982-10-15

000250 AD3112 80 .50 1982-10-15 1982-12-01

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 .50 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

EMP_ACT table

808 SQL Reference, Volume 1

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-02-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

EMP_ACT table

Appendix F. The SAMPLE database 809

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

EMP_PHOTO table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

EMP_RESUME table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

EMP_ACT table

810 SQL Reference, Volume 1

Name: EMPNO RESUME_FORMAT RESUME

000190 ascii db200190.asc

000190 script db200190.scr

IN_TRAY table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

ORG table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department name Manager number Division of
corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

PROJECT table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project name Department
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major
project, for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

EMP_RESUME table

Appendix F. The SAMPLE database 811

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 -

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

SALES table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee’s last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

12/31/1995 LEE Ontario-South 3

12/31/1995 LEE Quebec 1

12/31/1995 LEE Manitoba 2

PROJECT table

812 SQL Reference, Volume 1

Name: SALES_DATE SALES_PERSON REGION SALES

12/31/1995 GOUNOT Quebec 1

03/29/1996 LUCCHESSI Ontario-South 3

03/29/1996 LUCCHESSI Quebec 1

03/29/1996 LEE Ontario-South 2

03/29/1996 LEE Ontario-North 2

03/29/1996 LEE Quebec 3

03/29/1996 LEE Manitoba 5

03/29/1996 GOUNOT Ontario-South 3

03/29/1996 GOUNOT Quebec 1

03/29/1996 GOUNOT Manitoba 7

03/30/1996 LUCCHESSI Ontario-South 1

03/30/1996 LUCCHESSI Quebec 2

03/30/1996 LUCCHESSI Manitoba 1

03/30/1996 LEE Ontario-South 7

03/30/1996 LEE Ontario-North 3

03/30/1996 LEE Quebec 7

03/30/1996 LEE Manitoba 4

03/30/1996 GOUNOT Ontario-South 2

03/30/1996 GOUNOT Quebec 18

03/30/1996 GOUNOT Manitoba 1

03/31/1996 LUCCHESSI Manitoba 1

03/31/1996 LEE Ontario-South 14

03/31/1996 LEE Ontario-North 3

03/31/1996 LEE Quebec 7

03/31/1996 LEE Manitoba 3

03/31/1996 GOUNOT Ontario-South 2

03/31/1996 GOUNOT Quebec 1

04/01/1996 LUCCHESSI Ontario-South 3

04/01/1996 LUCCHESSI Manitoba 1

04/01/1996 LEE Ontario-South 8

04/01/1996 LEE Ontario-North -

04/01/1996 LEE Quebec 8

04/01/1996 LEE Manitoba 9

04/01/1996 GOUNOT Ontario-South 3

04/01/1996 GOUNOT Ontario-North 1

04/01/1996 GOUNOT Quebec 3

04/01/1996 GOUNOT Manitoba 7

SALES table

Appendix F. The SAMPLE database 813

STAFF table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

STAFF table

814 SQL Reference, Volume 1

Name: ID NAME DEPT JOB YEARS SALARY COMM

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

STAFFG table (double-byte code pages only)

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

STAFF table

Appendix F. The SAMPLE database 815

Name: ID NAME DEPT JOB YEARS SALARY COMM

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample files with BLOB and CLOB data type

This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana photo

Quintana resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Dolores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725

Phone: (208) 555-9933

Birthdate: September 15, 1925

Sex: Female

Marital Status: Married

Figure 14. Dolores M. Quintana

STAFFG table (double-byte code pages only)

816 SQL Reference, Volume 1

Height: 5’2″

Weight: 120 lbs.

Department Information

Employee Number: 000130

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-4578

Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of
Technology

Work History

10/91 - present Advisory Systems Analyst Producing
documentation tools for engineering
department.

12/85 - 9/91 Technical Writer, Writer, text programmer, and
planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll
programs for a diesel fuel company.

Interests

v Cooking
v Reading
v Sewing
v Remodeling

Quintana resume

Appendix F. The SAMPLE database 817

Nicholls photo

Nicholls resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734

Phone: (208) 555-2310

Birthdate: January 19, 1946

Sex: Female

Marital Status: Single

Height: 5’8″

Weight: 130 lbs.

Department Information

Employee Number: 000140

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-1793

Hire Date: 1976-12-15

Education

Figure 15. Heather A. Nicholls

Nicholls photo

818 SQL Reference, Volume 1

1972 Computer Engineering, Ph.D. University of
Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the
architecture of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition
(OCR) programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch
cards met quality specifications.

Interests

v Model railroading
v Interior decorating
v Embroidery
v Knitting

Adamson photo

Adamson resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-4489

Figure 16. Bruce Adamson

Nicholls resume

Appendix F. The SAMPLE database 819

Birthdate: May 17, 1947

Sex: Male

Marital Status: Married

Height: 6’0″

Weight: 175 lbs.

Department Information

Employee Number: 000150

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-4510

Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns
Hopkins University

1968 American History, B.A. Northwestern
University

Work History

8/79 - present Neural Network Design Developing neural
networks for machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing
rule-based systems to emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank
systems communicate with each other.

Interests

v Racing motorcycles
v Building loudspeakers
v Assembling personal computers
v Sketching

Adamson resume

820 SQL Reference, Volume 1

Walker photo

Walker resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-7325

Birthdate: June 25, 1952

Sex: Male

Marital Status: Single

Height: 5’11″

Weight: 166 lbs.

Department Information

Employee Number: 000190

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-2986

Hire Date: 1974-07-26

Education

Figure 17. James H. Walker

Walker photo

Appendix F. The SAMPLE database 821

1974 Computer Studies, B.Sc. University of
Massachusetts

1972 Linguistic Anthropology, B.A. University of
Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for
mathematical functions.

4/77 - 5/87 Printer Technical Support Installing and
supporting laser printers.

9/74 - 3/77 Maintenance Programming Patching assembly
language compiler for mainframes.

Interests

v Wine tasting
v Skiing
v Swimming
v Dancing

Walker resume

822 SQL Reference, Volume 1

Appendix G. Reserved schema names and reserved words

There are restrictions on the use of certain names that are required by the
database manager. In some cases, names are reserved, and cannot be used by
application programs. In other cases, certain names are not recommended for
use by application programs, although their use is not prevented by the
database manager.

The reserved schema names are:
v SYSCAT
v SYSFUN
v SYSIBM
v SYSSTAT
v SYSPROC

It is strongly recommended that schema names never begin with the SYS
prefix, because SYS, by convention, is used to indicate an area that is reserved
by the system.

No user-defined functions, user-defined types, triggers, or aliases can be
placed into a schema whose name starts with SYS (SQLSTATE 42939).

It is also recommended that SESSION not be used as a schema name. Because
declared temporary tables must be qualified by SESSION, it is possible to
have an application declare a temporary table with a name that is identical to
that of a persistent table, complicating the application logic. To avoid this
possibility, do not use the schema SESSION except when dealing with
declared temporary tables.

There are no specifically reserved words in DB2 Version 8. Keywords can be
used as ordinary identifiers, except in a context where they could also be
interpreted as SQL keywords. In such cases, the word must be specified as a
delimited identifier. For example, COUNT cannot be used as a column name
in a SELECT statement, unless it is delimited.

IBM SQL and ISO/ANSI SQL99 include reserved words that are not enforced
by DB2 Universal Database; however, it is recommended that these words not
be used as ordinary identifiers, because it reduces portability.

The DB2 Universal Database reserved words are:

© Copyright IBM Corp. 1993 - 2002 823

ADD DETERMINISTIC LEAVE RESTART
AFTER DISALLOW LEFT RESTRICT
ALIAS DISCONNECT LIKE RESULT
ALL DISTINCT LINKTYPE RESULT_SET_LOCATOR
ALLOCATE DO LOCAL RETURN
ALLOW DOUBLE LOCALE RETURNS
ALTER DROP LOCATOR REVOKE
AND DSNHATTR LOCATORS RIGHT
ANY DSSIZE LOCK ROLLBACK
APPLICATION DYNAMIC LOCKMAX ROUTINE
AS EACH LOCKSIZE ROW
ASSOCIATE EDITPROC LONG ROWS
ASUTIME ELSE LOOP RRN
AUDIT ELSEIF MAXVALUE RUN
AUTHORIZATION ENCODING MICROSECOND SAVEPOINT
AUX END MICROSECONDS SCHEMA
AUXILIARY END-EXEC MINUTE SCRATCHPAD
BEFORE END-EXEC1 MINUTES SECOND
BEGIN ERASE MINVALUE SECONDS
BETWEEN ESCAPE MODE SECQTY
BINARY EXCEPT MODIFIES SECURITY
BUFFERPOOL EXCEPTION MONTH SELECT
BY EXCLUDING MONTHS SENSITIVE
CACHE EXECUTE NEW SET
CALL EXISTS NEW_TABLE SIGNAL
CALLED EXIT NO SIMPLE
CAPTURE EXTERNAL NOCACHE SOME
CARDINALITY FENCED NOCYCLE SOURCE
CASCADED FETCH NODENAME SPECIFIC
CASE FIELDPROC NODENUMBER SQL
CAST FILE NOMAXVALUE SQLID
CCSID FINAL NOMINVALUE STANDARD
CHAR FOR NOORDER START
CHARACTER FOREIGN NOT STATIC
CHECK FREE NULL STAY
CLOSE FROM NULLS STOGROUP
CLUSTER FULL NUMPARTS STORES
COLLECTION FUNCTION OBID STYLE
COLLID GENERAL OF SUBPAGES
COLUMN GENERATED OLD SUBSTRING
COMMENT GET OLD_TABLE SYNONYM
COMMIT GLOBAL ON SYSFUN
CONCAT GO OPEN SYSIBM
CONDITION GOTO OPTIMIZATION SYSPROC
CONNECT GRANT OPTIMIZE SYSTEM
CONNECTION GRAPHIC OPTION TABLE
CONSTRAINT GROUP OR TABLESPACE
CONTAINS HANDLER ORDER THEN
CONTINUE HAVING OUT TO
COUNT HOLD OUTER TRANSACTION
COUNT_BIG HOUR OVERRIDING TRIGGER
CREATE HOURS PACKAGE TRIM
CROSS IDENTITY PARAMETER TYPE
CURRENT IF PART UNDO
CURRENT_DATE IMMEDIATE PARTITION UNION

Reserved schema names and reserved words

824 SQL Reference, Volume 1

CURRENT_LC_CTYPE IN PATH UNIQUE
CURRENT_PATH INCLUDING PIECESIZE UNTIL
CURRENT_SERVER INCREMENT PLAN UPDATE
CURRENT_TIME INDEX POSITION USAGE
CURRENT_TIMESTAMP INDICATOR PRECISION USER
CURRENT_TIMEZONE INHERIT PREPARE USING
CURRENT_USER INNER PRIMARY VALIDPROC
CURSOR INOUT PRIQTY VALUES
CYCLE INSENSITIVE PRIVILEGES VARIABLE
DATA INSERT PROCEDURE VARIANT
DATABASE INTEGRITY PROGRAM VCAT
DAY INTO PSID VIEW
DAYS IS QUERYNO VOLUMES
DB2GENERAL ISOBID READ WHEN
DB2GENRL ISOLATION READS WHERE
DB2SQL ITERATE RECOVERY WHILE
DBINFO JAR REFERENCES WITH
DECLARE JAVA REFERENCING WLM
DEFAULT JOIN RELEASE WRITE
DEFAULTS KEY RENAME YEAR
DEFINITION LABEL REPEAT YEARS
DELETE LANGUAGE RESET
DESCRIPTOR LC_CTYPE RESIGNAL

The ISO/ANSI SQL99 reserved words that are not in the list of DB2 Universal
Database reserved words are:
ABSOLUTE DESCRIBE MODULE SESSION
ACTION DESTROY NAMES SESSION_USER
ADMIN DESTRUCTOR NATIONAL SETS
AGGREGATE DIAGNOSTICS NATURAL SIZE
ARE DICTIONARY NCHAR SMALLINT
ARRAY DOMAIN NCLOB SPACE
ASC EQUALS NEXT SPECIFICTYPE
ASSERTION EVERY NONE SQLEXCEPTION
AT EXEC NUMERIC SQLSTATE
BIT FALSE OBJECT SQLWARNING
BLOB FIRST OFF STATE
BOOLEAN FLOAT ONLY STATEMENT
BOTH FOUND OPERATION STRUCTURE
BREADTH GROUPING ORDINALITY SYSTEM_USER
CASCADE HOST OUTPUT TEMPORARY
CATALOG IGNORE PAD TERMINATE
CLASS INITIALIZE PARAMETERS THAN
CLOB INITIALLY PARTIAL TIME
COLLATE INPUT POSTFIX TIMESTAMP
COLLATION INT PREFIX TIMEZONE_HOUR
COMPLETION INTEGER PREORDER TIMEZONE_MINUTE
CONSTRAINTS INTERSECT PRESERVE TRAILING
CONSTRUCTOR INTERVAL PRIOR TRANSLATION
CORRESPONDING LARGE PUBLIC TREAT
CUBE LAST REAL TRUE
CURRENT_ROLE LATERAL RECURSIVE UNDER
DATE LEADING REF UNKNOWN
DEALLOCATE LESS RELATIVE UNNEST

Reserved schema names and reserved words

Appendix G. Reserved schema names and reserved words 825

DEC LEVEL ROLE VALUE
DECIMAL LIMIT ROLLUP VARCHAR
DEFERRABLE LOCALTIME SCOPE VARYING
DEFERRED LOCALTIMESTAMP SCROLL WHENEVER
DEPTH MAP SEARCH WITHOUT
DEREF MATCH SECTION WORK
DESC MODIFY SEQUENCE ZONE

Reserved schema names and reserved words

826 SQL Reference, Volume 1

Appendix H. Comparison of isolation levels

The following table summarizes information about isolation levels.

UR CS RS RR

Can the application see uncommitted
changes made by other application
processes?

Yes No No No

Can the application update uncommitted
changes made by other application
processes?

No No No No

Can the re-execution of a statement be
affected by other application processes? See
phenomenon P3 (phantom) below.

Yes Yes Yes No

Can “updated” rows be updated by other
application processes? See Note 1 below.

No No No No

Can “updated” rows be read by other
application processes that are running at an
isolation level other than UR?

No No No No

Can “updated” rows be read by other
application processes that are running at the
UR isolation level?

Yes Yes Yes Yes

Can “accessed” rows be updated by other
application processes? See phenomenon P2
(nonrepeatable read) below.

Yes Yes No No

Can “accessed” rows be read by other
application processes?

Yes Yes Yes Yes

Can “current” row be updated or deleted by
other application processes? See phenomenon
P1 (dirty-read) below.

See Note
2 below.

See Note
2 below.

No No

Notes:

1. The isolation level offers no protection to the application if the application is both
reading and writing a table. For example, an application opens a cursor on a table
and then performs an insert, update, or delete operation on the same table. The
application may see inconsistent data when more rows are fetched from the open
cursor.

2. If the cursor is not updatable, with CS the current row may be updated or deleted
by other application processes in some cases. For example, buffering may cause the
current row at the client to be different than what the current row actually is at the
server.

© Copyright IBM Corp. 1993 - 2002 827

UR CS RS RR

Examples of Phenomena:

P1 Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that
row before UW1 performs a COMMIT. If UW1 then performs a ROLLBACK,
UW2 has read a nonexistent row.

P2 Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2
modifies that row and performs a COMMIT. If UW1 then re-reads the row, it
might receive a modified value.

P3 Phantom. Unit of work UW1 reads the set of n rows that satisfies some search
condition. Unit of work UW2 then INSERTs one or more rows that satisfies
the search condition and performs a COMMIT. If UW1 then repeats the initial
read with the same search condition, it obtains the original rows plus the
inserted rows.

Related concepts:

v “Isolation levels” on page 13

Comparison of isolation levels

828 SQL Reference, Volume 1

Appendix I. Interaction of triggers and constraints

This appendix describes the interaction of triggers with referential constraints
and check constraints that may result from an update operation. Figure 18 and
the associated description are representative of the processing that is
performed for an SQL statement that updates data in the database.

Figure 18 shows the general order of processing for an SQL statement that
updates a table. It assumes a situation where the table includes before
triggers, referential constraints, check constraints and after triggers that
cascade. The following is a description of the boxes and other items found in
Figure 18.
v SQL statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process.
The SQL statement S1 identifies a table (or an updatable view over some
table) referred to as the target table throughout this description.

v Determine set of affected rows (SAR)
This step is the starting point for a process that repeats for referential
constraint delete rules of CASCADE and SET NULL and for cascaded SQL
statements from after triggers.
The purpose of this step is to determine the set of affected rows for the SQL
statement. The set of rows included in SAR is based on the statement:

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 18. Processing an SQL statement with associated triggers and constraints

© Copyright IBM Corp. 1993 - 2002 829

– for DELETE, all rows that satisfy the search condition of the statement
(or the current row for a positioned DELETE)

– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current

row for a positioned update).

If SAR is empty, there will be no BEFORE triggers, changes to apply to the
target table, or constraints to process for the SQL statement.

v Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each
BEFORE trigger will process the triggered action once for each row in SAR.
An error may occur during the processing of a triggered action in which
case all changes made as a result of the original SQL statement S1 (so far)
are rolled back.
If there are no BEFORE triggers or the SAR is empty, this step is skipped.

v Apply SAR to the target table
The actual delete, insert, or update is applied using SAR to the target table
in the database.
An error may occur when applying SAR (such as attempting to insert a row
with a duplicate key where a unique index exists) in which case all changes
made as a result of the original SQL statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the target table are applied if SAR is not
empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK
OPTION on views. Referential constraints with delete rules of cascade or
set null may cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error
and all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of
creation.
FOR EACH STATEMENT triggers will process the triggered action exactly
once, even if SAR is empty. FOR EACH ROW triggers will process the
triggered action once for each row in SAR.
An error may occur during the processing of a triggered action in which
case all changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger may include triggered SQL statements that
are DELETE, INSERT or UPDATE statements. For the purposes of this
description, each such statement is considered a cascaded SQL statement.

Interaction of triggers and constraints

830 SQL Reference, Volume 1

A cascaded SQL statement is a DELETE, INSERT, or UPDATE statement
that is processed as part of the triggered action of an AFTER trigger. This
statement starts a cascaded level of trigger processing. This can be thought
of as assigning the triggered SQL statement as a new S1 and performing all
of the steps described here recursively.
Once all triggered SQL statements from all AFTER triggers activated by
each S1 have been processed to completion, the processing of the original S1

is completed.
v �R� = roll back changes to before S1

Any error (including constraint violations) that occurs during processing
results in a roll back of all the changes made directly or indirectly as a
result of the original SQL statement S1. The database is therefore back in the
same state as immediately prior to the execution of the original SQL
statement S1

Interaction of triggers and constraints

Appendix I. Interaction of triggers and constraints 831

Interaction of triggers and constraints

832 SQL Reference, Volume 1

Appendix J. Explain tables

Explain tables

The Explain tables capture access plans when the Explain facility is activated.
The Explain tables must be created before Explain can be invoked. You can
create them using the documented table definitions, or you can create them by
invoking the sample command line processor (CLP) script provided in the
EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib' directory.
To invoke the script, connect to the database where the Explain tables are
required, then issue the command:

db2 -tf EXPLAIN.DDL

The population of the Explain tables by the Explain facility will not activate
triggers or referential or check constraints. For example, if an insert trigger
were defined on the EXPLAIN_INSTANCE table, and an eligible statement
were explained, the trigger would not be activated.

Related reference:

v “EXPLAIN_ARGUMENT table” on page 834
v “EXPLAIN_OBJECT table” on page 841
v “EXPLAIN_OPERATOR table” on page 844
v “EXPLAIN_PREDICATE table” on page 846
v “EXPLAIN_STREAM table” on page 851
v “ADVISE_INDEX table” on page 853
v “ADVISE_WORKLOAD table” on page 856
v “EXPLAIN_INSTANCE table” on page 838
v “EXPLAIN_STATEMENT table” on page 848

© Copyright IBM Corp. 1993 - 2002 833

EXPLAIN_ARGUMENT table

The EXPLAIN_ARGUMENT table represents the unique characteristics for
each individual operator, if there are any.

Table 162. EXPLAIN_ARGUMENT Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the
dynamic statement was explained or name of
the source file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain
request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row
is relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator.
NULL if the value is in
LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_VALUE CLOB(1M) Yes No The value of the argument for this operator,
when the text will not fit in
ARGUMENT_VALUE. NULL if the value is in
ARGUMENT_VALUE.

Table 163. ARGUMENT_TYPE and ARGUMENT_VALUE column values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

BITFLTR TRUE
FALSE

Hash Join will use a bit filter to enhance
performance.

CSETEMP TRUE
FALSE

Temporary Table over Common
Subexpression Flag.

DIRECT TRUE Direct fetch indicator.

EXPLAIN_ARGUMENT table

834 SQL Reference, Volume 1

Table 163. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

EARLYOUT TRUE
FALSE

Early out indicator.

ENVVAR Each row of this type will contain:

v Environment variable name

v Environment variable value

Environment variable affecting the optimizer

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

v Ordinal value of column in group by
clause (followed by a colon and a space)

v Name of Column

Group By requirement.

INNERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding
the inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

MAXRIDS NONE
INTEGER

Maximum Row Identifiers to be included in
each list prefetch request.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

EXPLAIN_ARGUMENT table

Appendix J. Explain tables 835

Table 163. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

OUTERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

RMTQTEXT Query text Remote Query Text

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted.

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the
intra-partition parallel scan, expressed in
SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table
scan.

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity
unit.

SERVER Remote server Remote server

SHARED TRUE Intra-partition parallelism, shared TEMP
indicator.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SNGLPROD TRUE
FALSE

Intra-partition parallelism sort or temp
produced by a single agent.

EXPLAIN_ARGUMENT table

836 SQL Reference, Volume 1

Table 163. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SORTKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Sort key columns.

SORTTYPE PARTITIONED
SHARED
ROUND ROBIN
REPLICATED

Intra-partition parallelism, sort type.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of
subagents accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL Intra-partition parallelism, Table Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows
produced).

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

Unique key columns.

VOLATILE TRUE Volatile table

EXPLAIN_ARGUMENT table

Appendix J. Explain tables 837

EXPLAIN_INSTANCE table

The EXPLAIN_INSTANCE table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to one
unique row in this table. The EXPLAIN_INSTANCE table gives basic
information about the source of the SQL statements being explained as well as
information about the environment in which the explanation took place.

Table 164. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested
for this request.

Possible values are:
P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken
for this request.

Possible values are:
Y Yes, an Explain Snapshot(s) was taken

and stored in the
EXPLAIN_STATEMENT table. Regular
Explain information was also captured.

N No Explain Snapshot was taken.
Regular Explain information was
captured.

O Only an Explain Snapshot was taken.
Regular Explain information was not
captured.

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal
Database which processed this explain request.
Format is vv.rr.m, where:
vv Version Number
rr Release Number
m Maintenance Release Number

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for
static or dynamic SQL.

Possible values are:
S Static SQL
D Dynamic SQL

EXPLAIN_INSTANCE table

838 SQL Reference, Volume 1

Table 164. EXPLAIN_INSTANCE Table (continued). PK means that the column is part of a primary key;
FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

QUERYOPT INTEGER No No Indicates the query optimization class used by the
SQL Compiler at the time of the Explain
invocation. The value indicates what level of
query optimization was performed by the SQL
Compiler for the SQL statements being explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used
when compiling the SQL statements. For more
information, see the BLOCK column in
SYSCAT.PACKAGES.

Possible values are:
N No Blocking
U Block Unambiguous Cursors
B Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when
compiling the SQL statements. For more
information, see the ISOLATION column in
SYSCAT.PACKAGES.

Possible values are:
RR Repeatable Read
RS Read Stability
CS Cursor Stability
UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database
configuration setting at the time of the Explain
invocation.

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS
configuration parameter at the time of the
Explain invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database
configuration setting at the time of the Explain
invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database
configuration setting at the time of the Explain
invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database
configuration setting at the time of the Explain
invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be
available by the optimizer for each user. (Derived
from LOCKLIST and MAXLOCKS.)

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database
manager configuration setting at the time of the
Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

EXPLAIN_INSTANCE table

Appendix J. Explain tables 839

Table 164. EXPLAIN_INSTANCE Table (continued). PK means that the column is part of a primary key;
FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

DBHEAP INTEGER No No Contains the value of the DBHEAP database
configuration setting at the time of Explain
invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH
database configuration setting at the time of
Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

v N = No parallelism

v P = Intra-partition parallelism

v IP = Inter-partition parallelism

v BP = Intra-partition parallelism and
inter-partition parallelism

DATAJOINER CHAR(1) No No Possible values are:

v N = Non-federated systems plan

v Y = Federated systems plan

EXPLAIN_INSTANCE table

840 SQL Reference, Volume 1

EXPLAIN_OBJECT table

The EXPLAIN_OBJECT table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

Table 165. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that
the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object’s creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;
null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1
for an index.

PAGES INTEGER No No Estimated number of pages that the object
occupies in the buffer pool. Set to -1 for a table
function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e.
no duplicates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is
stored; set to null if no table space is involved.

EXPLAIN_OBJECT table

Appendix J. Explain tables 841

Table 165. EXPLAIN_OBJECT Table (continued). PK means that the column is part of a primary key; FK
means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a
single random I/O to the specified table space.
Includes controller overhead, disk seek, and
latency times. Set to -1 if no table space is
involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in
milliseconds, from the specified table space. Set to
-1 if no table space is involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is
performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are
written to one container in the table space before
switching to the next container. Set to -1 for a
table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,
this is the CLUSTERRATIO. If >= 0 and < 1, this
is the CLUSTERFACTOR. Set to -1 for a table,
table function, or if this statistic is not available.

NLEAF INTEGER No No Number of leaf pages this index object’s values
occupy. Set to -1 for a table, table function, or if
this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object’s tree.
Set to -1 for a table, table function, or if this
statistic is not available.

FULLKEYCARD BIGINT No No Number of distinct full key values contained in
this index object. Set to -1 for a table, table
function, or if this statistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set
to -1 for an index, table function, or if this statistic
is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to −1 for a
table, table function or if this statistic is not
available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first
{2,3,4} columns of the index. Set to −1 for a table,
table function or if this statistic is not available.

FIRST3KEYCARD BIGINT No No

FIRST4KEYCARD BIGINT No No

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
Set to −1 for a table, table function or if this
statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percentage (integer between
0 and 100). Set to −1 for a table, table function or
if this statistic is not available.

EXPLAIN_OBJECT table

842 SQL Reference, Volume 1

Table 166. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

EXPLAIN_OBJECT table

Appendix J. Explain tables 843

EXPLAIN_OPERATOR table

The EXPLAIN_OPERATOR table contains all the operators needed to satisfy
the SQL statement by the SQL compiler.

Table 167. EXPLAIN_OPERATOR Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
executing the chosen access plan up to and
including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of executing the chosen access plan up to
and including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
executing the chosen access plan up to and
including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the first row for the access plan up to and
including this operator. This value includes any
initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of fetching the next row for the chosen
access plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
fetching the next row for the chosen access plan
up to and including this operator.

EXPLAIN_OPERATOR table

844 SQL Reference, Volume 1

Table 167. EXPLAIN_OPERATOR Table (continued). PK means that the column is part of a primary key;
FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

COMM_COST DOUBLE No No Estimated cumulative communication cost (in
TCP/IP frames) of executing the chosen access
plan up to and including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in
TCP/IP frames) of fetching the first row for the
chosen access plan up to and including this
operator. This value includes any initial overhead
required.

BUFFERS DOUBLE No No Estimated buffer requirements for this operator
and its inputs.

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of
executing the chosen remote access plan up to and
including this operator.

Table 168. OPERATOR_TYPE values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

RQUERY Remote Query

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

EXPLAIN_OPERATOR table

Appendix J. Explain tables 845

EXPLAIN_PREDICATE table

The EXPLAIN_PREDICATE table identifies which predicates are applied by a
specific operator.

Table 169. EXPLAIN_PREDICATE Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified
operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified
operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this
predicate is evaluated.

Possible values are:

blank This predicate does not contain a
subquery.

EAA The subquery used in this predicate is
evaluated at application (EAA). That is,
it is re-evaluated for every row
processed by the specified operator, as
the predicate is being applied.

EAO The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in
the application of the predicate for each
row.

MUL There is more than one type of
subquery in this predicate.

EXPLAIN_PREDICATE table

846 SQL Reference, Volume 1

Table 169. EXPLAIN_PREDICATE Table (continued). PK means that the column is part of a primary key;
FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

RELOP_TYPE CHAR(2) No No The type of relational operator used in this
predicate.

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is
required for this predicate. There may be multiple
subquery streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is
required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be
qualified by this predicate.

PREDICATE_TEXT CLOB(1M) Yes No The text of the predicate as recreated from the
internal representation of the SQL statement.

Null if not available.

Table 170. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 171. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

EXPLAIN_PREDICATE table

Appendix J. Explain tables 847

EXPLAIN_STATEMENT table

The EXPLAIN_STATEMENT table contains the text of the SQL statement as it
exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the version
used (by the optimizer) to choose an access plan to satisfy the SQL statement.
The latter version may bear little resemblance to the original as it may have
been rewritten and/or enhanced with additional predicates as determined by
the SQL Compiler.

Table 172. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row
is relevant.

Valid values are:
O Original Text (as entered by user)
P PLAN SELECTION

STMTNO INTEGER No PK Statement number within package to which this
explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No PK Section number within package that contains this
SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at runtime. For
static SQL statements, this value is the same as
the value used for the SYSCAT.STATEMENTS
catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

EXPLAIN_STATEMENT table

848 SQL Reference, Volume 1

Table 172. EXPLAIN_STATEMENT Table (continued). PK means that the column is part of a primary
key; FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being
explained.

Possible values are:
S Select
D Delete
DC Delete where current of cursor
I Insert
U Update
UC Update where current of cursor

UPDATABLE CHAR(1) No No Indicates if this statement is considered
updatable. This is particularly relevant to SELECT
statements which may be determined to be
potentially updatable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable.
This is particularly relevant to SELECT statements
which may be determined to be potentially
deletable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the
chosen access plan for this statement; set to 0
(zero) if EXPLAIN_LEVEL is O (original text)
since no access plan has been chosen at this time.

STATEMENT_TEXT CLOB(1M) No No Text or portion of the text of the SQL statement
being explained. The text shown for the Plan
Selection level of Explain has been reconstructed
from the internal representation and is SQL-like
in nature; that is, the reconstructed statement is
not guaranteed to follow correct SQL syntax.

EXPLAIN_STATEMENT table

Appendix J. Explain tables 849

Table 172. EXPLAIN_STATEMENT Table (continued). PK means that the column is part of a primary
key; FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL
statement at the Explain_Level shown.

This column is intended for use with DB2 Visual
Explain. Column is set to null if
EXPLAIN_LEVEL is 0 (original statement) since
no access plan has been chosen at the time that
this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism
at the time of Explain invocation. For the original
statement, this contains the directed degree of
intra-partition parallelism. For the PLAN
SELECTION, this contains the degree of
intra-partition parallelism generated for the plan
to use.

EXPLAIN_STATEMENT table

850 SQL Reference, Volume 1

EXPLAIN_STREAM table

The EXPLAIN_STREAM table represents the input and output data streams
between individual operators and data objects. The data objects themselves
are represented in the EXPLAIN_OBJECT table. The operators involved in a
data stream are to be found in the EXPLAIN_OPERATOR table.

Table 173. EXPLAIN_STREAM Table. PK means that the column is part of a primary key; FK means that
the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the
specified operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that
is the source of this data stream. Set to -1 if
SOURCE_TYPE is ’D’.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that
is the target of this data stream. Set to -1 if
TARGET_TYPE is ’D’.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object belongs.
Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data
stream. Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

EXPLAIN_STREAM table

Appendix J. Explain tables 851

Table 173. EXPLAIN_STREAM Table (continued). PK means that the column is part of a primary key;
FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a predicate,
the predicate ID will be reflected here, otherwise
the column is set to -1.

COLUMN_NAMES CLOB(1M) Yes No This column contains the names and ordering
information of the columns involved in this
stream.

These names will be in the format of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order,
(D) indicates a column in descending order, and
no ordering information indicates that either the
column is not ordered or ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or
multiple partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function
(HASHEDVALUE() or
DBPARTITIONNUM())

CORR Directed using a correlation value

Numberic
Directed to predetermined single node

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

EXPLAIN_STREAM table

852 SQL Reference, Volume 1

ADVISE_INDEX table

The ADVISE_INDEX table represents the recommended indexes.

Table 174. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
explain information is related.

SECTNO INTEGER No No Section number within package to which this
explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value is
the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the
index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(64K) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of
include columns if any.

ADVISE_INDEX table

Appendix J. Explain tables 853

Table 174. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK
means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

IID SMALLINT No No Internal index ID.

NLEAF INTEGER No No Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT No No Number of index levels; −1 if statistics are not
gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; −1 if statistics
are not gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; −1 if statistics
are not gathered.

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or −1
if detailed index statistics have not been gathered
or if the index is defined on a nickname.

USERDEFINED SMALLINT No No Defined by the user.

SYSTEM_REQUIRED SMALLINT No No 1 if one or the other of the following
conditions is met:

– This index is required for a primary or
unique key constraint, or this index is a
dimension block index or composite block
index for a multi-dimensional clustering
(MDC) table.

– This is an index on the (OID) column of a
typed table.

2 if both of the following conditions are met:

– This index is required for a primary or
unique key constraint, or this index is a
dimension block index or composite block
index for an MDC table.

– This is an index on the (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to recorded
statistics for this index. Null if no statistics
available.

PAGE_FETCH_PAIRS VARCHAR(254) No No A list of pairs of integers, represented in character
form. Each pair represents the number of pages in
a hypothetical buffer, and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. (Zero-length string
if no data available.)

ADVISE_INDEX table

854 SQL Reference, Volume 1

Table 174. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK
means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be reserved
during initial building of the index. This space is
available for future inserts after the index is built.

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique key.
Always <=COLCOUNT. < COLCOUNT only if
there a include columns. −1 if index has no
unique key (permits duplicates)

MINPCTUSED SMALLINT No No If not zero, then online index defragmentation is
enabled, and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No Y = Index supports reverse scans

N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No Y = index recommended or evaluated

N = index not to be recommended

CREATION_TEXT CLOB(1M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(20M) Yes No Internal description of the table.

ADVISE_INDEX table

Appendix J. Explain tables 855

ADVISE_WORKLOAD table

The ADVISE_WORKLOAD table represents the statement that makes up the
workload.

Table 175. ADVISE_WORKLOAD Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements
(workload) that this statments belongs to.

STATEMENT_NO INTEGER No No Statement number within the workload to which
this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears
within the workload.

IMPORTANCE DOUBLE No No Importance of the statement.

COST_BEFORE DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are not created.

COST_AFTER DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are created.

ADVISE_WORKLOAD table

856 SQL Reference, Volume 1

Appendix K. Explain register values

Following is a description of the interaction of the CURRENT EXPLAIN
MODE and CURRENT EXPLAIN SNAPSHOT special register values, both
with each other and with the PREP and BIND commands.

With dynamic SQL, the CURRENT EXPLAIN MODE and CURRENT
EXPLAIN SNAPSHOT special register values interact as follows.

Table 176. Interaction of Explain Special Register Values (Dynamic SQL)

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN RECOMMEND
INDEXES

EVALUATE
INDEXES

NO v Results
of query
returned.

v Explain tables
populated

v Results of
query
returned.

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

YES v Explain
Snapshot
taken.

v Results
of query
returned.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query
returned.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

© Copyright IBM Corp. 1993 - 2002 857

Table 176. Interaction of Explain Special Register Values (Dynamic SQL) (continued)

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN RECOMMEND
INDEXES

EVALUATE
INDEXES

EXPLAIN v Explain
Snapshot
taken

v Results
of query
not
returned
(Dynamic
statements
not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

The CURRENT EXPLAIN MODE special register interacts with the EXPLAIN
bind option in the following way for dynamic SQL.

Table 177. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE

EXPLAIN
MODE
values

EXPLAIN Bind option values

NO YES ALL

NO v Results of query returned. v Explain tables populated
for static SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

YES v Explain tables populated
for dynamic SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

EXPLAIN v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

Explain register values

858 SQL Reference, Volume 1

Table 177. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN
MODE
values

EXPLAIN Bind option values

NO YES ALL

RECOMMEND
INDEXES

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

EVALUATE
INDEXES

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

The CURRENT EXPLAIN SNAPSHOT special register interacts with the
EXPLSNAP bind option in the following way for dynamic SQL.

Table 178. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLAIN
SNAPSHOT

values

EXPLSNAP Bind option values

NO YES ALL

NO v Results of query returned. v Explain Snapshot taken
for static SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

YES v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

Explain register values

Appendix K. Explain register values 859

Table 178. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT (continued)

EXPLAIN
SNAPSHOT

values

EXPLSNAP Bind option values

NO YES ALL

EXPLAIN v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

Explain register values

860 SQL Reference, Volume 1

Appendix L. Recursion example: bill of materials

Bill of materials (BOM) applications are a common requirement in many
business environments. To illustrate the capability of a recursive common
table expression for BOM applications, consider a table of parts with
associated subparts and the quantity of subparts required by the part. For this
example, create the table as follows:

CREATE TABLE PARTLIST
(PART VARCHAR(8),
SUBPART VARCHAR(8),
QUANTITY INTEGER);

To give query results for this example, assume that the PARTLIST table is
populated with the following values:

PART SUBPART QUANTITY
-------- -------- -----------
00 01 5
00 05 3
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 14 8
07 12 8

Example 1: Single level explosion

The first example is called single level explosion. It answers the question,
“What parts are needed to build the part identified by ’01’?”. The list will
include the direct subparts, subparts of the subparts and so on. However, if a
part is used multiple times, its subparts are only listed once.
WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD

© Copyright IBM Corp. 1993 - 2002 861

WHERE PARENT.SUBPART = CHILD.PART
)

SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL
ORDER BY PART, SUBPART, QUANTITY;

The above query includes a common table expression, identified by the name
RPL, that expresses the recursive part of this query. It illustrates the basic
elements of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization
fullselect, gets the direct children of part ’01’. The FROM clause of this
fullselect refers to the source table and will never refer to itself (RPL in this
case). The result of this first fullselect goes into the common table expression
RPL (Recursive PARTLIST). As in this example, the UNION must always be a
UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts
of subparts by having the FROM clause refer to the common table expression
RPL and the source table with a join of a part from the source table (child) to
a subpart of the current result contained in RPL (parent). The result goes back
to RPL again. The second operand of UNION is then used repeatedly until no
more children exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same
part/subpart is not listed more than once.

The result of the query is as follows:
PART SUBPART QUANTITY
-------- -------- -----------
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 12 8
07 14 8

Observe in the result that from part ’01’ we go to ’02’ which goes to ’06’ and
so on. Further, notice that part ’06’ is reached twice, once through ’01’ directly

Example 1: Single level explosion

862 SQL Reference, Volume 1

and another time through ’02’. In the output, however, its subcomponents are
listed only once (this is the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is
possible to introduce an infinite loop. In this example, an infinite loop would
be created if the search condition of the second operand that joins the parent
and child tables was coded as:

PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding
what is intended. However, care should also be exercised in determining what
to code so that there is a definite end of the recursion cycle.

The result produced by this example query could be produced in an
application program without using a recursive common table expression.
However, this approach would require starting of a new query for every level
of recursion. Furthermore, the application needs to put all the results back in
the database to order the result. This approach complicates the application
logic and does not perform well. The application logic becomes even harder
and more inefficient for other bill of material queries, such as summarized
and indented explosion queries.

Example 2: Summarized explosion

The second example is a summarized explosion. The question posed here is,
what is the total quantity of each part required to build part ’01’. The main
difference from the single level explosion is the need to aggregate the
quantities. The first example indicates the quantity of subparts required for
the part whenever it is required. It does not indicate how many of the
subparts are needed to build part ’01’.
WITH RPL (PART, SUBPART, QUANTITY) AS

(
SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"
FROM RPL
GROUP BY PART, SUBPART
ORDER BY PART, SUBPART;

In the above query, the select list of the second operand of the UNION in the
recursive common table expression, identified by the name RPL, shows the
aggregation of the quantity. To find out how much of a subpart is used, the

Example 1: Single level explosion

Appendix L. Recursion example: bill of materials 863

quantity of the parent is multiplied by the quantity per parent of a child. If a
part is used multiple times in different places, it requires another final
aggregation. This is done by the grouping over the common table expression
RPL and using the SUM column function in the select list of the main
fullselect.

The result of the query is as follows:
PART SUBPART Total Qty Used
-------- -------- --------------
01 02 2
01 03 3
01 04 4
01 05 14
01 06 15
01 07 18
01 08 40
01 09 44
01 10 140
01 11 140
01 12 294
01 13 150
01 14 144

Looking at the output, consider the line for subpart ’06’. The total quantity
used value of 15 is derived from a quantity of 3 directly for part ’01’ and a
quantity of 6 for part ’02’ which is needed 2 times by part ’01’.

Example 3: Controlling depth

The question may come to mind, what happens when there are more levels of
parts in the table than you are interested in for your query? That is, how is a
query written to answer the question, “What are the first two levels of parts
needed to build the part identified by ’01’?” For the sake of clarity in the
example, the level is included in the result.
WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

(
SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2
)

SELECT PART, LEVEL, SUBPART, QUANTITY
FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to
count the levels from the original part. In the initialization fullselect, the value

Example 2: Summarized explosion

864 SQL Reference, Volume 1

for the LEVEL column is initialized to 1. In the subsequent fullselect, the level
from the parent is incremented by 1. Then to control the number of levels in
the result, the second fullselect includes the condition that the parent level
must be less than 2. This ensures that the second fullselect only processes
children to the second level.

The result of the query is:
PART LEVEL SUBPART QUANTITY
-------- ----------- -------- -----------
01 1 02 2
01 1 03 3
01 1 04 4
01 1 06 3
02 2 05 7
02 2 06 6
03 2 07 6
04 2 08 10
04 2 09 11
06 2 12 10
06 2 13 10

Example 3: Controlling depth

Appendix L. Recursion example: bill of materials 865

Example 3: Controlling depth

866 SQL Reference, Volume 1

Appendix M. Exception tables

Exception tables are user-created tables that mimic the definition of the tables
that are specified to be checked using SET INTEGRITY with the IMMEDIATE
CHECKED option. They are used to store copies of the rows that violate
constraints in the tables being checked.

The exception tables used with LOAD are identical to the ones used here.
They can therefore be reused during checking with the SET INTEGRITY
statement.

Rules for creating an exception table

The rules for creating an exception table are as follows:
v The first “n” columns of the exception table are the same as the columns of

the table being checked. All column attributes including name, type and
length should be identical.

v All the columns of the exception table must be free of any constraints and
triggers. Constraints include referential integrity, check constraints as well
as unique index constraints that could cause errors on insert.

v The “(n+1)” column of the exception table is an optional TIMESTAMP
column. This serves to identify successive invocations of checking by the
SET INTEGRITY statement on the same table, if the rows within the
exception table have not been deleted before issuing the SET INTEGRITY
statement to check the data.

v The “(n+2)” column should be of type CLOB(32K) or larger. This column is
optional but recommended, and will be used to give the names of the
constraints that the data within the row violates. If this column is not
provided (as could be warranted if, for example, the original table had the
maximum number of columns allowed), then only the row where the
constraint violation was detected is copied.

v The exception table should be created with both “(n+1)” and “(n+2)”
columns.

v There is no enforcement of any particular name for the above additional
columns. However, the type specification must be exactly followed.

v No additional columns are allowed.
v If the original table has DATALINK columns, the corresponding columns in

the exception table should specify NO LINK CONTROL. This ensures that
a file is not linked when a row (with DATALINK column) is inserted and
an access token is not generated when rows are selected from the exception
table.

© Copyright IBM Corp. 1993 - 2002 867

v If the original table has generated columns (including the IDENTITY
property), the corresponding columns in the exception table should not
specify the generated property.

v It should also be noted that users invoking SET INTEGRITY to check the
data must have INSERT privilege on the exception tables.

The information in the “message” column will be according to the following
structure:

Table 179. Exception Table Message Column Structure

Field
number

Contents Size Comments

1 Number of constraint violations 5 characters Right justified padded with ’0’

2 Type of first constraint violation 1 character ’K’ - Check Constraint violation
’F’ - Foreign Key violation
’G’ - Generated Column violation
’I’ - Unique Index violationa

’L’ - DATALINK load violation
’D’ - Delete Cascade violation

3 Length of constraint/columnb

/index IDc/DLVDESCd
5 characters Right justified padded with ’0’

4 Constraint name/Column
nameb/index IDc/DLVDESCd

length from the previous
field

5 Separator 3 characters <space><colon><space>

6 Type of next constraint violation 1 character ’K’ - Check Constraint violation
’F’ - Foreign Key violation
’G’ - Generated Column violation
’I’ - Unique Index violation
’L’ - DATALINK load violation
’D’ - Delete Cascade violation

7 Length of
constraint/column/index ID/
DLVDESC

5 characters Right justified padded with ’0’

8 Constraint name/Column
name/Index ID/ DLVDESC

length from the previous
field

..... Repeat Field 5 through 8 for each
violation

Rules for creating an exception table

868 SQL Reference, Volume 1

Table 179. Exception Table Message Column Structure (continued)

Field
number

Contents Size Comments

v a Unique index violations will not occur with checking using SET INTEGRITY. This will be reported,
however, when running LOAD if the FOR EXCEPTION option is chosen. LOAD, on the other hand,
will not report check constraint, generated column, and foreign key violations in the exception tables.

v b To retrieve the expression of a generated column from the catalog views, use a select statement. For
example, if field 4 is MYSCHEMA.MYTABLE.GEN_1, then SELECT SUBSTR(TEXT, 1, 50) FROM
SYSCAT.COLUMNS WHERE TABSCHEMA=’MYSCHEMA’ AND TABNAME=’MYNAME’ AND
COLNAME=’GEN_1’; will return the first fifty characters of the expression, in the form ″AS
(<expression>)″

v c To retrieve an index ID from the catalog views, use a select statement. For example, if field 4 is 1234,
then SELECT INDSCHEMA, INDNAME FROM SYSCAT.INDEXES WHERE IID=1234.

v dDLVDESC is a DATALINK Load Violation DESCriptor described below.

Table 180. DATALINK Load Violation DESCriptor (DLVDESC)

Field
number

Contents Size Comments

1 Number of violating DATALINK
columns

4 characters Right justified padded with ’0’

2 DATALINK column number of
the first violating column

4 characters Right justified padded with ’0’

2 DATALINK column number of
the second violating column

4 characters Right justified padded with ’0’

..... Repeat for each violating column
number

Note:
v DATALINK column number is COLNO in SYSCAT.COLUMNS for the appropriate table.

Handling rows in an exception table

The information in the exception tables can be processed in any manner
desired. The rows could be used to correct the data and re-insert the rows into
the original tables.

If there are no INSERT triggers on the original table, transfer the corrected
rows by issuing an INSERT statement with a subquery on the exception table.

If there are INSERT triggers and you wish to complete the load with the
corrected rows from exception tables without firing the triggers, the following
ways are suggested:

Rules for creating an exception table

Appendix M. Exception tables 869

v Design the INSERT triggers to be fired depending on the value in a column
defined explicitly for the purpose.

v Unload the data from the exception tables and append them using LOAD.
In this case if we re-check the data, it should be noted that in DB2 Version 8
the constraint violation checking is not confined to the appended rows only.

v Save the trigger text from the relevant catalog table. Then drop the INSERT
trigger and use INSERT to transfer the corrected rows from the exception
tables. Finally recreate the trigger using the saved information.

In DB2 Version 8, no explicit provision is made to prevent the firing of
triggers when inserting rows from the exception tables.

Only one violation per row will be reported for unique index violations.

If values with long string or LOB data types are in the table, the values will
not be inserted into the exception table in case of unique index violation.

Querying exception tables

The message column structure in an exception table is a concatenated list of
constraint names, lengths and delimiters as described earlier. You may wish to
write a query on this information.

For example, let’s write a query to obtain a list of all the violations, repeating
each row with only the constraint name along with it. Let us assume that our
original table T1 had two columns C1 and C2. Assume also, that the
corresponding exception table E1 has columns C1, C2 pertaining to those in
T1 and MSGCOL as the message column. The following query (using
recursion) will list one constraint name per row (repeating the row for more
than one violation):
WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
(SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, 12,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))
FROM E1

UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV;

Handling rows in an exception table

870 SQL Reference, Volume 1

If we want all the rows that violated a particular constraint, we could extend
this query as follows:
WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
(SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, 12,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

FROM E1
UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTNAME = ’constraintname’;

To obtain all the Check Constraint violations, one could execute the following:
WITH IV (C1, C2, MSGCOL, CONSTNAME, CONSTTYPE, I, J) AS

(SELECT C1, C2, MSGCOL,
CHAR(SUBSTR(MSGCOL, 12,

INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),
CHAR(SUBSTR(MSGCOL, 6, 1)),
1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

FROM E1
UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

CHAR(SUBSTR(MSGCOL, J, 1)),
I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTTYPE = ’K’;

Querying exception tables

Appendix M. Exception tables 871

Querying exception tables

872 SQL Reference, Volume 1

Appendix N. SQL statements allowed in routines

The following table indicates whether or not an SQL statement (specified in
the first column) is allowed to execute in a routine with the specified SQL
data access indication. If an executable SQL statement is encountered in a
routine defined with NO SQL, SQLSTATE 38001 is returned. For other
execution contexts, SQL statements that are not supported in any context
return SQLSTATE 38003. For other SQL statements not allowed in a
CONTAINS SQL context, SQLSTATE 38004 is returned. In a READS SQL
DATA context, SQLSTATE 38002 is returned. During creation of an SQL
routine, a statement that does not match the SQL data access indication will
cause SQLSTATE 42985 to be returned.

If a statement invokes a routine, the effective SQL data access indication for
the statement will be the greater of:
v The SQL data access indication of the statement from the following table.
v The SQL data access indication of the routine specified when the routine

was created.

For example, the CALL statement has an SQL data access indication of
CONTAINS SQL. However, if a stored procedure defined as READS SQL
DATA is called, the effective SQL data access indication for the CALL
statement is READS SQL DATA.

When a routine invokes an SQL statement, the effective SQL data access
indication for the statement must not exceed the SQL data access indication
declared for the routine. For example, a function defined as READS SQL
DATA could not call a stored procedure defined as MODIFIES SQL DATA.

Table 181. SQL Statement and SQL Data Access Indication

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

ALTER... N N N Y

BEGIN DECLARE
SECTION

Y(1) Y Y Y

CALL N Y Y Y

CLOSE CURSOR N N Y Y

COMMENT ON N N N Y

COMMIT N N(4) N(4) N(4)

COMPOUND SQL N Y Y Y

© Copyright IBM Corp. 1993 - 2002 873

Table 181. SQL Statement and SQL Data Access Indication (continued)

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

CONNECT(2) N N N N

CREATE N N N Y

DECLARE CURSOR Y(1) Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

N N N Y

DELETE N N N Y

DESCRIBE N N Y Y

DISCONNECT(2) N N N N

DROP ... N N N Y

END DECLARE SECTION Y(1) Y Y Y

EXECUTE N Y(3) Y(3) Y

EXECUTE IMMEDIATE N Y(3) Y(3) Y

EXPLAIN N N N Y

FETCH N N Y Y

FREE LOCATOR N Y Y Y

FLUSH EVENT
MONITOR

N N N Y

GRANT ... N N N Y

INCLUDE Y(1) Y Y Y

INSERT N N N Y

LOCK TABLE N Y Y Y

OPEN CURSOR N N Y Y

PREPARE N Y Y Y

REFRESH TABLE N N N Y

RELEASE
CONNECTION(2)

N N N N

RELEASE SAVEPOINT N N N Y

RENAME TABLE N N N Y

REVOKE ... N N N Y

ROLLBACK N N(4) N(4) N(4)

ROLLBACK TO
SAVEPOINT

N N N Y

SAVEPOINT N N N Y

SQL statements allowed in routines

874 SQL Reference, Volume 1

Table 181. SQL Statement and SQL Data Access Indication (continued)

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

SELECT INTO N N Y Y

SET CONNECTION(2) N N N N

SET INTEGRITY N N N Y

SET special register N Y Y Y

UPDATE N N N Y

VALUES INTO N N Y Y

WHENEVER Y(1) Y Y Y

Notes:

1. Although the NO SQL option implies that no SQL statements can be
specified, non-executable statements are not restricted.

2. Connection management statements are not allowed in any routine
execution context.

3. It depends on the statement being executed. The statement specified for
the EXECUTE statement must be a statement that is allowed in the context
of the particular SQL access level in effect. For example, if the SQL access
level in effect is READS SQL DATA, the statement must not be an INSERT,
UPDATE, or DELETE.

4. The COMMIT statement and the ROLLBACK statement without the TO
SAVEPOINT clause can be used in a stored procedure, but only if the
stored procedure is called directly from an application, or indirectly
through nested stored procedure calls from an application. (If any trigger,
function, method, or atomic compound statement is in the call chain to the
stored procedure, COMMIT or ROLLBACK of a unit of work is not
allowed.)

SQL statements allowed in routines

Appendix N. SQL statements allowed in routines 875

SQL statements allowed in routines

876 SQL Reference, Volume 1

Appendix O. CALL invoked from a compiled statement

Invokes a procedure stored at the location of a database. A stored procedure,
for example, executes at the location of the database, and returns data to the
client application.

Programs using the SQL CALL statement are designed to run in two parts,
one on the client and the other on the server. The server procedure at the
database runs within the same transaction as the client application. If the
client application and stored procedure are on the same partition, the stored
procedure is executed locally.

Note: This form of the CALL statement is deprecated, and is only being
provided for compatibility with previous versions of DB2.

Invocation:

This form of the CALL statement can only be embedded in an application
program precompiled with the CALL_RESOLUTION DEFERRED option. It
cannot be used in triggers, SQL procedures, or any other non-application
contexts. It is an executable statement that cannot be dynamically prepared.
However, the procedure name can be specified through a host variable and
this, coupled with the use of the USING DESCRIPTOR clause, allows both the
procedure name and the parameter list to be provided at run time, which
achieves an effect similar to that of a dynamically prepared statement.

Authorization:

The privileges held by the authorization ID of the CALL statement at run time
must include at least one of the following:
v EXECUTE privilege for the package associated with the stored procedure

(EXECUTE privilege on the stored procedure is not checked.)
v CONTROL privilege for the package associated with the stored procedure
v SYSADM or DBADM authority

Syntax:

�� CALL procedure-name
host-variable

�

()
,

host-variable
USING DESCRIPTOR descriptor-name

��

© Copyright IBM Corp. 1993 - 2002 877

Description:

procedure-name or host-variable
Identifies the procedure to call. The procedure name may be specified
either directly or within a host variable. The procedure identified must
exist at the current server (SQLSTATE 42724).

If procedure-name is specified, it must be an ordinary identifier that is not
greater than 254 bytes. Because this can only be an ordinary identifier, it
cannot contain blanks or special characters. The value is converted to
uppercase. If it is necessary to use lowercase names, blanks, or special
characters, the name must be specified via a host-variable.

If host-variable is specified, it must be a character-string variable with a
length attribute that is not greater than 254 bytes, and it must not include
an indicator variable. The value is not converted to uppercase. The
character string must be left-justified.

The procedure name can take one of several forms:

procedure-name
The name (with no extension) of the procedure to execute. The
procedure that is invoked is determined as follows.
1. The procedure-name is used to search the defined procedures (in

SYSCAT.ROUTINES) for a matching procedure. A matching
procedure is determined using the steps that follow.
a. Find the procedures (ROUTINETYPE is ’P’) from the catalog

(SYSCAT.ROUTINES), where the ROUTINENAME matches the
specified procedure-name, and the ROUTINESCHEMA is a
schema name in the SQL path (CURRENT PATH special
register). If the schema name is explicitly specified, the SQL
path is ignored, and only procedures with the specified schema
name are considered.

b. Next, eliminate any of these procedures that do not have the
same number of parameters as the number of arguments
specified in the CALL statement.

c. Chose the remaining procedure that is earliest in the SQL path.

If a procedure is selected, DB2 will invoke the procedure defined
by the external name.

2. If no matching procedure was found, procedure-name is used both
as the name of the stored procedure library, and the function name
within that library. For example, if procedure-name is proclib, the
DB2 server will load the stored procedure library named proclib
and execute the function routine proclib() within that library.

CALL invoked from a compiled statement

878 SQL Reference, Volume 1

In UNIX-based systems, the default directory for stored procedure
libraries is sqllib/function. The default directory for unfenced
stored procedures is sqllib/function/unfenced.
In Windows-based systems, the default directory for stored
procedure libraries is sqllib\function. The default directory for
unfenced stored procedures is sqllib\function\unfenced.

If the library or function could not be found, an error is returned
(SQLSTATE 42884).

procedure-library!function-name
The exclamation character (!) acts as a delimiter between the library
name and the function name of the stored procedure. For example, if
proclib!func is specified, proclib is loaded into memory, and the
function func from that library is executed. This allows multiple
functions to be placed in the same stored procedure library.

The stored procedure library is located in the directories or specified
in the LIBPATH variable, as described in procedure-name.

absolute-path!function-name
The absolute-path specifies the complete path to the stored procedure
library.

In a UNIX-based system, for example, if /u/terry/proclib!func is
specified, the stored procedure library proclib is obtained from the
directory /u/terry, and the function func from that library is
executed.

In all of these cases, the total length of the procedure name, including its
implicit or explicit full path, must not be longer than 254 bytes.

(host-variable,...)
Each specification of host-variable is a parameter of the CALL statement.
The nth parameter of the CALL corresponds to the nth parameter of the
server’s stored procedure.

Each host-variable is assumed to be used for exchanging data in both
directions between client and server. To avoid sending unnecessary data
between client and server, the client application should provide an
indicator variable with each parameter, and set the indicator to -1 if the
parameter is not used to transmit data to the stored procedure. The stored
procedure should set the indicator variable to -128 for any parameter that
is not used to return data to the client application.

If the server is DB2 Universal Database, the parameters must have
matching data types in both the client and server program.

CALL invoked from a compiled statement

Appendix O. CALL invoked from a compiled statement 879

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables. The nth SQLVAR element corresponds to the nth parameter of
the server’s stored procedure.

Before the CALL statement is processed, the application must set the
following fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables. The

following fields of each Base SQLVAR element passed must be
initialized:
– SQLTYPE
– SQLLEN
– SQLDATA
– SQLIND

The following fields of each Secondary SQLVAR element passed must
be initialized:
– LEN.SQLLONGLEN
– SQLDATALEN
– SQLDATATYPE_NAME

The SQLDA is assumed to be used for exchanging data in both directions
between client and server. To avoid sending unnecessary data between
client and server, the client application should set the SQLIND field to -1
if the parameter is not used to transmit data to the stored procedure. The
stored procedure should set the SQLIND field -128 for any parameter that
is not used to return data to the client application.

Notes:

v Use of Large Object (LOB) data types:
If the client and server application needs to specify LOB data from an
SQLDA, allocate double the number of SQLVAR entries.
LOB data types have been supported by stored procedures since DB2
Version 2. The LOB data types are not supported by all down level clients
or servers.

v Retrieving the RETURN_STATUS from an SQL procedure:

CALL invoked from a compiled statement

880 SQL Reference, Volume 1

If an SQL procedure successfully issues a RETURN statement with a status
value, this value is returned in the first SQLERRD field of the SQLCA. If
the CALL statement is issued in an SQL procedure, use the GET
DIAGNOSTICS statement to retrieve the RETURN_STATUS value. The
value is −1 if the SQLSTATE indicates an error.

v Returning result sets from stored procedures:
If the client application program is written using CLI, result sets can be
returned directly to the client application. The stored procedure indicates
that a result set is to be returned by declaring a cursor on that result set,
opening a cursor on the result set, and leaving the cursor open when
exiting the procedure.
At the end of a procedure:
– For every cursor that has been left open, a result set is returned to the

application.
– If more than one cursor is left open, the result sets are returned in the

order in which their cursors were opened.
– Only unread rows are passed back. For example, if the result set of a

cursor has 500 rows, and 150 of those rows have been read by the stored
procedure at the time the stored procedure is terminated, rows 151
through 500 will be returned to the stored procedure.

v Handling of special registers:
The settings of special registers for the caller are inherited by the stored
procedure on invocation, and restored upon return to the caller. Special
registers may be changed within a stored procedure, but these changes do
not affect the caller. This is not true for legacy stored procedures (those
defined with parameter style DB2DARI, or found in the default library),
where the changes made to special registers in a procedure become the
settings for the caller.

v Compatibilities:
There is a newer, preferred, form of the CALL statement that can be
embedded in an application (by precompiling the application with the
CALL_RESOLUTION IMMEDIATE option), or that can be dynamically
prepared.

Examples:

Example 1:

In C, invoke a procedure called TEAMWINS in the ACHIEVE library, passing
it a parameter stored in the host variable HV_ARGUMENT.

strcpy(HV_PROCNAME, "ACHIEVE!TEAMWINS");
CALL :HV_PROCNAME (:HV_ARGUMENT);

CALL invoked from a compiled statement

Appendix O. CALL invoked from a compiled statement 881

Example 2:

In C, invoke a procedure called :SALARY_PROC, using the SQLDA named
INOUT_SQLDA.

struct sqlda *INOUT_SQLDA;
/* Setup code for SQLDA variables goes here */
CALL :SALARY_PROC
USING DESCRIPTOR :*INOUT_SQLDA;

Example 3:

A Java stored procedure is defined in the database, using the following
statement:

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME ’parts!onhand’
LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL;

A Java application calls this stored procedure using the following code
fragment:

...
CallableStatement stpCall;

String sql = "CALL PARTS_ON_HAND (?,?,?)";

stpCall = con.prepareCall(sql) ; /* con is the connection */

stpCall.setInt(1, variable1) ;
stpCall.setBigDecimal(2, variable2) ;
stpCall.setInt(3, variable3) ;

stpCall.registerOutParameter(2, Types.DECIMAL, 2) ;
stpCall.registerOutParameter(3, Types.INTEGER) ;

stpCall.execute() ;

variable2 = stpCall.getBigDecimal(2) ;
variable3 = stpCall.getInt(3) ;
...

This application code fragment will invoke the Java method onhand in class
parts, because the procedure name specified on the CALL statement is found
in the database and has the external name ’parts!onhand’.

Related reference:

v “CALL statement” in the SQL Reference, Volume 2

CALL invoked from a compiled statement

882 SQL Reference, Volume 1

Appendix P. Japanese and traditional-Chinese extended
UNIX code (EUC) considerations

Extended UNIX Code (EUC) for Japanese and Traditional-Chinese defines a
set of encoding rules that can support from 1 to 4 character sets. In some
cases, such as Japanese EUC (eucJP) and Traditional-Chinese EUC (eucTW), a
character may be encoded using more than two bytes. Use of such an
encoding scheme has implications when used as the code page of the
database server or the database client. The key considerations involve the
following:
v Expansion or contraction of strings when converting between EUC code

pages and double-byte code pages
v Use of Universal Character Set-2 (UCS-2) as the code page for graphic data

stored in a database server defined with the eucJP (Japanese) or eucTW
(Traditional-Chinese) code pages.

With the exception of these considerations, the use of EUC is consistent with
the double-byte character set (DBCS) support. Throughout this book (and
others), references to double-byte have been changed to multi-byte to reflect
support for encoding rules that allow for character representations that require
more than 2 bytes. Detailed considerations for support of Japanese and
Traditional-Chinese EUC are included here. This information should be
considered by anyone using SQL with an EUC database server or an EUC
database client, and used in conjunction with application development
information.

Language elements

Characters
Each multi-byte character is considered a letter with the exception of the
double-byte blank character which is considered a special character.

Tokens
Multi-byte lowercase alphabetic letters are not folded to uppercase. This
differs from the single byte lowercase alphabetic letters in tokens which are
generally folded to uppercase.

Identifiers

SQL identifiers
Conversion between a double-byte code page and an EUC code page may
result in the conversion of double-byte characters to multi-byte characters
encoded with more than 2 bytes. As a result, an identifier that fits the length

© Copyright IBM Corp. 1993 - 2002 883

maximum in the double-byte code page may exceed the length in the EUC
code page. Selecting identifiers for this type of environment must be done
carefully to avoid expansion beyond the maximum identifier length.

Data types

Character strings
In an MBCS database, character strings may contain a mixture of characters
from a single-byte character set (SBCS) and from multi-byte character sets
(MBCS). When using such strings, operations may provide different results if
they are character based (treat the data as characters) or byte based (treat the
data as bytes). Check the function or operation description to determine how
mixed strings are processed.

Graphic strings
A graphic string is defined as a sequence of double-byte character data. In
order to allow Japanese or Traditional-Chinese EUC data to be stored in
graphic columns, EUC characters are encoded in UCS-2. Characters that are
not double-byte characters under all supported encoding schemes (for
example, PC or EBCDIC DBCS) should not be used with graphic columns.
The results of using other than double-byte characters may result in
replacement by substitution characters during conversion. Retrieval of such
data will not return the same value as was entered.

Assignments and comparisons

String assignments: Conversion of a string is performed prior to the
assignment. In cases involving an eucJP/eucTW code page and a DBCS code
page, a character string may become longer (DBCS to eucJP/eucTW) or
shorter (eucJP/eucTW to DBCS). This may result in errors on storage
assignment and truncation on retrieval assignment. When the error on storage
assignment is due to expansion during conversion, SQLSTATE 22524 is
returned instead of SQLSTATE 22001.

Similarly, assignments involving graphic strings may result in the conversion
of a UCS-2 encoded double-byte character to a substitution character in a PC
or EBCDIC DBCS code page for characters that do not have a corresponding
double-byte character. Assignments that replace characters with substitution
characters will indicate this by setting the SQLWARN10 field of the SQLCA to
’W’.

In cases of truncation during retrieval assignment involving multi-byte
character strings, the point of truncation may be part of a multi-byte character.
In this case, each byte of the character fragment is replaced with a single-byte
blank. This means that more than one single-byte blank may appear at the
end of a truncated character string.

SQL identifiers

884 SQL Reference, Volume 1

String comparisons: String comparisons are performed on a byte basis.
Character strings also use the collating sequence defined for the database.
Graphic strings do not use the collating sequence and, in an eucJP or eucTW
database, are encoded using UCS-2. Thus, the comparison of two mixed
character strings may have a different result from the comparison of two
graphic strings even though they contain the same characters. Similarly, the
resulting sort order of a mixed character column and a graphic column may
be different.

Rules for result data types
The resulting data type for character strings is not affected by the possible
expansion of the string. For example, a union of two CHAR operands will still
be a CHAR. However, if one of the character string operands will be
converted such that the maximum expansion makes the length attribute the
largest of the two operands, then the resulting character string length attribute
is affected. For example, consider the result expressions of a CASE expression
that have data types of VARCHAR(100) and VARCHAR(120). Assume the
VARCHAR(100) expression is a mixed string host variable (that may require
conversion) and the VARCHAR(120) expression is a column in the eucJP
database. The resulting data type is VARCHAR(200) since the VARCHAR(100)
is doubled to allow for possible conversion. The same scenario without the
involvement of an eucJP or eucTW database would have a result type of
VARCHAR(120).

Notice that the doubling of the host variable length is based on the fact that
the database server is Japanese EUC or Traditional-Chinese EUC. Even if the
client is also eucJP or eucTW, the doubling is still applied. This allows the
same application package to be used by double-byte or multi-byte clients.

Rules for string conversions
The types of operations listed in the corresponding section of the SQL
Reference may convert operands to either the application or the database code
page.

If such operations are done in a mixed code page environment that includes
Japanese or Traditional-Chinese EUC, expansion or contraction of mixed
character string operands can occur. Therefore, the resulting data type has a
length attribute that accommodates the maximum expansion, if possible. In
cases where there are restrictions on the length attribute of the data type, the
maximum allowed length for the data type is used. For example in an
environment where maximum growth is double, a VARCHAR(200) host
variable is treated as if it is a VARCHAR(400), but CHAR(200) host variable is
treated as if it is a CHAR(254). A run-time error may occur when conversion
is performed if the converted string would exceed the maximum length for
the data type. For example, the union of CHAR(200) and CHAR(10) would

String comparisons

Appendix P. Japanese and traditional-Chinese extended UNIX code (EUC) considerations 885

have a result type of CHAR(254). When the value from the left side of the
UNION is converted, if more than 254 characters are required, an error occurs.

In some cases, allowing for the maximum growth for conversion will cause
the length attribute to exceed a limit. For example, UNION only allows
columns up to 254 bytes. Thus, a query with a union that included a host
variable in the column list (call it :hv1) that was a DBCS mixed character
string defined as a varying length character string 128 bytes long, would set
the data type to VARCHAR(256) resulting in an error preparing the query,
even though the query in the application does not appear to have any
columns greater than 254. In a situation where the actual string is not likely to
cause expansion beyond 254 bytes, the following can be used to prepare the
statement.

SELECT CAST(:hv1 CONCAT ’ AS VARCHAR(254)), C2 FROM T1
UNION
SELECT C1, C2 FROM T2

The concatenation of the null string with the host variable will force the
conversion to occur before the cast is done. This query can be prepared in the
DBCS to eucJP/eucTW environment although a truncation error may occur at
run time.

This technique (null string concat with cast) can be used to handle the similar
254-byte limit for SELECT DISTINCT or use of the column in ORDER BY or
GROUP BY clauses.

Constants

Graphic string constants
Japanese or Traditional-Chinese EUC client, may contain single or multi-byte
characters (like a mixed character string). The string should not contain more
than 2 000 characters. It is recommended that only characters that convert to
double-byte characters in all related PC and EBCDIC double-byte code pages
be used in graphic constants. A graphic string constant in an SQL statement is
converted from the client code page to the double-byte encoding at the
database server. For a Japanese or Traditional-Chinese EUC server, the
constant is converted to UCS-2, the double-byte encoding used for graphic
strings. For a double-byte server, the constant is converted from the client
code page to the DBCS code page of the server.

Functions
The design of user-defined functions should consider the impact of
supporting Japanese or Tradition-Chinese EUC on the parameter data types.
One part of function resolution considers the data types of the arguments to a
function call. Mixed character string arguments involving a Japanese or
Traditional-Chinese EUC client may require additional bytes to specify the
argument. This may require that the data type change to allow the increased

Rules for string conversions

886 SQL Reference, Volume 1

length. For example, it may take 4001 bytes to represent a character string in
the application (a LONG VARCHAR) that fits into a VARCHAR(4000) string
at the server. If a function signature is not included that allows the argument
to be a LONG VARCHAR, function resolution will fail to find a function.

Some functions exist that do not allow long strings for various reasons. Use of
LONG VARCHAR or CLOB arguments with such functions will not succeed.
For example, LONG VARCHAR as the second argument of the built-in
POSSTR function, will fail function resolution (SQLSTATE 42884).

Expressions

With the concatenation operator
The potential expansion of one of the operands of concatenation may cause
the data type and length of concatenated operands to change when in an
environment that includes a Japanese or Traditional-Chinese EUC database
server. For example, with an EUC server where the value from a host variable
may double in length, consider the following example.

CHAR200 CONCAT :char50

The column CHAR200 is of type CHAR(200). The host variable char50 is
defined as CHAR(50). The result type for this concatenation operation would
normally be CHAR(250). However, given an eucJP or eucTW database server,
the assumption is that the string may expand to double the length. Hence
char50 is treated as a CHAR(100) and the resulting data type is
VARCHAR(300). Note that even though the result is a VARCHAR, it will
always have 300 bytes of data including trailing blanks. If the extra trailing
blanks are not desired, define the host variable as VARCHAR(50) instead of
CHAR(50).

Predicates

LIKE predicate
For a LIKE predicate involving mixed character strings in an EUC database:
v A single-byte underscore represents any one single-byte character.
v A single-byte percent represents a string of zero or more characters

(single-byte or multi-byte characters).
v A double-byte underscore represents any one multi-byte character.
v A double-byte percent represents a string of zero or more characters

(single-byte or multi-byte characters).

The escape character must be one single-byte character or one double-byte
character.

Note that use of the underscore character may produce different results,
depending on the code page of the LIKE operation. For example, Katakana

Functions

Appendix P. Japanese and traditional-Chinese extended UNIX code (EUC) considerations 887

characters in Japanese EUC are multi-byte characters (CS2) but in the Japanese
DBCS code page they are single-byte characters. A query with the single-byte
underscore in the pattern-expression would return occurrences of Katakana
character in the position of the underscore from a Japanese DBCS server.
However, the same rows from the equivalent table in a Japanese EUC server
would not be returned, since the Katakana characters will only match with a
double-byte underscore.

For a LIKE predicate involving graphic strings in an EUC database:
v The character used for underscore and percent must map to the underscore

and percent character, respectively.
v The underscore represents any one UCS-2 character.
v Percent represents a string of zero or more UCS-2 characters.

Functions

LENGTH
The processing of this function is no different for mixed character strings in
an EUC environment. The value returned is the length of the string in the
code page of the argument. As of Version 8, if the argument is a host variable,
the value returned is the length of the string in the database code page. When
using this function to determine the length of a value, careful consideration
should be given to how the length is used. This is especially true for mixed
string constants since the length is given in bytes, not characters. For example,
the length of a mixed string column in a DBCS database returned by the
LENGTH function may be less than the length of the retrieved value of that
column on an eucJP or eucTW client due to the conversion of some DBCS
characters to multi-byte eucJP or eucTW characters.

SUBSTR
The SUBSTR function operates on mixed character strings on a byte basis. The
resulting string may therefore include fragments of multi-byte characters at
the beginning or end of the resulting string. No processing is provided to
detect or process fragments of characters.

TRANSLATE
The TRANSLATE function supports mixed character strings including
multi-byte characters. The corresponding characters of the to-string-exp and the
from-string-exp must have the same number of bytes and cannot end with part
of a multi-byte character.

The pad-char-exp must result in a single-byte character when the char-string-exp
is a character string. Since TRANSLATE is performed in the code page of the
char-string-exp, the pad-char-exp may be converted from a multi-byte character
to a single-byte character.

LIKE predicate

888 SQL Reference, Volume 1

A char-string-exp that ends with part of a multi-byte character will not have
those bytes translated.

VARGRAPHIC
The VARGRAPHIC function on a character string operand in a Japanese or
Traditional-Chinese EUC code page returns a graphic string in the UCS-2 code
page.
v Single-byte characters are converted first to their corresponding double-byte

character in the code set to which they belong (eucJP or eucTW). Then they
are converted to the corresponding UCS-2 representation. If there is no
double-byte representation, the character is converted to the double-byte
substitution character defined for that code set before being converted to
UCS-2 representation.

v Characters from eucJP that are Katakana (eucJP CS2) are actually single
byte characters in some encoding schemes. They are thus converted to
corresponding double-byte characters in eucJP or to the double-byte
substitution character before converting to UCS-2.

v Multi-byte characters are converted to their UCS-2 representations.

Statements

CONNECT
The processing of a successful CONNECT statement returns information in
the SQLCA that is important when the possibility exists for applications to
process data in an environment that includes a Japanese or
Traditional-Chinese EUC code page at the client or server. The SQLERRD(1)
field gives the maximum expansion of a mixed character string when
converted from the application code page to the database code page. The
SQLERRD(2) field gives the maximum expansion of a mixed character string
when converted from the database code page to the application code page.
The value is positive if expansion could occur and negative if contraction
could occur. If the value is negative, the value is always -1 since the worst
case is that no contraction occurs and the full length of the string is required
after conversion. Positive values may be as large as 2, meaning that in the
worst case, double the string length may be required for the character string
after conversion.

The code page of the application server and the application client are also
available in the SQLERRMC field of the SQLCA.

PREPARE
The data types determined for untyped parameter markers are not changed in
an environment that includes Japanese or Traditional-Chinese EUC. As a
result, it may be necessary in some cases to use typed parameter markers to

TRANSLATE

Appendix P. Japanese and traditional-Chinese extended UNIX code (EUC) considerations 889

provide sufficient length for mixed character strings in eucJP or eucTW. For
example, consider an insert to a CHAR(10) column. Preparing the statement:

INSERT INTO T1 (CH10) VALUES (?)

would result in a data type of CHAR(10) for the parameter marker. If the
client was eucJP or eucTW, more than 10 bytes may be required to represent
the string to be inserted but the same string in the DBCS code page of the
database is not more than 10 bytes. In this case, the statement to prepare
should include a typed parameter marker with a length greater than 10. Thus,
preparing the statement:

INSERT INTO T1 (CH10) VALUES (CAST(? AS VARCHAR(20))

would result in a data type of VARCHAR(20) for the parameter marker.

Related reference:

v “PREPARE statement” in the SQL Reference, Volume 2

PREPARE

890 SQL Reference, Volume 1

Appendix Q. Backus-Naur form (BNF) specifications for
DATALINKs

A DATALINK value is an encapsulated value that contains a logical reference
from the database to a file stored outside the database.

The data location attribute of this encapsulated value is a logical reference to a
file in the form of a uniform resource locator (URL). The value of this
attribute conforms to the syntax for URLs as specified by the following BNF,
based on RFC 1738 : Uniform Resource Locators (URL), T. Berners-Lee, L.
Masinter, M. McCahill, December 1994. (BNF is an acronym for ″Backus-Naur
Form″, a formal notation to describe the syntax of a given language.)

The following conventions are used in the BNF specification:
v "|" is used to designate alternatives
v brackets [] are used around optional or repeated elements
v literals are quoted with ""
v elements may be preceded with [n]* to designate n or more repetitions of

the following element; if n is not specified, the default is 0

The BNF specification for DATALINKs:
URL
url = httpurl | fileurl | uncurl | dfsurl | emptyurl

HTTP
httpurl = "http://" hostport ["/" hpath]
hpath = hsegment *["/" hsegment]
hsegment = *[uchar | ";" | ":" | "@" | "&" | "="]

Note that the search element from the original BNF in RFC1738 has been
removed, because it is not an essential part of the file reference and does
not make sense in DATALINKs context.
FILE
fileurl = "file://" host "/" fpath
fpath = fsegment *["/" fsegment]
fsegment = *[uchar | "?" | ":" | "@" | "&" | "="]

Note that host is not optional and the ″localhost″ string does not have
any special meaning, in contrast with RFC1738. This avoids confusing
interpretations of ″localhost″ in client/server and partitioned database
configurations.
UNC

© Copyright IBM Corp. 1993 - 2002 891

uncurl = "unc:\\" hostname "\" sharename "\" uncpath
sharename = *uchar
uncpath = fsegment *["\" fsegment]

Supports the commonly used UNC naming convention on Windows. This
is not a standard scheme in RFC1738.
DFS
dfsurl = "dfs://.../" cellname "/" fpath
cellname = hostname

Supports the DFS naming scheme. This is not a standard scheme in
RFC1738.
EMPTYURL
emptyurl = ""
hostport = host [":" port]
host = hostname | hostnumber
hostname = *[domainlabel "."] toplabel
domainlabel = alphadigit | alphadigit *[alphadigit | "-"] alphadigit
toplabel = alpha | alpha *[alphadigit | "-"] alphadigit
alphadigit = alpha | digit
hostnumber = digits "." digits "." digits "." digits
port = digits

Empty (zero-length) URLs are also supported for DATALINK values.
These are useful to update DATALINK columns when reconcile exceptions
are reported and non-nullable DATALINK columns are involved. A
zero-length URL is used to update the column and cause a file to be
unlinked.
Miscellaneous Definitions
lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
"y" | "z"

hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
"I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
"Y" | "Z"

alpha = lowalpha | hialpha
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"
safe = "$" | "-" | "_" | "." | "+"
extra = "!" | "*" | "'" | "(" | ")" | ","
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f"
escape = "%" hex hex
unreserved = alpha | digit | safe | extra
uchar = unreserved | escape
digits = 1*digit

Backus-Naur form (BNF) specifications for DATALINKs

892 SQL Reference, Volume 1

Leading and trailing blank characters are trimmed by DB2 while parsing.
Also, the scheme names (’HTTP’, ’FILE’, ’UNC’, ’DFS’) and host are
case-insensitive, and are always stored in the database in uppercase.

Backus-Naur form (BNF) specifications for DATALINKs

Appendix Q. Backus-Naur form (BNF) specifications for DATALINKs 893

894 SQL Reference, Volume 1

Appendix R. DB2 Universal Database technical information

Overview of DB2 Universal Database technical information

DB2 Universal Database technical information can be obtained in the
following formats:
v Books (PDF and hard-copy formats)
v A topic tree (HTML format)
v Help for DB2 tools (HTML format)
v Sample programs (HTML format)
v Command line help
v Tutorials

This section is an overview of the technical information that is provided and
how you can access it.

Categories of DB2 technical information
The DB2 technical information is categorized by the following headings:
v Core DB2 information
v Administration information
v Application development information
v Business intelligence information
v DB2 Connect information
v Getting started information
v Tutorial information
v Optional component information
v Release notes

The following tables describe, for each book in the DB2 library, the
information needed to order the hard copy, print or view the PDF, or locate
the HTML directory for that book. A full description of each of the books in
the DB2 library is available from the IBM Publications Center at
www.ibm.com/shop/publications/order

The installation directory for the HTML documentation CD differs for each
category of information:
htmlcdpath/doc/htmlcd/%L/category

where:

© Copyright IBM Corp. 1993 - 2002 895

http://www.ibm.com/shop/publications/order

v htmlcdpath is the directory where the HTML CD is installed.
v %L is the language identifier. For example, en_US.
v category is the category identifier. For example, core for the core DB2

information.

In the PDF file name column in the following tables, the character in the sixth
position of the file name indicates the language version of a book. For
example, the file name db2d1e80 identifies the English version of the
Administration Guide: Planning and the file name db2d1g80 identifies the
German version of the same book. The following letters are used in the sixth
position of the file name to indicate the language version:

Language Identifier
Arabic w
Brazilian Portuguese b
Bulgarian u
Croatian 9
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Romanian 8
Russian r
Simp. Chinese c
Slovakian 7
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

No form number indicates that the book is only available online and does not
have a printed version.

896 SQL Reference, Volume 1

Core DB2 information
The information in this category cover DB2 topics that are fundamental to all
DB2 users. You will find the information in this category useful whether you
are a programmer, a database administrator, or you work with DB2 Connect,
DB2 Warehouse Manager, or other DB2 products.

The installation directory for this category is doc/htmlcd/%L/core.

Table 182. Core DB2 information

Name Form Number PDF File Name

IBM DB2 Universal Database
Command Reference

SC09-4828 db2n0x80

IBM DB2 Universal Database
Glossary

No form number db2t0x80

IBM DB2 Universal Database
Master Index

SC09-4839 db2w0x80

IBM DB2 Universal Database
Message Reference, Volume 1

GC09-4840 db2m1x80

IBM DB2 Universal Database
Message Reference, Volume 2

GC09-4841 db2m2x80

IBM DB2 Universal Database
What’s New

SC09-4848 db2q0x80

Administration information
The information in this category covers those topics required to effectively
design, implement, and maintain DB2 databases, data warehouses, and
federated systems.

The installation directory for this category is doc/htmlcd/%L/admin.

Table 183. Administration information

Name Form number PDF file name

IBM DB2 Universal Database
Administration Guide:
Planning

SC09-4822 db2d1x80

IBM DB2 Universal Database
Administration Guide:
Implementation

SC09-4820 db2d2x80

IBM DB2 Universal Database
Administration Guide:
Performance

SC09-4821 db2d3x80

IBM DB2 Universal Database
Administrative API Reference

SC09-4824 db2b0x80

Appendix R. DB2 Universal Database technical information 897

Table 183. Administration information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Data Movement Utilities Guide
and Reference

SC09-4830 db2dmx80

IBM DB2 Universal Database
Data Recovery and High
Availability Guide and
Reference

SC09-4831 db2hax80

IBM DB2 Universal Database
Data Warehouse Center
Administration Guide

SC27-1123 db2ddx80

IBM DB2 Universal Database
Federated Systems Guide

GC27-1224 db2fpx80

IBM DB2 Universal Database
Guide to GUI Tools for
Administration and
Development

SC09-4851 db2atx80

IBM DB2 Universal Database
Replication Guide and Reference

SC27-1121 db2e0x80

IBM DB2 Installing and
Administering a Satellite
Environment

GC09-4823 db2dsx80

IBM DB2 Universal Database
SQL Reference, Volume 1

SC09-4844 db2s1x80

IBM DB2 Universal Database
SQL Reference, Volume 2

SC09-4845 db2s2x80

IBM DB2 Universal Database
System Monitor Guide and
Reference

SC09-4847 db2f0x80

Application development information
The information in this category is of special interest to application developers
or programmers working with DB2. You will find information about
supported languages and compilers, as well as the documentation required to
access DB2 using the various supported programming interfaces, such as
embedded SQL, ODBC, JDBC, SQLj, and CLI. If you view this information
online in HTML you can also access a set of DB2 sample programs in HTML.

898 SQL Reference, Volume 1

The installation directory for this category is doc/htmlcd/%L/ad.

Table 184. Application development information

Name Form number PDF file name

IBM DB2 Universal Database
Application Development
Guide: Building and Running
Applications

SC09-4825 db2axx80

IBM DB2 Universal Database
Application Development
Guide: Programming Client
Applications

SC09-4826 db2a1x80

IBM DB2 Universal Database
Application Development
Guide: Programming Server
Applications

SC09-4827 db2a2x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 1

SC09-4849 db2l1x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 2

SC09-4850 db2l2x80

IBM DB2 Universal Database
Data Warehouse Center
Application Integration Guide

SC27-1124 db2adx80

IBM DB2 XML Extender
Administration and
Programming

SC27-1234 db2sxx80

Business intelligence information
The information in this category describes how to use components that
enhance the data warehousing and analytical capabilities of DB2 Universal
Database.

The installation directory for this category is doc/htmlcd/%L/wareh.

Table 185. Business intelligence information

Name Form number PDF file name

IBM DB2 Warehouse Manager
Information Catalog Center
Administration Guide

SC27-1125 db2dix80

IBM DB2 Warehouse Manager
Installation Guide

GC27-1122 db2idx80

Appendix R. DB2 Universal Database technical information 899

DB2 Connect information
The information in this category describes how to access host or iSeries data
using DB2 Connect Enterprise Edition or DB2 Connect Personal Edition.

The installation directory for this category is doc/htmlcd/%L/conn.

Table 186. DB2 Connect information

Name Form number PDF file name

APPC, CPI-C, and SNA Sense
Codes

No form number db2apx80

IBM Connectivity Supplement No form number db2h1x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Enterprise Edition

GC09-4833 db2c6x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Personal Edition

GC09-4834 db2c1x80

IBM DB2 Connect User’s
Guide

SC09-4835 db2c0x80

Getting started information
The information in this category is useful when you are installing and
configuring servers, clients, and other DB2 products.

The installation directory for this category is doc/htmlcd/%L/start.

Table 187. Getting started information

Name Form number PDF file name

IBM DB2 Universal Database
Quick Beginnings for DB2
Clients

GC09-4832 db2itx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Servers

GC09-4836 db2isx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Personal Edition

GC09-4838 db2i1x80

IBM DB2 Universal Database
Installation and Configuration
Supplement

GC09-4837 db2iyx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Data Links Manager

GC09-4829 db2z6x80

900 SQL Reference, Volume 1

Tutorial information
Tutorial information introduces DB2 features and teaches how to perform
various tasks.

The installation directory for this category is doc/htmlcd/%L/tutr.

Table 188. Tutorial information

Name Form number PDF file name

Business Intelligence Tutorial:
Introduction to the Data
Warehouse

No form number db2tux80

Business Intelligence Tutorial:
Extended Lessons in Data
Warehousing

No form number db2tax80

Development Center Tutorial
for Video Online using
Microsoft Visual Basic

No form number db2tdx80

Information Catalog Center
Tutorial

No form number db2aix80

Video Central for e-business
Tutorial

No form number db2twx80

Visual Explain Tutorial No form number db2tvx80

Optional component information
The information in this category describes how to work with optional DB2
components.

The installation directory for this category is doc/htmlcd/%L/opt.

Table 189. Optional component information

Name Form number PDF file name

IBM DB2 Life Sciences Data
Connect Planning, Installation,
and Configuration Guide

GC27-1235 db2lsx80

IBM DB2 Spatial Extender
User’s Guide and Reference

SC27-1226 db2sbx80

IBM DB2 Universal Database
Data Links Manager
Administration Guide and
Reference

SC27-1221 db2z0x80

Appendix R. DB2 Universal Database technical information 901

Table 189. Optional component information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Net Search Extender
Administration and
Programming Guide
Note: HTML for this
document is not installed
from the HTML
documentation CD.

SH12-6740 N/A

Release notes
The release notes provide additional information specific to your product’s
release and FixPak level. They also provides summaries of the documentation
updates incorporated in each release and FixPak.

Table 190. Release notes

Name Form number PDF file name HTML directory

DB2 Release Notes See note. See note. doc/prodcd/%L/db2ir

where %L is the
language identifier.

DB2 Connect Release
Notes

See note. See note. doc/prodcd/%L/db2cr

where %L is the
language identifier.

DB2 Installation Notes Available on
product CD-ROM
only.

Available on
product CD-ROM
only.

Note: The HTML version of the release notes is available from the
Information Center and on the product CD-ROMs. To view the ASCII
file:
v On UNIX-based platforms, see the Release.Notes file. This file is

located in the DB2DIR/Readme/%L directory, where %L represents
the locale name and DB2DIR represents:
– /usr/opt/db2_08_01 on AIX
– /opt/IBM/db2/V8.1 on all other UNIX operating systems

v On other platforms, see the RELEASE.TXT file. This file is located in
the directory where the product is installed.

Related tasks:

v “Printing DB2 books from PDF files” on page 903

902 SQL Reference, Volume 1

v “Ordering printed DB2 books” on page 904
v “Accessing online help” on page 904
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 908
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 909

Printing DB2 books from PDF files

You can print DB2 books from the PDF files on the DB2 PDF Documentation
CD. Using Adobe Acrobat Reader, you can print either the entire book or a
specific range of pages.

Prerequisites:

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at www.adobe.com

Procedure:

To print a DB2 book from a PDF file:
1. Insert the DB2 PDF Documentation CD. On UNIX operating systems,

mount the DB2 PDF Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:

v On Windows operating systems:
x:\doc\language directory, where x represents the CD-ROM drive letter
and language represents the two-character territory code that represents
your language (for example, EN for English).

v On UNIX operating systems:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

Related tasks:

v “Ordering printed DB2 books” on page 904
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 908
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 909

Related reference:

Appendix R. DB2 Universal Database technical information 903

http://www.adobe.com/

v “Overview of DB2 Universal Database technical information” on page 895

Ordering printed DB2 books

Procedure:

To order printed books:
v Contact your IBM authorized dealer or marketing representative. To find a

local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com/shop/planetwide

v Phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.
v Visit the IBM Publications Center at

www.ibm.com/shop/publications/order

Related tasks:

v “Printing DB2 books from PDF files” on page 903
v “Finding topics by accessing the DB2 Information Center from a browser”

on page 906
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 909

Related reference:

v “Overview of DB2 Universal Database technical information” on page 895

Accessing online help

The online help that comes with all DB2 components is available in three
types:
v Window and notebook help
v Command line help
v SQL statement help

Window and notebook help explain the tasks that you can perform in a
window or notebook and describe the controls. This help has two types:
v Help accessible from the Help button
v Infopops

The Help button gives you access to overview and prerequisite information.
The infopops describe the controls in the window or notebook. Window and
notebook help are available from DB2 centers and components that have user
interfaces.

904 SQL Reference, Volume 1

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

Command line help includes Command help and Message help. Command
help explains the syntax of commands in the command line processor.
Message help describes the cause of an error message and describes any
action you should take in response to the error.

SQL statement help includes SQL help and SQLSTATE help. DB2 returns an
SQLSTATE value for conditions that could be the result of an SQL statement.
SQLSTATE help explains the syntax of SQL statements (SQL states and class
codes).

Note: SQL help is not available for UNIX operating systems.

Procedure:

To access online help:
v For window and notebook help, click Help or click that control, then click

F1. If the Automatically display infopops check box on the General page
of the Tool Settings notebook is selected, you can also see the infopop for a
particular control by holding the mouse cursor over the control.

v For command line help, open the command line processor and enter:
– For Command help:

? command

where command represents a keyword or the entire command.

For example, ? catalog displays help for all the CATALOG commands,
while ? catalog database displays help for the CATALOG DATABASE
command.

v For Message help:
? XXXnnnnn

where XXXnnnnn represents a valid message identifier.

For example, ? SQL30081 displays help about the SQL30081 message.
v For SQL statement help, open the command line processor and enter:

– For SQL help:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code
represents the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, while ? 08
displays help for the 08 class code.

– For SQLSTATE help:

Appendix R. DB2 Universal Database technical information 905

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the SELECT statement.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 906

v “Viewing technical documentation online directly from the DB2 HTML
Documentation CD” on page 909

Finding topics by accessing the DB2 Information Center from a browser

The DB2 Information Center accessed from a browser enables you to access
the information you need to take full advantage of DB2 Universal Database
and DB2 Connect. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, metadata,
Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser is composed of the
following major elements:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topics, the glossary,
and the master index in the DB2 Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. The navigation toolbar contains buttons that enable you to
search the DB2 Information Center, hide the navigation tree, and find
the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. The content frame displays topics from the DB2 Information
Center when you click on a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index.

Prerequisites:

To access the DB2 Information Center from a browser, you must use one of
the following browsers:
v Microsoft Explorer, version 5 or later
v Netscape Navigator, version 6.1 or later

906 SQL Reference, Volume 1

Restrictions:

The DB2 Information Center contains only those sets of topics that you chose
to install from the DB2 HTML Documentation CD. If your Web browser returns
a File not found error when you try to follow a link to a topic, you must
install one or more additional sets of topics DB2 HTML Documentation CD.

Procedure:

To find a topic by searching with keywords:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

To find a topic in the navigation tree:
1. In the navigation tree, click the book icon of the category of topics related

to your area of interest. A list of subcategories displays underneath the
icon.

2. Continue to click the book icons until you find the category containing
the topics in which you are interested. Categories that link to topics
display the category title as an underscored link when you move the
cursor over the category title. The navigation tree identifies topics with a
page icon.

3. Click the topic link. The topic displays in the content frame.

To find a topic or term in the master index:
1. In the navigation tree, click the “Index” category. The category expands to

display a list of links arranged in alphabetical order in the navigation tree.
2. In the navigation tree, click the link corresponding to the first character of

the term relating to the topic in which you are interested. A list of terms
with that initial character displays in the content frame. Terms that have
multiple index entries are identified by a book icon.

3. Click the book icon corresponding to the term in which you are
interested. A list of subterms and topics displays below the term you
clicked. Topics are identified by page icons with an underscored title.

4. Click on the title of the topic that meets your needs. The topic displays in
the content frame.

Appendix R. DB2 Universal Database technical information 907

Related concepts:

v “Accessibility” on page 915
v “DB2 Information Center for topics” on page 917

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 908

v “Updating the HTML documentation installed on your machine” on page
910

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
912

v “Searching the DB2 documentation” on page 913

Related reference:

v “Overview of DB2 Universal Database technical information” on page 895

Finding product information by accessing the DB2 Information Center from the
administration tools

The DB2 Information Center provides quick access to DB2 product
information and is available on all operating systems for which the DB2
administration tools are available.

The DB2 Information Center accessed from the tools provides six types of
information.

Tasks Key tasks you can perform using DB2.

Concepts
Key concepts for DB2.

Reference
DB2 reference information, such as keywords, commands, and APIs.

Troubleshooting
Error messages and information to help you with common DB2
problems.

Samples
Links to HTML listings of the sample programs provided with DB2.

Tutorials
Instructional aid designed to help you learn a DB2 feature.

Prerequisites:

908 SQL Reference, Volume 1

Some links in the DB2 Information Center point to Web sites on the Internet.
To display the content for these links, you will first have to connect to the
Internet.

Procedure:

To find product information by accessing the DB2 Information Center from
the tools:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Click the tab of the information type related to the information you are

attempting to find.
3. Navigate through the tree and click on the topic in which you are

interested. The Information Center will then launch a Web browser to
display the information.

4. To find information without browsing the lists, click the Search icon to the
right of the list.
Once the Information Center has launched a browser to display the
information, you can perform a full-text search by clicking the Search icon
in the navigation toolbar.

Related concepts:

v “Accessibility” on page 915
v “DB2 Information Center for topics” on page 917

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 906

v “Searching the DB2 documentation” on page 913

Viewing technical documentation online directly from the DB2 HTML
Documentation CD

All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without having to install it.

Restrictions:

Appendix R. DB2 Universal Database technical information 909

Because the following items are installed from the DB2 product CD and not
the DB2 HTML Documentation CD, you must install the DB2 product to view
these items:
v Tools help
v DB2 Quick Tour
v Release notes

Procedure:

1. Insert the DB2 HTML Documentation CD. On UNIX operating systems,
mount the DB2 HTML Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start your HTML browser and open the appropriate file:
v For Windows operating systems:

e:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where e represents the CD-ROM drive, and %L is the locale of the
documentation that you wish to use, for example, en_US for English.

v For UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where /cdrom/ represents where the CD is mounted, and %L is the locale
of the documentation that you wish to use, for example, en_US for
English.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 906

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 912

Related reference:

v “Overview of DB2 Universal Database technical information” on page 895

Updating the HTML documentation installed on your machine

It is now possible to update the HTML installed from the DB2 HTML
Documentation CD when updates are made available from IBM. This can be
done in one of two ways:
v Using the Information Center (if you have the DB2 administration GUI

tools installed).
v By downloading and applying a DB2 HTML documentation FixPak .

910 SQL Reference, Volume 1

Note: This will NOT update the DB2 code; it will only update the HTML
documentation installed from the DB2 HTML Documentation CD.

Procedure:

To use the Information Center to update your local documentation:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Ensure your machine has access to the external Internet; the updater will

download the latest documentation FixPak from the IBM server if
required.

3. Select Information Center —> Update Local Documentation from the
menu to start the update.

4. Supply your proxy information (if required) to connect to the external
Internet.

The Information Center will download and apply the latest documentation
FixPak, if one is available.

To manually download and apply the documentation FixPak :
1. Ensure your machine is connected to the Internet.
2. Open the DB2 support page in your Web browser at:

www.ibm.com/software/data/db2/udb/winos2unix/support
3. Follow the link for version 8 and look for the ″Documentation FixPaks″

link.
4. Determine if the version of your local documentation is out of date by

comparing the documentation FixPak level to the documentation level you
have installed. This current documentation on your machine is at the
following level: DB2 v8.1 GA.

5. If there is a more recent version of the documentation available then
download the FixPak applicable to your operating system. There is one
FixPak for all Windows platforms, and one FixPak for all UNIX platforms.

6. Apply the FixPak:
v For Windows operating systems: The documentation FixPak is a self

extracting zip file. Place the downloaded documentation FixPak in an
empty directory, and run it. It will create a setup command which you
can run to install the documentation FixPak.

v For UNIX operating systems: The documentation FixPak is a
compressed tar.Z file. Uncompress and untar the file. It will create a
directory named delta_install with a script called installdocfix. Run
this script to install the documentation FixPak.

Appendix R. DB2 Universal Database technical information 911

Related tasks:

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 912

Related reference:

v “Overview of DB2 Universal Database technical information” on page 895

Copying files from the DB2 HTML Documentation CD to a Web Server

The entire DB2 information library is delivered to you on the DB2 HTML
Documentation CD, so you can install the library on a Web server for easier
access. Simply copy to your Web server the documentation for the languages
that you want.

Procedure:

To copy files from the DB2 HTML Documentation CD to a Web server, use the
appropriate path:
v For Windows operating systems:

E:\Program Files\sqllib\doc\htmlcd\%L*.*

where E represents the CD-ROM drive and %L represents the language
identifier.

v For UNIX operating systems:
/cdrom:Program Files/sqllib/doc/htmlcd/%L/*.*

where cdrom represents the CD-ROM drive and %L represents the language
identifier.

Related tasks:

v “Searching the DB2 documentation” on page 913

Related reference:

v “Supported DB2 interface languages, locales, and code pages” in the Quick
Beginnings for DB2 Servers

v “Overview of DB2 Universal Database technical information” on page 895

Troubleshooting DB2 documentation search with Netscape 4.x

Most search problems are related to the Java support provided by web
browsers. This task describes possible workarounds.

Procedure:

912 SQL Reference, Volume 1

A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following workaround, especially if you see the
following line in the browser Java console:
Cannot find class java/security/InvalidParameterException

v On Windows operating systems:
From the DB2 HTML Documentation CD, copy the supplied x:Program
Files\sqllib\doc\htmlcd\locale\InvalidParameterException.class file to
the java\classes\java\security\ directory relative to your Netscape
browser installation, where x represents the CD-ROM drive letter and locale
represents the name of the desired locale.

Note: You may have to create the java\security\ subdirectory structure.
v On UNIX operating systems:

From the DB2 HTML Documentation CD, copy the supplied /cdrom/Program
Files/sqllib/doc/htmlcd/locale/InvalidParameterException.class file to
the java/classes/java/security/ directory relative to your Netscape
browser installation, where cdrom represents the mount point of the
CD-ROM and locale represents the name of the desired locale.

Note: You may have to create the java/security/ subdirectory structure.

If your Netscape browser still fails to display the search input window, try the
following:
v Stop all instances of Netscape browsers to ensure that there is no Netscape

code running on the machine. Then open a new instance of the Netscape
browser and try to start the search again.

v Purge the browser’s cache.
v Try a different version of Netscape, or a different browser.

Related tasks:

v “Searching the DB2 documentation” on page 913

Searching the DB2 documentation

To search DB2’s documentation, you need Netscape 6.1 or higher, or
Microsoft’s Internet Explorer 5 or higher. Ensure that your browser’s Java
support is enabled.

A pop-up search window opens when you click the search icon in the
navigation toolbar of the Information Center accessed from a browser. If you
are using the search for the first time it may take a minute or so to load into
the search window.

Restrictions:

Appendix R. DB2 Universal Database technical information 913

The following restrictions apply when you use the documentation search:
v Boolean searches are not supported. The boolean search qualifiers and and

or will be ignored in a search. For example, the following searches would
produce the same results:
– servlets and beans
– servlets or beans

v Wildcard searches are not supported. A search on java* will only look for
the literal string java* and would not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

To search the DB2 documentation:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

Note: When you perform a search, the first result is automatically loaded into
your browser frame. To view the contents of other search results, click
on the result in results lists.

Related tasks:

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
912

Online DB2 troubleshooting information

With the release of DB2® UDB Version 8, there will no longer be a
Troubleshooting Guide. The troubleshooting information once contained in this
guide has been integrated into the DB2 publications. By doing this, we are
able to deliver the most up-to-date information possible. To find information
on the troubleshooting utilities and functions of DB2, access the DB2
Information Center from any of the tools.

Refer to the DB2 Online Support site if you are experiencing problems and
want help finding possible causes and solutions. The support site contains a

914 SQL Reference, Volume 1

large, constantly updated database of DB2 publications, TechNotes, APAR
(product problem) records, FixPaks, and other resources. You can use the
support site to search through this knowledge base and find possible solutions
to your problems.

Access the Online Support site at
www.ibm.com/software/data/db2/udb/winos2unix/support, or by clicking
the Online Support button in the DB2 Information Center. Frequently
changing information, such as the listing of internal DB2 error codes, is now
also available from this site.

Related concepts:

v “DB2 Information Center for topics” on page 917

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 908

Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in DB2® Universal Database Version 8:
v DB2 allows you to operate all features using the keyboard instead of the

mouse. See “Keyboard Input and Navigation”.
v DB2 enables you customize the size and color of your fonts. See “Accessible

Display” on page 916.
v DB2 allows you to receive either visual or audio alert cues. See “Alternative

Alert Cues” on page 916.
v DB2 supports accessibility applications that use the Java™ Accessibility API.

See “Compatibility with Assistive Technologies” on page 916.
v DB2 comes with documentation that is provided in an accessible format.

See “Accessible Documentation” on page 916.

Keyboard Input and Navigation

Keyboard Input
You can operate the DB2 Tools using only the keyboard. You can use keys or
key combinations to perform most operations that can also be done using a
mouse.

Appendix R. DB2 Universal Database technical information 915

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Keyboard Focus
In UNIX-based systems, the position of the keyboard focus is highlighted,
indicating which area of the window is active and where your keystrokes will
have an effect.

Accessible Display
The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font Settings
The DB2 Tools allow you to select the color, size, and font for the text in
menus and dialog windows, using the Tools Settings notebook.

Non-dependence on Color
You do not need to distinguish between colors in order to use any of the
functions in this product.

Alternative Alert Cues
You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

Compatibility with Assistive Technologies
The DB2 Tools interface supports the Java Accessibility API enabling use by
screen readers and other assistive technologies used by people with
disabilities.

Accessible Documentation
Documentation for the DB2 family of products is available in HTML format.
This allows you to view documentation according to the display preferences
set in your browser. It also allows you to use screen readers and other
assistive technologies.

DB2 tutorials

The DB2® tutorials help you learn about various aspects of DB2 Universal
Database. The tutorials provide lessons with step-by-step instructions in the
areas of developing applications, tuning SQL query performance, working
with data warehouses, managing metadata, and developing Web services
using DB2.

Before you begin:

Before you can access these tutorials using the links below, you must install
the tutorials from the DB2 HTML Documentation CD-ROM.

916 SQL Reference, Volume 1

If you do not want to install the tutorials, you can view the HTML versions of
the tutorials directly from the DB2 HTML Documentation CD. PDF versions of
these tutorials are also available on the DB2 PDF Documentation CD.

Some tutorial lessons use sample data or code. See each individual tutorial for
a description of any prerequisites for its specific tasks.

DB2 Universal Database tutorials:

If you installed the tutorials from the DB2 HTML Documentation CD-ROM,
you can click on a tutorial title in the following list to view that tutorial.

Business Intelligence Tutorial: Introduction to the Data Warehouse Center
Perform introductory data warehousing tasks using the Data
Warehouse Center.

Business Intelligence Tutorial: Extended Lessons in Data Warehousing
Perform advanced data warehousing tasks using the Data Warehouse
Center. (Not provided on CD. You can download this tutorial from the
Downloads section of the Business Intelligence Solutions Web site at
http://www.ibm.com/software/data/bi/.)

Development Center Tutorial for Video Online using Microsoft® Visual Basic
Build various components of an application using the Development
Center Add-in for Microsoft Visual Basic.

Information Catalog Center Tutorial
Create and manage an information catalog to locate and use metadata
using the Information Catalog Center.

Video Central for e-business Tutorial
Develop and deploy an advanced DB2 Web Services application using
WebSphere® products.

Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance
using Visual Explain.

DB2 Information Center for topics

The DB2® Information Center gives you access to all of the information you
need to take full advantage of DB2 Universal Database™ and DB2 Connect™

in your business. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, the
Information Catalog Center, Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser has the following
features:

Appendix R. DB2 Universal Database technical information 917

../tutr/db2tu/index.htm
../tutr/db2td/index.htm
../tutr/db2ai/index.htm
../tutr/db2tw/index.htm
../tutr/db2tv/index.htm

Regularly updated documentation
Keep your topics up-to-date by downloading updated HTML.

Search
Search all of the topics installed on your workstation by clicking
Search in the navigation toolbar.

Integrated navigation tree
Locate any topic in the DB2 library from a single navigation tree. The
navigation tree is organized by information type as follows:
v Tasks provide step-by-step instructions on how to complete a goal.
v Concepts provide an overview of a subject.
v Reference topics provide detailed information about a subject,

including statement and command syntax, message help,
requirements.

Master index
Access the information in topics and tools help from one master
index. The index is organized in alphabetical order by index term.

Master glossary
The master glossary defines terms used in the DB2 Information
Center. The glossary is organized in alphabetical order by glossary
term.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 906

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 908

v “Updating the HTML documentation installed on your machine” on page
910

918 SQL Reference, Volume 1

Appendix S. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993 - 2002 919

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

920 SQL Reference, Volume 1

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix S. Notices 921

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2
UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

922 SQL Reference, Volume 1

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Appendix S. Notices 923

924 SQL Reference, Volume 1

Index

Special Characters
(asterisk)

in select column names 554
in subselect column names 554

A
ABS or ABSVAL function

basic description 249
detailed format description 292
values and arguments, rules

for 292
access plans

description 44
accessibility

features 915
ACCOUNTING_STRING

option 773
ACOS function

basic description 249
ACOS scalar function

description 293
values and arguments 293

ADVISE_INDEX table 853
ADVISE_WORKLOAD table 856
aggregate function

COUNT 273
description 269
MIN 282

alias name, definition 65
aliases

definition 7
description 65
TABLE_NAME function 460
TABLE_SCHEMA function 461

ALL clause
quantified predicate 230
SELECT statement 554

ALL option 595
ambiguous reference errors 65
AND truth table 226
ANY clause 230
application process

connection states 29
definition 16

application requesters 29
arguments of COALESCE 134
arithmetic

AVG function, operation of 270

arithmetic (continued)
columns, adding values

(SUM) 289
CORRELATION function

operation 272
COVARIANCE function

operation 277
date operations, rules 187
datetime, SQL rules 187
decimal operations, scale and

precision formulas 187
decimal values from numeric

expressions 327
distinct type operands 187
expressions, adding values

(SUM) 289
finding maximum value 280
floating point operands

rules and precision
values 187

with integers, results 187
floating point values from

numeric expressions 357, 435
integer values, returning from

expressions 299, 384
operators, summary 187
regression functions 284
returning small integer values

from expressions 452
STDDEV function 288
time operations, rules 187
timestamp operations, rules 187
unary minus sign, effect on

operand 187
unary plus sign, effect on

operand 187
VARIANCE function

operation 290
AS clause

in SELECT clause 554
ORDER BY clause 554

ASC clause
SELECT statement 554

ASCII function
basic description 249

ASCII scalar function
description 294
values and arguments 294

ASIN function
basic description 249

ASIN scalar function
description 295
values and arguments 295

assignments
basic SQL operations 117
storage 187

asterisk (*)
in COUNT 273
in COUNT_BIG 275
in select column names 554
in subselect column names 554

ATAN function
basic description 249

ATAN scalar function
description 296
values and arguments 296

ATAN2 function
basic description 249

ATAN2 scalar function
description 297
values and arguments 297

ATANH function
basic description 249

ATANH scalar function
description 298
values and arguments 298

attribute name
definition 65
dereference operation 187

authorization
definition 2

authorization ID 65
authorization names

definition 65
description 65
restrictions governing 65

AVG aggregate function 270
AVG function

basic description 249

B
base table

definition 5
basic predicate

detailed format 229
best fit (function)

choosing 168

© Copyright IBM Corp. 1993 - 2002 925

best fit (method)
choosing 178

BETWEEN clause
in OLAP functions 187

BETWEEN predicate
detailed diagram 233

big integer 94
BIGINT function

basic description 250
integer values from

expressions 299
BIGINT SQL data type

description 94
binary large objects (BLOBs)

definition 98
scalar function description 301

binary string data types
description 98

binding
data retrieval, role in

optimizing 1
function semantics 168
method semantics 168

bit data
definition 95

BLAST
valid objects for nicknames 52

BLOB data type
description 98

BLOB function
basic description 250

buffer pool name
definition 65

buffer pools
definition 26

building a DATALINK value
DLVALUE function 355

built-in functions
description 168

business rules
transitional 24

byte length values, list for data
types 390

C
Call Level Interface (CLI)

definition 19
CALL statements

invoked from a compiled
statement 877

CASE expression 187
case sensitive identifiers 63
CAST

expression as operand 187
null as operand 187

CAST (continued)
parameter marker as

operand 187
specifications 187

casting
between data types 113
reference types 113
user-defined types 113

catalog views
ATTRIBUTES 639
BUFFERPOOLDBPARTITIONS 641
BUFFERPOOLNODES (see

BUFFERPOOLDBPARTITIONS) 641
BUFFERPOOLS 642
CASTFUNCTIONS 643
CHECKS 644
COLAUTH 645
COLCHECKS 646
COLDIST 647
COLGROUPDIST 648
COLGROUPDISTCOUNTS 649
COLGROUPS 650
COLOPTIONS 651
COLUMNS 652
COLUSE 657
CONSTDEP 658
DATATYPES 659
DBAUTH 661
DBPARTITIONGROUPDEF 663
DBPARTITIONGROUPS 664
description 20
EVENTMONITORS 665
EVENTS 667
EVENTTABLES 668
FULLHIERARCHIES 669
FUNCDEP (see

ROUTINEDEP) 708
FUNCMAPOPTIONS 670
FUNCMAPPARMOPTIONS 671
FUNCMAPPINGS 672
FUNCPARMS (see

ROUTINEPARMS) 709
FUNCTIONS (see

ROUTINES) 711
HIERARCHIES 673
INDEXAUTH 674
INDEXCOLUSE 675
INDEXDEP 676
INDEXES 677
INDEXEXPLOITRULES 682
INDEXEXTENSIONDEP 683
INDEXEXTENSIONMETHODS 684
INDEXEXTENSIONPARMS 685
INDEXEXTENSIONS 686
INDEXOPTIONS 687

catalog views (continued)
KEYCOLUSE 688
NAMEMAPPINGS 689
NODEGROUPDEF (see

DBPARTITIONGROUPDEF) 663
NODEGROUPS (see

DBPARTITIONGROUPS) 664
overview 636
PACKAGEAUTH 690
PACKAGEDEP 691
PACKAGES 693
PARTITIONMAPS 699
PASSTHRUAUTH 700
PREDICATESPECS 701
PROCEDURES (see

ROUTINES) 711
PROCOPTIONS 702
PROCPARMOPTIONS 703
PROCPARMS (see

ROUTINEPARMS) 709
read-only 636
REFERENCES 704
REVTYPEMAPPINGS 705
ROUTINEAUTH 707
ROUTINEDEP (formerly

FUNCDEP) 708
ROUTINEPARMS (formerly

FUNCPARMS,
PROCPARMS) 709

ROUTINES (formerly
FUNCTIONS,
PROCEDURES) 711

SCHEMAAUTH 718
SCHEMATA 719
SEQUENCEAUTH 720
SEQUENCES 721
SERVEROPTIONS 723
SERVERS 724
STATEMENTS 725
SYSDUMMY1 638
SYSSTAT.COLDIST 747
SYSSTAT.COLUMNS 749
SYSSTAT.FUNCTIONS (see

SYSSTAT.ROUTINES) 755
SYSSTAT.ROUTINES (formerly

SYSSTAT.FUNCTIONS) 755
SYSSTAT.TABLES 757
SYSSTATINDEXES 751
TABAUTH 726
TABCONST 728
TABDEP 729
TABLES 730
TABLESPACES 735
TABOPTIONS 736
TBSPACEAUTH 737

926 SQL Reference, Volume 1

catalog views (continued)
TRANSFORMS 738
TRIGDEP 739
TRIGGERS 740
TYPEMAPPINGS 741
updatable 636
USEROPTIONS 743
VIEWS 744
WRAPOPTIONS 745
WRAPPERS 746

CEIL function
description 302
values and arguments 302

CEIL or CEILING function
basic description 250

CEILING function
description 302
values and arguments 302

CHAR
function description 303

CHAR data type
description 95

CHAR function
basic description 250

CHAR
function(SYSFUN.CHAR) 250

character
conversion 20
SQL language element 61

character conversion
rules for assignments 117
rules for comparison 117
rules for operations combining

strings 139
rules when comparing

strings 139
character sets

definition 20
character string constant 143
character string data types 95
character strings

arithmetic operators, prohibited
use 187

assignment 117
BLOB string representation 301
comparisons 117
double-byte character string 489
equality definition 117
equality, collating sequence

examples 117
POSSTR scalar function 427
returning from host variable

name 475
translating string syntax 475
VARCHAR scalar function 485

character strings (continued)
VARGRAPHIC scalar

function 489
character subtypes 95
check pending state 8
CHR function

basic description 250
description 309
values and arguments 309

CLI (Call Level Interface)
definition 19

CLIENT ACCTNG special
register 148

CLIENT APPLNAME special
register 149

CLIENT USERID special
register 150

CLIENT WRKSTNNAME special
register 151

CLOB (character large object) data
type

description 95
CLOB (character large object)

function
description 310
values and arguments 310

CLOB function
basic description 250

CLSCHED sample table 803
COALESCE function 311

basic description 250
code pages

attributes 20
definition 20

code point 20
collating sequence

string comparison rules 117
COLLATING_SEQUENCE

server option
valid settings 764

collocation, table 28
column function

description 168
column name

definition 65
uses 65

column name qualification in
COMMENT ON statement 65

column options 762
description 53

columns
adding values (SUM) 289
ambiguous name reference

errors 65

columns (continued)
averaging a set of values

(AVG) 270
BASIC predicate, use in matching

strings 229
BETWEEN predicate, in matching

strings 233
correlation between a set of

number pairs
(CORRELATION) 272

covariance of a set of number
pairs (COVARIANCE) 277

definition
tables 5

EXISTS predicate, in matching
strings 234

finding maximum value 280
GROUP BY, use in limiting in

SELECT clause 554
grouping column names in

GROUP BY 554
HAVING clause, search names,

rules 554
HAVING, use in limiting in

SELECT clause 554
IN predicate, fullselect, values

returned 235
LIKE predicate, in matching

strings 238
name, qualified conditions 65
name, unqualified conditions 65
names in ORDER BY clause 554
naming conventions 65
nested table expression 65
null values in result

columns 554
qualified column name rules 65
result data 554
scalar fullselect 65
searching using WHERE

clause 554
SELECT clause syntax

diagram 554
standard deviation of a set of

values (STDDEV) 288
string assignment rules 117
subquery 65
undefined name reference

errors 65
variance of a column set of

values (VARIANCE) 290
combining grouping sets 554
COMM_RATE

valid settings 764

Index 927

comments
host language, format 63
SQL, format 63

commit processing
locks, relation to uncommitted

changes 16
common syntax elements xv
common table expressions

definition 601
recursive 601
recursive example 861
select statement 601

comparing a value with a
collection 233

comparing LONG VARGRAPHIC
strings, restricted use 117

comparing two predicates, truth
conditions 229, 244

comparison, basic SQL
operation 117

compatibility
data types 117
data types, summary 117
rules 117
rules for operation types 117

compensation
description 45

composite column value 554
composite keys

definition 7
CONCAT function

description 312
values and arguments 312

CONCAT or || function
basic description 250

concatenation
distinct type 187
operators 187
result data type 187
result length 187

condition name in SQL
procedure 65

connected state
description 29

connection state 29
remote unit of work 29

CONNECTSTRING
valid settings 764

consistency
points of 16

constants
character string 143
decimal 143
floating-point 143
graphic string 143

constants (continued)
hexadecimal 143
integer 143
SQL language element 143
with user-defined types 143

constraints
Explain tables 833
name, definition 65
referential 8
table check 8
unique 8

containers
definition 26

CONTROL privilege
overview 2

conventions, naming
naming 65

conversion rules
assignments 117
comparisons 117
operations combining

strings 139
string comparisons 139

conversions
CHAR, returning converted

datetime values 303
character string to

timestamp 466
datetime to string variable 117
DBCS from mixed SBCS and

DBCS 489
decimal values from numeric

expressions 327
double-byte character string 489
floating point values from

numeric expressions 357, 435
integer to decimal, mixed

expression rules 187
numeric, scale and precision,

summary 117
correlated reference

use in nested table
expression 65

use in scalar fullselect 65
use in subquery 65
use in subselect 554

CORRELATION function 272
correlation name

definition 65
FROM clause, subselect

rules 554
in SELECT clause, syntax

diagram 554
qualified reference 65
rules 65

CORRELATION or CORR 251
COS function

basic description 251
description 313
values and arguments 313

COSH function
basic description 251
description 314
values and arguments 314

COT function
basic description 251
description 315
values and arguments 315

COUNT function 273
basic description 251

COUNT_BIG function
basic description 251
detailed format description 275
values and arguments 275

COVARIANCE function 277
COVARIANCE or COVAR function

basic description 251
CPU_RATIO

valid settings 764
CREATE REVERSE TYPE MAPPING

statement
discussion 791

CREATE TYPE MAPPING statement
discussion 791

cross tabulation rows 554
CS (cursor stability)

comparision table 827
isolation level 13

CUBE
examples 554
query description 554

current connection state 29
CURRENT DATE special

register 152
CURRENT DBPARTITIONNUM

special register 153
CURRENT DEFAULT TRANSFORM

GROUP special register 154
CURRENT DEGREE special register

description 155
CURRENT EXPLAIN MODE special

register
description 156

CURRENT EXPLAIN SNAPSHOT
special register

description 157
CURRENT FUNCTION PATH

special register
description 159

928 SQL Reference, Volume 1

CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION
special register 158

CURRENT PATH special register
description 159

CURRENT QUERY OPTIMIZATION
special register

description 160
CURRENT REFRESH AGE special

register
description 161

CURRENT SCHEMA special
register 162

CURRENT SERVER special
register 163

CURRENT SQLID special
register 162

CURRENT TIME special
register 164

CURRENT TIMESTAMP special
register 165

CURRENT TIMEZONE special
register 166

cursor name
definition 65

cursor stability (CS)
comparision table 827
isolation levels 13

D
data

partitioning 28
data definition language (DDL)

definition 1
data source name 65
data source objects

description 52
data sources

access methods protocols, client
software, drivers 41

default wrapper names 48
description 41
supported versions 41
valid objects for nicknames 52
valid server types 759

data structures
packed decimal 621

data type mappings
description 54
forward

introduction 775, 791
reverse

introduction 791
data types

BIGINT 94

data types (continued)
binary string 98
BLOB 98
casting between 113
CHAR 95
character string 95
CLOB 95
DATALINK 105
DATE 101
datetime 101
DBCLOB 97
DECIMAL or NUMERIC 94
DOUBLE or FLOAT 94
GRAPHIC 97
graphic string 97
INTEGER 94
LONG VARCHAR 95
LONG VARGRAPHIC 97
numeric 94
partition compatibility 141
promotion 111
promotion in a Unicode

database 111
REAL 94
result columns 554
SMALLINT 94
SQL language element 92
TIME 101
TIMESTAMP 101
TYPE_ID function 480
TYPE_NAME function 481
TYPE_SCHEMA function 482
unsupported 54
user-defined 108
VARCHAR 95
VARGRAPHIC 97
XML 107

database manager
limits 607
SQL interpretation 1

databases
creating

sample 803
erasing sample 803

DATALINK data type
BNF specifications 891
description 105
extracting comment 338
extracting complete URL 347
extracting file server 354
extracting link type 339
extracting path and file

name 350, 351
extracting scheme 353
returning a data link value 355

DATALINK data type (continued)
unsupported 54

DATE data type
CHAR, use in format

conversion 303
day durations, finding from

range 323
description 101
duration format 187
WEEK scalar function 491
WEEK_ISO scalar function 492

DATE function
arithmetic operations 187
basic description 251
description 316
value to date format

conversion 316
dates

month, returning from datetime
value 405

string representation
formats 101

using year in expressions 493
datetime data types

arithmetic operations 187
description 101
string representation of 101
VARCHAR scalar function 485

DAY function 318
basic description 251

DAYNAME function
basic description 251

DAYNAME scalar function
description 319

DAYOFWEEK function
basic description 252

DAYOFWEEK scalar function
description 320

DAYOFWEEK_ISO function
basic description 252

DAYOFWEEK_ISO scalar function
description 321

DAYOFYEAR function
basic description 252

DAYOFYEAR scalar function
description 322
values and arguments 322

DAYS function
basic description 252

DAYS scalar function 323
DB2 documentation search

using Netscape 4.x 912
DB2 family

default wrapper name 48
valid objects for nicknames 52

Index 929

DB2 for iSeries data sources
default forward data type

mappings 775
DB2 for OS/390 data sources

default reverse data type
mappings 791

DB2 for OS/400 data sources
default reverse data type

mappings 791
DB2 for VM data sources 791
DB2 for z/OS and OS/390 data

sources
default forward type

mappings 775
DB2 Information Center 917
DB2 Server for VM and VSE

default forward type
mappings 775

DB2 tutorials 916
DB2_FENCED wrapper option

valid settings 774
db2nodes.cfg file

DBPARTITIONNUM
function 325

DBADM authority
description 2

DBCLOB data type
description 97

DBCLOB function
basic description 252
description 324
values and arguments 324

DBNAME
valid settings 764

DBPARTITIONNUM function
basic description 252
description 325
values and arguments 325

DDL (data definition language)
definition 1

decimal constant
description 143

decimal conversion from integer,
summary 117

DECIMAL data type 94
arithmetic formulas, scale and

precision 187
conversion from

floating-point 117
DECIMAL function

description 327
values and arguments 327

DECIMAL or DEC function
basic description 252

DECIMAL or NUMERIC data type
description 94

declared temporary table
definition 5

declustering
partial 28

decrementing a date, rules 187
decrementing a time, rules 187
DECRYPT function

description 332
values and arguments 332

DECRYPT_BIN function
basic description 253

DECRYPT_CHAR function
basic description 253

decrypting information
DECRYPT function 332

DEGREES function
basic description 253

DEGREES scalar function
description 334
values and arguments 334

delete rule
with referential constraint 8

delimiter token
definition 63

DENSERANK (DENSE_RANK)
OLAP function 187

DEPARTMENT sample table 803
dependent row 8
dependent table 8
DEREF function

basic description 253
description 335
reference types 335
values and arguments 335

dereference operators
attribute-name operand 187

DESC clause
of select statement 554

descendent row 8
descendent table 8
descriptor name

definition 65
diagnostic string

in RAISE_ERROR function 432
DIFFERENCE function

basic description 253
description 336
values and arguments 336

DIGITS function
basic description 253
description 337
values and arguments 337

dirty read 827

disability 915
DISABLE function mapping

option 763
DISTINCT keyword

aggregate function 269
AVG function 270
COUNT_BIG function 275
MAX function restriction 280
STDDEV function 288
subselect statement 554
SUM function 289
VARIANCE function 290

distinct type name
definition 65

distinct types
as arithmetic operands 187
comparison 117
concatenation 187
constants 143
description 108

Distributed Relational Database
Architecture (DRDA) 29

distributed relational databases
application requester 29
application server 29
application-directed distributed

unit of work 29
definition 29
remote unit of work 29
requester-server protocols 29

distributed unit of work
description 29

DLCOMMENT function
basic description 253
description 338
values and arguments 338

DLLINKTYPE function
basic description 253
description 339
values and arguments 339

DLNEWCOPY function
basic description 253
description 340
values and arguments 340

DLPREVIOUSCOPY function
basic description 253
description 343
values and arguments 343

DLREPLACECONTENT function
basic description 253
description 345
values and arguments 345

DLURLCOMPLETE function
basic description 253
description 347

930 SQL Reference, Volume 1

DLURLCOMPLETE function
(continued)

values and arguments 347
DLURLCOMPLETEONLY function

basic description 254
description 348
values and arguments 348

DLURLCOMPLETEWRITE function
basic description 254
description 349
values and arguments 349

DLURLPATH function
basic description 254
description 350
values and arguments 350

DLURLPATHONLY function
basic description 254
description 351
values and arguments 351

DLURLPATHWRITE function
basic description 254
description 352
values and arguments 352

DLURLSCHEME function
basic description 254
description 353
values and arguments 353

DLURLSERVER function
basic description 254
description 354
values and arguments 354

DLVALUE function
basic description 254
description 355
values and arguments 355

Documentum
valid objects for nicknames 52

dormant connection state 29
DOUBLE

CHAR, use in format
conversion 303

DOUBLE function
basic description 254
description 357
values and arguments 357

DOUBLE or DOUBLE_PRECISION
function

basic description 254
DOUBLE or FLOAT data type

description 94
double-byte character strings

returning string 489
double-byte characters

truncated during
assignment 117

double-precision floating-point data
type 94

duration 187
adding 187
date format 187
labeled 187
subtracting 187
time format 187
timestamp 187

dynamic dispatch of methods 178
dynamic SQL

definition 1
EXECUTE statement 1
PREPARE statement 1
SQLDA used with 621

E
embedded SQL for Java (SQLJ)

Java database connectivity 19
EMPACT sample table 803
EMPLOYEE sample table 803
EMPPHOTO sample table 803
EMPRESUME sample table 803
empty string 95, 97
encoding scheme

definition 20
ENCRYPT function

basic description 254
ENCRYPT scalar function 359
encrypting information

ENCRYPT function 359
GETHINT function 366

error message codes
SQLCA definitions 615

ESCAPE clauses
LIKE predicate 238

EUC (extended UNIX code)
considerations 883

evaluation order
expressions 187

event monitor name
definition 65

event monitors
definition 23
EVENT_MON_STATE

function 362
types 23

EVENT_MON_STATE function
basic description 254

EXCEPT operator of fullselect 595
exception tables

structure 867
exclusive lock 13
EXECUTE IMMEDIATE statement

dynamic SQL 1

EXECUTE privilege 168, 178
EXECUTE statement

dynamic SQL 1
EXISTS predicate

description 234
EXP function

basic description 255
description 363
values and arguments 363

explain tables
overview 833

EXPLAIN_ARGUMENT table
description 834

EXPLAIN_INSTANCE table
description 838

EXPLAIN_OBJECT table
description 841

EXPLAIN_OPERATOR table
description 844

EXPLAIN_PREDICATE table
description 846

EXPLAIN_STATEMENT table
description 848

EXPLAIN_STREAM table
description 851

exposed correlation-name in FROM
clause 65

expressions
arithmetic operators 187
CASE 187
CAST specification 187
CAST specifications 187
concatenation operators 187
datetime operands 187
decimal operands 187
dereference operations 187
floating-point operands 187
format and rules 187
grouping-expressions in GROUP

BY 554
in a subselect 554
in ORDER BY clause 554
in SELECT clause, syntax

diagram 554
integer operands 187
mathematical operators 187
method invocation 187
OLAP functions 187
precedence of operation 187
scalar fullselect 187
sequences 187
strings 187
substitution operators 187
subtype treatment 187
values 187

Index 931

expressions (continued)
without operators 187

external function
description 168

extracting comment from
DATALINK value

DLCOMMENT function 338
extracting complete URL from

DATALINK value
DLURLCOMPLETE

function 347
extracting file server from

DATALINK value
DLURLSERVER function 354

extracting linktype from DATALINK
value

DLLINKTYPE function 339
extracting path and file name from

DATALINK value
DLURLPATH function 350
DLURLPATHONLY

function 351
extracting scheme from DATALINK

value
DLURLSCHEME function 353

F
federated databases

definition 1
description 43

federated server
description 39

federated systems
description 39

file reference variables
BLOB 65
CLOB 65
DBCLOB 65

fixed-length character string 95
fixed-length graphic string 97
FLOAT function

basic description 255
description 364
values and arguments 364

FLOAT or DOUBLE data type
description 94

floating-point constant
description 143

floating-point to decimal
conversion 117

FLOOR function
basic description 255
description 365
values and arguments 365

FOLD_ID
valid settings 764

FOLD_PW
valid settings 764

FOR FETCH ONLY clause
SELECT statement 601

FOR READ ONLY clause
SELECT statement 601

foreign keys 8
definition 7

forward type mappings
description 775

fragments in SUBSTR function,
warning 456

FROM clause
corelation-name example 65
exposed names explained 65
non-exposed names

explained 65
subselect syntax 554
use of correlation names 65

fullselect
detailed syntax 595
examples 595
initialization 601, 861
iterative 601, 861
multiple operations, order of

execution 595
ORDER BY clause 554
scalar 187
subquery role, search

condition 65
table reference 554

function designator syntax
element xv

function mapping name
definition 65

function mapping options
description 57
DISABLE

valid settings 763
INITIAL_INSTS

valid settings 763
INITIAL_IOS

valid settings 763
INSTS_PER_ARGBYTE

valid settings 763
INSTS_PER_INVOC

valid settings 763
IOS_PER_ARGBYTE

valid settings 763
IOS_PER_INVOC

valid settings 763
PERCENT_ARGBYTES

valid settings 763

function mapping options
(continued)

REMOTE_NAME
valid settings 763

function mappings
description 56

function name
definition 65

function path
built-in 168

function signature 168
function templates

description 56
functions

aggregate 269
COUNT 273
MIN 282

arguments 247
built-in 168
column 168, 269

AVG 249, 270
CORR 272
CORRELATION 272
CORRELATION or

CORR 251
COUNT 251, 273
COUNT_BIG 251, 275
COVAR 277
COVARIANCE 277
COVARIANCE or

COVAR 251
MAX 257, 280
MIN 258, 282
REGR_AVGX 260, 284
REGR_AVGY 260, 284
REGR_COUNT 260, 284
REGR_ICPT 284
REGR_INTERCEPT 284
REGR_INTERCEPT OR

REGR_ICPT 260
REGR_R2 260, 284
REGR_SLOPE 260, 284
REGR_SXX 260, 284
REGR_SXY 260, 284
REGR_SYY 261, 284
regression functions 284
STDDEV 262, 288
SUM 262, 289
VAR, options 290
VAR, results 290
VARIANCE or VAR 265
VARIANCE, options 290
VARIANCE, results 290

description 247
external 168

932 SQL Reference, Volume 1

functions (continued)
in a Unicode database 291
in expressions 247
OLAP

DENSERANK 187
RANK 187
ROWNUMBER 187

overloaded 168
procedures 545
row 168
scalar 168, 291

ABS 292
ABS or ABSVAL 249
ABSVAL 292
ACOS 249, 293
ASCII 249, 294
ASIN 249, 295
ATAN 249, 296
ATAN2 249, 297
ATANH 249, 298
AVG 270
BIGINT 250, 299
BLOB 250, 301
CEIL 302
CEIL or CEILING 250
CEILING 302
CHAR 250, 303
CHAR (SYSFUN

schema) 250
CHR 250, 309
CLOB 250, 310
COALESCE 250, 311
CONCAT 312
CONCAT or || 250
COS 251, 313
COSH 251, 314
COT 251, 315
DATE 251, 316
DAY 251, 318
DAYNAME 251, 319
DAYOFWEEK 252, 320
DAYOFWEEK_ISO 252, 321
DAYOFYEAR 252, 322
DAYS 252, 323
DBCLOB 252, 324
DBPARTITIONNUM 252,

325
DECIMAL 327
DECIMAL or DEC 252
DECRYPT_BIN 253
DECRYPT_CHAR 253
DECRYPTBIN 332
DECRYPTCHAR 332
DEGREES 253, 334
DEREF 253, 335

functions (continued)
scalar (continued)

DIFFERENCE 253, 336
DIGITS 253, 337
DLCOMMENT 253, 338
DLLINKTYPE 253, 339
DLNEWCOPY 253, 340
DLPREVIOUSCOPY 253, 343
DLREPLACECONTENT 253,

345
DLURLCOMPLETE 253, 347
DLURLCOMPLETEONLY 254,

348
DLURLCOMPLETEWRITE 254,

349
DLURLPATH 254, 350
DLURLPATHONLY 254, 351
DLURLPATHWRITE 254,

352
DLURLSCHEME 254, 353
DLURLSERVER 254, 354
DLVALUE 254, 355
DOUBLE 254, 357
DOUBLE or

DOUBLE_PRECISION 254
DOUBLE_PRECISION 357
ENCRYPT 254, 359
EVENT_MON_STATE 254,

362
EXP 255, 363
FLOAT 255, 364
FLOOR 255, 365
GENERATE_UNIQUE 255,

367
GET_ROUTINE_SAR 255,

259
GETHINT 255, 366
GRAPHIC 255, 369
GROUPING 255, 278
HASHEDVALUE 255, 371
HEX 255, 373
HOUR 256, 375
IDENTITY_VAL_LOCAL 256,

376
INSERT 256, 382
INTEGER 384
INTEGER or INT 256
JULIAN_DAY 256, 386
LCASE 256, 388
LCASE (SYSFUN

schema) 256
LCASE or LOWER 387
LEFT 256, 389
LENGTH 256, 390
LN 256, 392

functions (continued)
scalar (continued)

LOCATE 257, 393
LOG 257, 394
LOG10 257, 395
LONG_VARCHAR 257, 396
LONG_VARGRAPHIC 257,

397
LTRIM 257, 398, 400
LTRIM (SYSFUN

schema) 257
MICROSECOND 258, 401
MIDNIGHT_SECONDS 258,

402
MINUTE 258, 403
MOD 258, 404
MONTH 258, 405
MONTHNAME 258, 406
MQPUBLISH 258, 407
MQREAD 258, 410
MQREADCLOB 412
MQRECEIVE 259, 414
MQRECEIVECLOB 416
MQSEND 259, 418
MQSUBSCRIBE 259, 420
MQUNSUBSCRIBE 259, 422
MULTIPLY_ALT 259, 424
NODENUMBER (see

DBPARTITIONNUM) 325
NULLIF 259, 426
PARTITION (see

HASHEDVALUE) 371
POSSTR 259, 427
POWER 259, 429, 431
QUARTER 260, 430
RADIANS 260
RAISE_ERROR 260, 432
RAND 260, 434
REAL 260, 435
REC2XML 260, 436
REPEAT 261, 441
REPLACE 261, 442
RIGHT 261, 443
ROUND 261, 444
RTRIM 261, 446, 447
RTRIM (SYSFUN

schema) 261
SECOND 261, 448
SIGN 262, 449
SIN 262, 450
SINH 262, 451
SMALLINT 262, 452
SOUNDEX 262, 453
SPACE 262, 454
SQRT 262, 455

Index 933

functions (continued)
scalar (continued)

SUBSTR 262, 456
TABLE_NAME 263, 460
TABLE_SCHEMA 263, 461
TAN 263, 463
TANH 263, 464
TIME 263, 465
TIMESTAMP 263, 466
TIMESTAMP_FORMAT 263,

468
TIMESTAMP_ISO 263, 470
TIMESTAMPDIFF 264, 471
TO_CHAR 264, 473
TO_DATE 264, 474
TRANSLATE 264, 475
TRUNC 478
TRUNC or TRUNCATE 264
TRUNCATE 478
TYPE_ID 265, 480
TYPE_NAME 265, 481
TYPE_SCHEMA 265, 482
UCASE 265, 483
UCASE (SYSFUN

schema) 265
UPPER 483
VALUE 265, 484
VARCHAR 265, 485
VARCHAR_FORMAT 265,

487
VARGRAPHIC 265, 489
WEEK 265, 491
WEEK_ISO 266, 492
YEAR 266, 493

sourced 168
SQL 168
SQL language element 168
table 168, 494

MQREADALL 259, 495
MQREADALLCLOB 497
MQRECEIVEALL 259, 499
MQRECEIVEALLCLOB 502
SNAPSHOT_AGENT 505
SNAPSHOT_APPL 506
SNAPSHOT_APPL_INFO 510
SNAPSHOT_BP 512
SNAPSHOT_CONTAINER 514
SNAPSHOT_DATABASE 516
SNAPSHOT_DBM 521
SNAPSHOT_DYN_SQL 523
SNAPSHOT_FCM 525
SNAPSHOT_FCMPARTITION 526
SNAPSHOT_LOCK 527
SNAPSHOT_LOCKWAIT 529
SNAPSHOT_QUIESCERS 531

functions (continued)
table (continued)

SNAPSHOT_RANGES 532
SNAPSHOT_STATEMENT 533
SNAPSHOT_SUBSECT 535
SNAPSHOT_SWITCHES 537
SNAPSHOT_TABLE 538
SNAPSHOT_TBS 540
SNAPSHOT_TBS_CFG 542
SQLCACHE_SNAPSHOT 262,

544
user-defined 168, 550

G
GENERATE_UNIQUE function

basic description 255
syntax 367

generic data sources 775, 791
GET_ROUTINE_SAR 546
GET_ROUTINE_SAR function

basic description 255
GETHINT function

basic description 255
description 366
values and arguments 366

global catalog
description 43

grand total row 554
GRAPHIC data type

description 97
GRAPHIC function

basic description 255
description 369
values and arguments 369

graphic string constant
description 143

graphic string data types
description 97

graphic strings
returning from host variable

name 475
translating string syntax 475

GROUP BY clause
subselect results 554
subselect rules and syntax 554

group name
definition 65

GROUPING function 278
basic description 255

grouping sets 554
grouping-expression 554

H
hash partitioning 28

HASHEDVALUE function
basic description 255
description 371
values and arguments 371

HAVING clause
search conditions with

subselect 554
subselect results 554

held connection state 29
HEX function

basic description 255
description 373
values and arguments 373

hexadecimal constant
description 143

host identifiers
in host variable 65

host variables
BLOB 65
CLOB 65
DBCLOB 65
definition 65
indicator variables 65
syntax diagram 65

HOUR function
basic description 256
description 375
values and arguments 375

I
identifiers

delimited 65
host 65
length limits 607
ordinary 65
SQL 65

IDENTITY_VAL_LOCAL function
basic description 256
description 376
values and arguments 376

IFILE
valid settings 764

IGNORE_UDT
valid settings 764

IMPLICITSCHEMA authority 4
IN predicate 235
incrementing a date, rules 187
incrementing a time, rules 187
index name

definition 65
index specifications

description 58
indexes

definition 7

934 SQL Reference, Volume 1

indicator variables
description 65
host variable, uses in

declaring 65
infix operators 187
Informix

default forward type
mappings 775

default wrapper name 48
valid objects for nicknames 52

INITIAL_INSTS
valid settings for function

mapping option 763
INITIAL_IOS

valid settings for function
mapping option 763

initialization fullselect 601, 861
INSERT function

basic description 256
description 382
values and arguments 382

insert rule with referential
constraint 8

INSTS_PER_ARGBYTE
valid settings for function

mapping option 763
INSTS_PER_INVOC

valid settings for function
mapping option 763

integer constant
description 143

INTEGER data type
description 94

INTEGER function
description 384
values and arguments 384

INTEGER or INT function
basic description 256

integer values from expressions
INTEGER function 384

integers
decimal conversion

summary 117
in ORDER BY clause 554

interactive SQL 1
intermediate result tables 554
INTERSECT operator

duplicate rows, use of ALL 595
of fullselect, role in

comparison 595
INTO clause

FETCH statement, use in host
variable 65

SELECT INTO statement, use in
host variable 65

INTO clause (continued)
values from applications

programs 65
INTRAY sample table 803
invocation

function 168
IO_RATIO

valid settings 764
IOS_PER_ARGBYTE

valid settings for function
mapping option 763

IOS_PER_INVOC
valid settings for function

mapping option 763
isolation levels

comparisons 827
cursor stability 13
cursor stability (CS) 827
description 13
in DELETE statement 601
none 827
read stability (RS) 13, 827
repeatable read (RR) 13, 827
uncommitted read (UR) 13, 827

iterative fullselect 601, 861
IUD_APP_SVPT_ENFORCE

valid settings 764

J
Java database connectivity (JDBC)

embedded SQL for Java 19
JDBC (Java database

connectivity) 19
joined table

subselect clause 554
table reference 554

joins
examples 554
full outer join 554
inner join 554
left outer join 554
right outer join 554
subselect examples 554

JULIAN_DAY function
basic description 256
description 386
values and arguments 386

K
keys

composite 7
definition 7
foreign 7, 8
parent 8
partitioning 7

keys (continued)
primary 7
unique 7, 8

L
labeled duration, in expressions 187
labels

object names in SQL
procedures 65

large integer 94
large object locator 99
large objects (LOBs)

description 99
LCASE function

basic description 256
LCASE

function(SYSFUN.LCASE) 256
LCASE or LOWER scalar function

detailed format description 387
values and arguments, rules

for 387
LCASE scalar function

description 388
values and arguments 388

LEFT function
basic description 256

LEFT scalar function
description 389
values and arguments 389

length
LENGTH scalar function 390

LENGTH function
basic description 256

LENGTH scalar function
description 390
values and arguments 390

LIKE predicate 238
limits

identifier length 607
SQL 607

literals
description 143

LN function
basic description 256
description 392
values and arguments 392

LOB (large object) data types
description 99

LOB locators 99
local

catalog information 43
LOCATE function

basic description 257
LOCATE scalar function

description 393

Index 935

LOCATE scalar function (continued)
values and arguments 393

locators
large object (LOB) 99
variable description 65

locking
definition 16

locks
exclusive (X) 13
share (S) 13
update (U) 13

LOG function
basic description 257
description 394
values and arguments 394

LOG10 function
basic description 257

LOG10 scalar function
description 395
values and arguments 395

logical operators, search rules 226
LOGIN_TIMEOUT

valid settings 764
LONG VARCHAR data type

description 95
unsupported 54

LONG VARGRAPHIC data type
description 97
unsupported 54

LONG_VARCHAR function
basic description 257
description 396
values and arguments 396

LONG_VARGRAPHIC function
basic description 257
description 397
values and arguments 397

LTRIM function
basic description 257

LTRIM
function(SYSFUN.LTRIM) 257

LTRIM scalar function
description 398, 400
values and arguments 398, 400

M
map, partitioning 26
MAX function

basic description 257
detailed format description 280
values and arguments 280

method designator syntax
element xv

method invocation 187
method name 65

method signature 178
methods

built-in 178
dynamic dispatch of 178
external 178
invoking 187
overloaded 178
SQL 178
SQL language element 178
type preserving 178
user-defined 178

MICROSECOND function
basic description 258
description 401
values and arguments 401

Microsoft SQL Server
data sources

default forward type
mappings 775, 791

MIDNIGHT_SECONDS function
basic description 258
description 402
values and arguments 402

MIN function 282
basic description 258

MINUTE function
basic description 258
description 403
values and arguments 403

mixed data
definition 95
LIKE predicate 238

MOD function
basic description 258
description 404
values and arguments 404

monitoring
database events 23

MONTH function
basic description 258
description 405
values and arguments 405

MONTHNAME function
basic description 258
description 406
values and arguments 406

MQPUBLISH function
basic description 258
description 407
values and arguments 407

MQREAD function
basic description 258
description 410
values and arguments 410

MQREADALL function
basic description 259
description 495
values and arguments 495

MQREADALLCLOB function
description 497
values and arguments 497

MQREADCLOB function
description 412
values and arguments 412

MQRECEIVE function
basic description 259
description 414
values and arguments 414

MQRECEIVEALL function
basic description 259
description 499
values and arguments 499

MQRECEIVEALLCLOB function
description 502
values and arguments 502

MQRECEIVECLOB function
description 416
values and arguments 416

MQSEND function
basic description 259
description 418
values and arguments 418

MQSUBSCRIBE function
basic description 259
description 420
values and arguments 420

MQUNSUBSCRIBE function
basic description 259
description 422
values and arguments 422

multiple row VALUES clause
result data type 134

MULTIPLY_ALT function
basic description 259
detailed format description 424
values and arguments, rules

for 424

N
names

identifying columns in
subselect 554

naming conventions
identifiers 65
qualified column rules 65

nested table expressions 554
nextval-expression 187
nicknames

definition 65

936 SQL Reference, Volume 1

nicknames (continued)
description 52
exposed names in FROM

clause 65
FROM clause 554
non-exposed names in FROM

clause 65
qualifying a column name 65
SELECT clause, syntax

diagram 554
valid data source objects 52

NODE
valid settings 764

nodegroups
definition 26
name 65

NODENUMBER function (see
DBPARTITIONNUM) 325

non-exposed correlation-name in
FROM clause 65

nonrelational data sources
data type mappings,

specifying 54
nonrepeatable read 827
NOT NULL clause

in NULL predicate 243
NUL-terminated character

strings 95
null

CAST specification 187
NULL predicate rules 243
null value

definition 92
null value, SQL

assignment 117
grouping-expressions, allowable

uses 554
occurrences in duplicate

rows 554
result columns 554
specified by indicator

variable 65
unknown condition 226

NULLIF function
basic description 259
description 426
values and arguments 426

numbers
precision 621
scale 621

numeric
assignments in SQL

operations 117
comparisons 117

numeric data types
description 94

NUMERIC or DECIMAL data type
description 94

NUMERIC_STRING
column option

valid settings 762

O
object table 65
ODBC (open database connectivity)

description 19
valid objects for nicknames 52

OLAP functions
BETWEEN clause 187
CURRENT ROW clause 187
description 187
ORDER BY clause 187
OVER clause 187
PARTITION BY clause 187
RANGE clause 187
ROW clause 187
UNBOUNDED clause 187

OLE DB
default wrapper name 48

online
help, accessing 904

online analytical processing
(OLAP) 187

open database connectivity
(ODBC) 19

operands
datetime

date duration 187
labeled duration 187
time duration 187

decimal 187
decimal rules 187
floating-point 187
integer 187
integer rules 187
result data type 134
strings 187

operations
assignments 117
comparisons 117
datetime, SQL rules 187
dereference 187

operators, arithmetic 187
optimizer

description 44
OR truth table 226
Oracle data sources

default forward type
mappings 791

Oracle data sources (continued)
default wrapper names 48
NET8

default forward type
mappings 775

SQLNET
default forward type

mappings 775
valid objects for nicknames 52

ORDER BY clause
in OLAP functions 187
select statement 554

order of evaluation
expressions 187

ordering DB2 books 904
ordinary tokens 63
ORG sample table 803
outer join

joined table 554
OVER clause, in OLAP

functions 187
overloaded function

multiple function instances 168
overloaded method 178

P
package names

definition 65
packages

authorization IDs
and binding 65
in dynamic statements 65

definition 20
page 764
parameter markers

CAST specification 187
host variables in dynamic

SQL 65
parameter name

definition 65
parent key 8
parent row 8
parent table 8
parentheses, precedence of

operations 187
partial declustering 28
PARTITION BY clause

in OLAP functions 187
PARTITION function (see

HASHEDVALUE) 371
partitioned relational database 1
partitioning data

across multiple partitions 28
compatibility table 141
partition compatibility 141

Index 937

partitioning keys
description 7

partitioning maps
definition 26

partitions
compatibility 141

pass-through
description 46
restrictions 46

PASSWORD
valid settings 764

path, SQL 168
PERCENT_ARGBYTES function

mapping option 763
phantom row 13, 827
PLAN_HINTS

valid settings 764
point of consistency, database 16
POSSTR function

basic description 259
description 427
values and arguments 427

POWER function
basic description 259

POWER scalar function
description 429
values and arguments 429

precedence
level operatorsor 187
order of evaluating

operations 187
precision

numbers, determined by
SQLLEN variable 621

precision-integer DECIMAL
function 327

predicates
basic, detailed diagram 229
BETWEEN, detailed

diagram 233
description 225
EXISTS 234
IN 235
LIKE 238
NULL 243
quantified 230
TYPE 244

prefix
operator 187

PREPARE statement
dynamic SQL 1

prevval-expression 187
primary keys

definition 7
printed books, ordering 904

privileges
CONTROL 2
description 2
EXECUTE 168, 178

procedure designator syntax
element xv

procedure name
definition 65

PROJECT sample table 803
promoting

data types 111
PUSHDOWN

valid settings 764
pushdown analysis

description 44
PUT_ROUTINE_SAR function

basic description 259
PUT_ROUTINE_SAR stored

procedure 548

Q
qualified column names 65
qualifiers

object name 65
reserved 823

quantified predicate 230
QUARTER function

basic description 260
description 430
values and arguments 430

queries
authorization IDs required 553
definition 553
description 16
example

recursive 861
SELECT statement 601

fragments 44
recursive 601

query optimization
description 44

R
RADIANS function

basic description 260
description 431
values and arguments 431

RAISE_ERROR function
basic description 260

RAISE_ERROR scalar function
description 432
values and arguments 432

raising errors
RAISE_ERROR function 432

RAND function
basic description 260

RAND scalar function
description 434
values and arguments 434

RANGE clause, OLAP
functions 187

RANK OLAP function 187
read stability (RS) 13

comparision table 827
REAL data type

description 94
REAL function

basic description 260
description 435
single precision conversion 435
values and arguments 435

REC2XML function
basic description 260

REC2XML scalar function
description 436
values and arguments 436

recursion
example 861
query 601

recursive common table
expression 601, 861

reference types
casting 113
comparisons 117
DEREF function 335
description 108

referential constraints
description 8

referential integrity
constraints 8

REGR_AVGX function 260
REGR_AVGY function 260
REGR_COUNT function

basic description 260
REGR_INTERCEPT or REGR_ICPT

function
basic description 260

REGR_R2 function
basic description 260

REGR_SLOPE function
basic description 260

REGR_SXX function 260
REGR_SXY function 260
REGR_SYY function 261
regression functions

description 284
REGR_AVGX 284
REGR_AVGY 284
REGR_COUNT 284

938 SQL Reference, Volume 1

regression functions (continued)
REGR_ICPT 284
REGR_INTERCEPT 284
REGR_R2 284
REGR_SLOPE 284
REGR_SXX 284
REGR_SXY 284
REGR_SYY 284

relational database
definition 1

release-pending connection state 29
remote

catalog information 43
function name 65
type name 65

remote authorization name 65
remote unit of work

description 29
REMOTE_AUTHID user option 773
REMOTE_DOMAIN user

option 773
REMOTE_NAME function mapping

option 763
REMOTE_PASSWORD user

option 773
remote-object-name 65
remote-schema-name 65
remote-table-name 65
REPEAT function

basic description 261
REPEAT scalar function

description 441
values and arguments 441

repeatable read (RR)
comparision table 827
description 13

REPLACE function
basic description 261

REPLACE scalar function
description 442
values and arguments 442

requester, application 29
reserved

qualifiers 823
schemas 823
words 823

resolution
function 168
method 178

result columns
subselect 554

result data type
arguments of COALESCE 134
multiple row VALUES

clause 134

result data type (continued)
operands 134
result expressions of CASE 134
set operator 134

result expressions of CASE
result data type 134

result table
definition 5
query 553

return identity column value
IDENTITY_VAL_LOCAL

function 376
returning hour part of values

HOUR function 375
returning microsecond from value

MICROSECOND function 401
returning minute from value

MINUTE function 403
returning month from value

MONTH function 405
returning seconds from value

SECOND function 448
returning substrings from a string

SUBSTR function 456
returning timestamp from values

TIMESTAMP function 466
reverse type mappings

introduction 791
RIGHT function

basic description 261
RIGHT scalar function

description 443
values and arguments 443

rollback
definition 16

ROLLUP grouping of GROUP BY
clause 554

ROUND function
basic description 261

ROUND scalar function
description 444
values and arguments 444

routines
procedures 545
SQL statements allowed 873

ROW clause
in OLAP functions 187

row function
description 168

ROWNUMBER (ROW_NUMBER)
OLAP function 187

rows
COUNT_BIG function 275
definition 5
dependent 8

rows (continued)
descendent 8
GROUP BY clause 554
HAVING clause 554
parent 8
search conditions, syntax 226
SELECT clause, syntax

diagram 554
self-referencing 8

RR (repeatable read) isolation level
comparision table 827
description 13

RS (read stability) isolation level
comparision table 827
description 13

RTRIM (SYSFUN schema) scalar
function 447

RTRIM function
basic description 261

RTRIM
function(SYSFUN.RTRIM) 261

RTRIM scalar function
description 446

run-time authorization ID 65

S
SALES sample table 803
sample database

creating 803
description 803
erasing 803

savepoint name
definition 65

SBCS (single-byte character set) data
definition 95

scalar fullselect expressions 187
scalar functions

DECIMAL function 327
description 168, 291

scale
of data

comparisons in SQL 117
determined by SQLLEN

variable 621
in arithmetic operations 187
number conversion in

SQL 117
of numbers

determined by SQLLEN
variable 621

schema names
definition 65

schemas
controlling use 4
definition 4

Index 939

schemas (continued)
privileges 4
reserved 823

scope
defining in CAST

specification 187
definition 108
dereference operation 187

SCOPE clause
in CAST specification 187

scoped-ref-expression
dereference operation 187

search conditions
AND logical operator 226
description 226
HAVING clause

arguments and rules 554
NOT logical operator 226
OR logical operator 226
order of evaluation 226
WHERE clause 554

SECOND function
basic description 261
description 448
values and arguments 448

sections
definition 20

SELECT clause
list notation, column

reference 554
with DISTINCT keyword 554

select list
application rules and syntax 554
description 554
notation rules and

conventions 554
SELECT statement

definition 601
examples 601
fullselect detailed syntax 595
subselects 554
VALUES clause 595

self-referencing row 8
self-referencing table 8
sequences

invoking 187
nextval-expression 187
prevval-expression 187
values, ordering 367

server options
COLLATING_SEQUENCE 764
COMM_RATE 764
CONNECTSTRING 764
CPU_RATIO 764
DBNAME 764

server options (continued)
description 50
FOLD_ID 764
FOLD_PW 764
IFILE 764
IGNORE_UDT 764
IO_RATIO 764
IUD_APP_SVPT_

ENFORCE 764
LOGIN_TIMEOUT 764
NODE 764
PACKET_SIZE 764
PASSWORD 764
PLAN_HINTS 764
PUSHDOWN 764
temporary 50
TIMEOUT 764
VARCHAR_NO_TRAILING_

BLANKS 764
server types, valid data source

types 759
server-name 65
servers

application
connecting applications to 29

description 50
set operators

EXCEPT, comparing
differences 595

INTERSECT, role of AND in
comparisons 595

result data type 134
UNION, correspondence to

OR 595
SET SERVER OPTION statement

setting an option temporarily 50
share locks 13
shift-in characters, not truncated by

assignments 117
SIGN function

basic description 262
SIGN scalar function

description 449
values and arguments 449

signatures
function 168
method 178

SIN function
basic description 262

SIN scalar function
description 450
values and arguments 450

single-precision floating-point data
type 94

SINH function
basic description 262

SINH scalar function
description 451
values and arguments 451

size limits
identifier length 607
SQL 607

small integer values from
expressions, SMALLINT
function 452

small integers
See SMALLINT data type 94

SMALLINT data type
description 94

SMALLINT function
basic description 262
description 452
values and arguments 452

SNAPSHOT_AGENT function 505
SNAPSHOT_APPL function 506
SNAPSHOT_APPL_INFO

function 510
SNAPSHOT_BP function 512
SNAPSHOT_CONTAINER

function 514
SNAPSHOT_DATABASE

function 516
SNAPSHOT_DBM function 521
SNAPSHOT_DYN_SQL

function 523
SNAPSHOT_FCM function 525
SNAPSHOT_FCMPARTITION

function 526
SNAPSHOT_LOCK function 527
SNAPSHOT_LOCKWAIT

function 529
SNAPSHOT_QUIESCERS

function 531
SNAPSHOT_RANGES function 532
SNAPSHOT_STATEMENT

function 533
SNAPSHOT_SUBSECT

function 535
SNAPSHOT_SWITCHES

function 537
SNAPSHOT_TABLE function 538
SNAPSHOT_TBS function 540
SNAPSHOT_TBS_CFG function 542
SOME quantified predicate 230
sorting

ordering of results 117
string comparisons 117

SOUNDEX function
basic description 262

940 SQL Reference, Volume 1

SOUNDEX function (continued)
description 453
values and arguments 453

sourced functions 168
SPACE function

basic description 262
SPACE scalar function

description 454
values and arguments 454

space, rules governing 63
special registers

CLIENT ACCTNG 148
CLIENT APPLNAME 149
CLIENT USERID 150
CLIENT WRKSTNNAME 151
CURRENT DATE 152
CURRENT

DBPARTITIONNUM 153
CURRENT DEFAULT

TRANSFORM GROUP 154
CURRENT DEGREE 155
CURRENT EXPLAIN

MODE 156
CURRENT EXPLAIN

SNAPSHOT 157
CURRENT FUNCTION

PATH 159
CURRENT MAINTAINED

TABLE TYPES FOR
OPTIMIZATION 158

CURRENT NODE (see
CURRENT
DBPARTITIONNUM) 153

CURRENT PATH 159
CURRENT QUERY

OPTIMIZATION 160
CURRENT REFRESH AGE 161
CURRENT SCHEMA 162
CURRENT SERVER 163
CURRENT SQLID 162
CURRENT TIME 164
CURRENT TIMESTAMP 165
CURRENT TIMEZONE 166
interaction, Explain 857
SQL language element 146
updatable 146
USER 167

specific name
definition 65

specifications
CAST 187

SQL (Structured Query Language)
limits 607
path 168

SQL dialect
description 45

SQL functions 168
SQL operations

basic 117
SQL Server

default wrapper names 48
valid objects for nicknames 52

SQL statements
allowed in routines 873
CALL 877
dynamic SQL, definition 1
immediate execution of dynamic

SQL 1
interactive SQL, definition 1
preparing and executing dynamic

SQL 1
static SQL, definition 1

SQL subquery, WHERE clause 554
SQL syntax

AVG aggregate function, results
on column set 270

basic predicate, detailed
diagram 229

comparing two predicates, truth
conditions 229, 244

CORRELATION aggregate
function results 272

COUNT_BIG function, arguments
and results 275

COVARIANCE aggregate
function results 277

EXISTS predicate 234
GENERATE_UNIQUE

function 367
GROUP BY clause, use in

subselect 554
IN predicate description 235
LIKE predicate, rules 238
multiple operations, order of

execution 595
regression functions results 284
search conditions, detailed

formats and rules 226
SELECT clause description 554
SQLCACHE_SNAPSHOT

function, results on set number
pairs 544

STDDEV aggregate function,
results 288

TYPE predicate 244
VARIANCE aggregate function

results 290
WHERE clause search

conditions 554

SQL Syntax
BETWEEN predicate, rules 233

SQL variable name 65
SQLCA (SQL communication area)

description 615
error reporting 615
partitioned database

systems 615
viewing interactively 615

SQLCACHE_SNAPSHOT
function 544

basic description 262
SQLD field in SQLDA 621
SQLDA (SQL descriptor area)

contents 621
SQLDABC field in SQLDA 621
SQLDAID field in SQLDA 621
SQLDATA field in SQLDA 621
SQLDATALEN field in SQLDA 621
SQLDATATYPE_NAME field in

SQLDA 621
SQLIND field in SQLDA 621
SQLJ (embedded SQL for Java)

connectivity 19
SQLLEN field in SQLDA 621
SQLLONGLEN field in SQLDA 621
SQLN field in SQLDA 621
SQLNAME field in SQLDA 621
SQLSTATE

in RAISE_ERROR function 432
SQLTYPE field in SQLDA 621
SQLVAR field in SQLDA 621
SQRT function

basic description 262
SQRT scalar function

description 455
STAFF sample table 803
STAFFG sample table 803
statements

names 65
states

connection 29
static SQL

description 1
STDDEV function 288

basic description 262
storage

structures 26
stored procedures

CALL statement 877
strings

assignment conversion rules 117
definition 20
expressions 187
operands 187

Index 941

Structured Query Language (SQL)
assignments 117
basic operands, assignments and

comparisons 117
comparison operation,

overview 117
structured types

description 108
host variables 65
method invocation 187
subtype treatment 187

sub-total rows 554
subqueries

HAVING clause 554
using fullselect as search

condition 65
WHERE clause 554

subselect
description 554
example sequence of

operations 554
examples 554
FROM clause, relation to

subselect 554
SUBSTR function

basic description 262
SUBSTR scalar function

description 456
values and arguments 456

substrings 456
subtypes

treatment in expressions 187
SUM function

basic description 262
SUM functions

detailed format description 289
values and arguments 289

summary tables
definition 5

super-aggregate rows 554
super-groups 554
supertype

identifier names 65
Sybase

data sources 52
default forward type

mappings 775, 791
default wrapper names 48

symmetric super-aggregate
rows 554

synonyms
qualifying a column name 65

syntax
common elements xv
description xiii

syntax (continued)
function designator xv
method designator xv
procedure designator xv

SYSADM authority
DB2 2

SYSCTRL authority 2
SYSMAINT authority 2
system administration (SYSADM)

authority
overview 2

system catalogs
views on system tables 636

system control authority
(SYSCTRL) 2

system maintenance authority
(SYSMAINT) 2

T
TABLE clause

table reference 554
table expressions

common 16
common table expressions 601
description 16

table functions
description 168, 494

table reference
alias 554
nested table expressions 554
nickname 554
table name 554
view name 554

table spaces
description 26
name 65

TABLE_NAME function
alias 460
basic description 263
description 460
values and arguments 460

TABLE_SCHEMA function
alias 461
basic description 263
description 461
values and arguments 461

table-structured files
valid objects for nicknames 52

tables
base 5
catalog views on system

tables 636
check constraints

types 8
collocation 28

tables (continued)
correlation name 65
declared temporary

description 5
definition 5
dependent 8
descendent 8
designator to avoid

ambiguity 65
exception 867
exposed names in FROM

clause 65
foreign key 7
FROM clause, subselect naming

conventions 554
names

description 65
in FROM clause 554
in SELECT clause, syntax

diagram 554
nested table expression 65
non-exposed names in FROM

clause 65
parent 8
partitioning key 7
primary key

description 7
qualified column name 65
results 5
SAMPLE database 803
scalar fullselect 65
self-referencing 8
subquery 65
summary 5
tablereference 554
transition 24
typed 5
unique correlation names 65

TAN function
basic description 263

TAN scalar function
description 463
values and arguments 463

TANH function
basic description 263

TANH scalar function
description 464
values and arguments 464

time
arithmetic operations, rules 187
CHAR, use in format

conversion 303
duration format 187
hour values, using in an

expression (HOUR) 375

942 SQL Reference, Volume 1

time (continued)
in expressions, TIME

function 465
returning

microseconds, from datetime
value 401

minutes, from datetime
value 403

seconds, from datetime
value 448

timestamp from values 466
values based on time 465

string representation
formats 101

using time in expressions 465
TIME data type

description 101
TIME function

basic description 263
description 465
values and arguments 465

TIMEOUT
valid settings 764

TIMESTAMP data type
description 101
WEEK scalar function 491
WEEK_ISO scalar function 492

TIMESTAMP function
basic description 263
description 466
values and arguments 466

TIMESTAMP_FORMAT function
basic description 263
description 468
values and arguments 468

TIMESTAMP_ISO function
basic description 263
description 470
values and arguments 470

TIMESTAMPDIFF function
basic description 264

TIMESTAMPDIFF scalar function
description 471
values and arguments 471

timestamps
arithmetic operations 187
data type 187
duration 187
from GENERATE_UNIQUE 367
string representation

formats 101
TO_CHAR function

basic description 264
description 473
values and arguments 473

TO_DATE function
basic description 264
description 474
values and arguments 474

tokens
case sensitivity 63
delimiter 63
ordinary 63
SQL language element 63

TRANSLATE function
basic description 264

TRANSLATE scalar function
character string 475
description 475
graphic string 475
values and arguments 475

treatment subtype 187
triggers

cascading 24
constraints, interaction 829
description 24
Explain tables 833
interactions 829
names 65

troubleshooting
DB2 documentation search 912
online information 914

TRUNC or TRUNCATE function
basic description 264

TRUNCATE or TRUNC scalar
function

description 478
values and arguments 478

truncation
numbers 117

truth tables 226
truth valued logic 226
tutorials 916
type mapping

name 65
type name 65
TYPE predicate

format 244
type preserving method 178
TYPE_ID function

basic description 265
data types 480
description 480
values and arguments 480

TYPE_NAME function
basic description 265
description 481
values and arguments 481

TYPE_SCHEMA function
basic description 265

TYPE_SCHEMA function (continued)
data types 482
description 482
values and arguments 482

typed tables
description 5
names 65

typed views
description 6
names 65

types
distinct 108
reference 108
structured 108

U
UCASE function

basic description 265
UCASE

function(SYSFUN.UCASE) 265
UCASE scalar function

description 483
values and arguments 483

UDFs (user-defined functions)
description 550

UDTs (user-defined types)
unsupported 54

unary
minus sign 187
plus sign 187

uncommitted reads (UR)
comparision table 827
isolation levels 13

unconnected state 29
undefined reference errors 65
Unicode (UCS-2)

functions in 291
UNION operator, role in comparison

of fullselect 595
unique constraint

definition 8
unique correlation names

table designators 65
unique keys

description 7, 8
units of work (UOW)

definition 16
distributed 29
remote 29

unknown condition, null value 226
updatable special registers 146
update lock 13
update rule, with referential

constraints 8

Index 943

UPPER function
description 483
values and arguments 483

UR (uncommitted read) isolation
level 13, 827

user mapping
description 51

user options
ACCOUNTING_STRING 773
description 51
REMOTE_AUTHID 773
REMOTE_DOMAIN 773
REMOTE_PASSWORD 773

USER special register 167
user-defined functions (UDFs)

description 168, 247, 550
user-defined methods

description 178
user-defined types (UDTs)

casting 113
description 108
distinct types

description 108
reference type 108
structured types 108
unsupported data types 54

V
value

definition 5, 92
null 92

VALUE function
basic description 265
description 484
values and arguments 484

VALUES clause
fullselect 595

VARCHAR data type
description 95
DOUBLE scalar function 357
WEEK scalar function 491
WEEK_ISO scalar function 492

VARCHAR function
basic description 265
description 485
values and arguments 485

VARCHAR_FORMAT function
basic description 265
description 487
values and arguments 487

VARCHAR_NO_TRAILING_
BLANKS

column option
valid settings 762

VARCHAR_NO_TRAILING_
BLANKS (continued)

server option
valid settings 764

VARGRAPHIC data type
description 97

VARGRAPHIC function
basic description 265
description 489
values and arguments 489

variables
transition 24

VARIANCE aggregate function 290
VARIANCE or VAR function

basic description 265
varying-length character string 95
varying-length graphic string 97
view name

definition 65
VIEWDEP catalog view

see catalog views, TABDEP 729
views

description 6
exposed names in FROM

clause 65
FROM clause, subselect naming

conventions 554
names in FROM clause 554
names in SELECT clause, syntax

diagram 554
non-exposed names in FROM

clause 65
qualifying a column name 65

W
WEEK function

basic description 265
WEEK scalar function

description 491
values and arguments 491

WEEK_ISO function
basic description 266

WEEK_ISO scalar function
description 492
values and arguments 492

WHERE clause
search function, subselect 554

wild cards, in LIKE predicate 238
WITH common table

expression 601
words, SQL reserved 823
wrappers

default names 48
description 48
names 65

wrappers (continued)
options

DB2_FENCED 774

X
XML

data types 107
functions

XML2CLOB 187
XMLAGG 187
XMLATTRIBUTES 187
XMLELEMENT 187

nicknames, valid objects for 52
XML2CLOB

XML function 187
XMLAGG

XML function 187
XMLATTRIBUTES

XML function 187
XMLELEMENT

XML function 187

Y
YEAR function

basic description 266
YEAR scalar function

description 493
values and arguments 493

944 SQL Reference, Volume 1

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 1993 - 2002 945

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

����

Part Number: CT17RNA

Printed in U.S.A.

SC09-4844-00

(1
P)

P/
N:

CT
17
RN
A

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2
U

ni
ve

rs
al

D
at

ab
as

e™

SQ
L

R
ef

er
en

ce
,V

ol
um

e
1

Ve
rs

io
n

8

	Contents
	About this book
	Who should use this book
	How this book is structured
	A brief overview of Volume 2

	How to read the syntax diagrams
	Common syntax elements
	Function designator
	Method designator
	Procedure designator

	Conventions used in this manual
	Error conditions
	Highlighting conventions

	Related documentation

	Chapter 1. Concepts
	Relational databases
	Structured Query Language (SQL)
	Authorization and privileges
	Schemas
	Tables
	Views
	Aliases
	Indexes
	Keys
	Constraints
	Unique constraints
	Referential constraints
	Insert rule
	Update rule
	Delete rule

	Table check constraints

	Isolation levels
	Queries
	Table expressions
	Application processes, concurrency, and recovery
	DB2 Call level interface (CLI) and open database connectivity (ODBC)
	Java database connectivity (JDBC) and embedded SQL for Java (SQLJ) programs
	Packages
	Catalog views
	Character conversion
	Event monitors
	Triggers
	Table spaces and other storage structures
	Data partitioning across multiple partitions
	Distributed relational databases
	Remote unit of work
	Application-directed distributed unit of work
	Application process connection states
	Connection states
	When a connection ends
	Options that govern distributed unit of work semantics

	Data representation considerations

	DB2 federated systems
	Federated systems
	Data sources
	The federated database
	The SQL Compiler and the query optimizer
	Compensation
	Pass-through sessions
	Wrappers and wrapper modules
	Server definitions and server options
	User mappings and user options
	Nicknames and data source objects
	Column options
	Data type mappings
	Function mappings and function templates
	Function mappings options
	Index specifications

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	Naming conventions and implicit object name qualifications
	Aliases
	Authorization IDs and authorization names
	Dynamic SQL characteristics at run time
	Authorization IDs and statement preparation

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Column name qualifiers in correlated references

	References to host variables
	Host variables in dynamic SQL
	References to BLOB, CLOB, and DBCLOB host variables
	References to locator variables
	References to BLOB, CLOB, and DBCLOB file reference variables
	References to structured type host variables

	Data types
	Data types
	Numbers
	Small integer (SMALLINT)
	Large integer (INTEGER)
	Big integer (BIGINT)
	Single-precision floating-point (REAL)
	Double-precision floating-point (DOUBLE or FLOAT)
	Decimal (DECIMAL or NUMERIC)

	Character strings
	Fixed-length character string (CHAR)
	Varying-length character strings

	Graphic strings
	Fixed-length graphic strings (GRAPHIC)
	Varying-length graphic strings

	Binary strings
	Binary large object (BLOB)

	Large objects (LOBs)
	Datetime values
	Date
	Time
	Timestamp
	String representations of datetime values

	DATALINK values
	XML values
	User-defined types
	Distinct types
	Structured types
	Reference types

	Promotion of data types
	Casting between data types
	Assignments and comparisons
	Numeric assignments
	String assignments
	Datetime assignments
	DATALINK assignments
	User-defined type assignments
	Reference type assignments
	Numeric comparisons
	String comparisons
	Datetime comparisons
	User-defined type comparisons
	Reference type comparisons

	Rules for result data types
	Character strings
	Graphic strings
	Character and graphic strings in a Unicode database
	Binary large object (BLOB)
	Numeric
	DATE
	TIME
	TIMESTAMP
	DATALINK
	User-defined types
	Nullable attribute of result

	Rules for string conversions
	Partition-compatible data types

	Constants
	Integer constants
	Floating-point constants
	Decimal constants
	Character string constants
	Hexadecimal constants
	Graphic string constants

	Special registers
	Special registers
	CLIENT ACCTNG
	CLIENT APPLNAME
	CLIENT USERID
	CLIENT WRKSTNNAME
	CURRENT DATE
	CURRENT DBPARTITIONNUM
	CURRENT DEFAULT TRANSFORM GROUP
	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT EXPLAIN SNAPSHOT
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	CURRENT PATH
	CURRENT QUERY OPTIMIZATION
	CURRENT REFRESH AGE
	CURRENT SCHEMA
	CURRENT SERVER
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	USER

	Functions
	External, SQL, and sourced user-defined functions
	Scalar, column, row, and table user-defined functions
	Function signatures
	Function resolution
	Determining the best fit
	Function path considerations for built-in functions
	Example of function resolution

	Function invocation
	Conservative binding semantics

	Methods
	External and SQL user-defined methods
	Method signatures
	Method resolution
	Determining the best fit
	Example of method resolution

	Method invocation
	Dynamic dispatch of methods

	Expressions
	Expressions without operators
	Expressions with the concatenation operator
	User-defined types

	Expressions with arithmetic operators
	Arithmetic errors

	Two-integer operands
	Integer and decimal operands
	Two-decimal operands
	Decimal arithmetic in SQL
	Addition and subtraction
	Multiplication
	Division

	Floating-point operands
	User-defined types as operands
	Scalar fullselect
	Datetime operations and durations
	Labeled durations
	Date duration
	Time duration
	Timestamp duration

	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	CASE expressions
	CAST specifications
	Dereference operations
	OLAP functions
	XML functions
	Method invocation
	Subtype treatment
	Sequence reference

	Predicates
	Predicates
	Search conditions
	Basic predicate
	Quantified predicate
	BETWEEN predicate
	EXISTS predicate
	IN predicate
	LIKE predicate
	NULL predicate
	TYPE predicate

	Chapter 3. Functions
	Functions overview
	Aggregate functions
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE
	GROUPING
	MAX
	MIN
	Regression functions
	STDDEV
	SUM
	VARIANCE
	Scalar functions
	ABS or ABSVAL
	ACOS
	ASCII
	ASIN
	ATAN
	ATAN2
	ATANH
	BIGINT
	BLOB
	CEILING or CEIL
	CHAR
	CHR
	CLOB
	COALESCE
	CONCAT
	COS
	COSH
	COT
	DATE
	DAY
	DAYNAME
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DBPARTITIONNUM
	DECIMAL
	DECRYPT_BIN and DECRYPT_CHAR
	DEGREES
	DEREF
	DIFFERENCE
	DIGITS
	DLCOMMENT
	DLLINKTYPE
	DLNEWCOPY
	DLPREVIOUSCOPY
	DLREPLACECONTENT
	DLURLCOMPLETE
	DLURLCOMPLETEONLY
	DLURLCOMPLETEWRITE
	DLURLPATH
	DLURLPATHONLY
	DLURLPATHWRITE
	DLURLSCHEME
	DLURLSERVER
	DLVALUE
	DOUBLE
	ENCRYPT
	EVENT_MON_STATE
	EXP
	FLOAT
	FLOOR
	GETHINT
	GENERATE_UNIQUE
	GRAPHIC
	HASHEDVALUE
	HEX
	HOUR
	IDENTITY_VAL_LOCAL
	INSERT
	INTEGER
	JULIAN_DAY
	LCASE or LOWER
	LCASE (SYSFUN schema)
	LEFT
	LENGTH
	LN
	LOCATE
	LOG
	LOG10
	LONG_VARCHAR
	LONG_VARGRAPHIC
	LTRIM
	LTRIM (SYSFUN schema)
	MICROSECOND
	MIDNIGHT_SECONDS
	MINUTE
	MOD
	MONTH
	MONTHNAME
	MQPUBLISH
	MQREAD
	MQREADCLOB
	MQRECEIVE
	MQRECEIVECLOB
	MQSEND
	MQSUBSCRIBE
	MQUNSUBSCRIBE
	MULTIPLY_ALT
	NULLIF
	POSSTR
	POWER
	QUARTER
	RADIANS
	RAISE_ERROR
	RAND
	REAL
	REC2XML
	REPEAT
	REPLACE
	RIGHT
	ROUND
	RTRIM
	RTRIM (SYSFUN schema)
	SECOND
	SIGN
	SIN
	SINH
	SMALLINT
	SOUNDEX
	SPACE
	SQRT
	SUBSTR
	TABLE_NAME
	TABLE_SCHEMA
	TAN
	TANH
	TIME
	TIMESTAMP
	TIMESTAMP_FORMAT
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TO_CHAR
	TO_DATE
	TRANSLATE
	TRUNCATE or TRUNC
	TYPE_ID
	TYPE_NAME
	TYPE_SCHEMA
	UCASE or UPPER
	VALUE
	VARCHAR
	VARCHAR_FORMAT
	VARGRAPHIC
	WEEK
	WEEK_ISO
	YEAR
	Table functions
	MQREADALL
	MQREADALLCLOB
	MQRECEIVEALL
	MQRECEIVEALLCLOB
	SNAPSHOT_AGENT
	SNAPSHOT_APPL
	SNAPSHOT_APPL_INFO
	SNAPSHOT_BP
	SNAPSHOT_CONTAINER
	SNAPSHOT_DATABASE
	SNAPSHOT_DBM
	SNAPSHOT_DYN_SQL
	SNAPSHOT_FCM
	SNAPSHOT_FCMPARTITION
	SNAPSHOT_LOCK
	SNAPSHOT_LOCKWAIT
	SNAPSHOT_QUIESCERS
	SNAPSHOT_RANGES
	SNAPSHOT_STATEMENT
	SNAPSHOT_SUBSECT
	SNAPSHOT_SWITCHES
	SNAPSHOT_TABLE
	SNAPSHOT_TBS
	SNAPSHOT_TBS_CFG
	SQLCACHE_SNAPSHOT
	Procedures
	GET_ROUTINE_SAR
	PUT_ROUTINE_SAR
	User-defined functions

	Chapter 4. Queries
	SQL queries
	Subselect
	select-clause
	Select list notation:
	Limitations on string columns
	Applying the select list

	from-clause
	table-reference
	Table function references
	Correlated references in table-references

	joined-table
	Join operations

	where-clause
	group-by-clause
	grouping-sets
	super-groups
	Combining grouping sets

	having-clause
	order-by-clause
	fetch-first-clause
	Examples of subselects
	Examples of joins
	Examples of grouping sets, cube, and rollup

	Fullselect
	Examples of a fullselect

	Select-statement
	common-table-expression
	update-clause
	read-only-clause
	optimize-for-clause
	Examples of a select-statement

	Appendix A. SQL limits
	Appendix B. SQLCA (SQL communications area)
	SQLCA field descriptions
	Error reporting
	SQLCA usage in partitioned database systems

	Appendix C. SQLDA (SQL descriptor area)
	SQLDA field descriptions
	Fields in the SQLDA header
	Fields in an occurrence of a base SQLVAR
	Fields in an occurrence of a secondary SQLVAR

	Effect of DESCRIBE on the SQLDA
	SQLTYPE and SQLLEN
	Unrecognized and unsupported SQLTYPEs
	Packed decimal numbers
	SQLLEN field for decimal

	Appendix D. Catalog views
	‘Road map’ to catalog views
	‘Road map’ to updatable catalog views
	System catalog views
	SYSIBM.SYSDUMMY1
	SYSCAT.ATTRIBUTES
	SYSCAT.BUFFERPOOLDBPARTITIONS
	SYSCAT.BUFFERPOOLS
	SYSCAT.CASTFUNCTIONS
	SYSCAT.CHECKS
	SYSCAT.COLAUTH
	SYSCAT.COLCHECKS
	SYSCAT.COLDIST
	SYSCAT.COLGROUPDIST
	SYSCAT.COLGROUPDISTCOUNTS
	SYSCAT.COLGROUPS
	SYSCAT.COLOPTIONS
	SYSCAT.COLUMNS
	SYSCAT.COLUSE
	SYSCAT.CONSTDEP
	SYSCAT.DATATYPES
	SYSCAT.DBAUTH
	SYSCAT.DBPARTITIONGROUPDEF
	SYSCAT.DBPARTITIONGROUPS
	SYSCAT.EVENTMONITORS
	SYSCAT.EVENTS
	SYSCAT.EVENTTABLES
	SYSCAT.FULLHIERARCHIES
	SYSCAT.FUNCMAPOPTIONS
	SYSCAT.FUNCMAPPARMOPTIONS
	SYSCAT.FUNCMAPPINGS
	SYSCAT.HIERARCHIES
	SYSCAT.INDEXAUTH
	SYSCAT.INDEXCOLUSE
	SYSCAT.INDEXDEP
	SYSCAT.INDEXES
	SYSCAT.INDEXEXPLOITRULES
	SYSCAT.INDEXEXTENSIONDEP
	SYSCAT.INDEXEXTENSIONMETHODS
	SYSCAT.INDEXEXTENSIONPARMS
	SYSCAT.INDEXEXTENSIONS
	SYSCAT.INDEXOPTIONS
	SYSCAT.KEYCOLUSE
	SYSCAT.NAMEMAPPINGS
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PACKAGES
	SYSCAT.PARTITIONMAPS
	SYSCAT.PASSTHRUAUTH
	SYSCAT.PREDICATESPECS
	SYSCAT.PROCOPTIONS
	SYSCAT.PROCPARMOPTIONS
	SYSCAT.REFERENCES
	SYSCAT.REVTYPEMAPPINGS
	SYSCAT.ROUTINEAUTH
	SYSCAT.ROUTINEDEP
	SYSCAT.ROUTINEPARMS
	SYSCAT.ROUTINES
	SYSCAT.SCHEMAAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SEQUENCEAUTH
	SYSCAT.SEQUENCES
	SYSCAT.SERVEROPTIONS
	SYSCAT.SERVERS
	SYSCAT.STATEMENTS
	SYSCAT.TABAUTH
	SYSCAT.TABCONST
	SYSCAT.TABDEP
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TABOPTIONS
	SYSCAT.TBSPACEAUTH
	SYSCAT.TRANSFORMS
	SYSCAT.TRIGDEP
	SYSCAT.TRIGGERS
	SYSCAT.TYPEMAPPINGS
	SYSCAT.USEROPTIONS
	SYSCAT.VIEWS
	SYSCAT.WRAPOPTIONS
	SYSCAT.WRAPPERS
	SYSSTAT.COLDIST
	SYSSTAT.COLUMNS
	SYSSTAT.INDEXES
	SYSSTAT.ROUTINES
	SYSSTAT.TABLES

	Appendix E. Federated systems
	Valid server types in SQL statements
	CTLIB wrapper
	DBLIB wrapper
	DJXMSSQL3 wrapper
	DRDA wrapper
	Informix wrapper
	MSSQLODBC3 wrapper
	NET8 wrapper
	ODBC wrapper
	OLE DB wrapper
	SQLNET wrapper

	Column options for federated systems
	Function mapping options for federated systems
	Server options for federated systems
	User options for federated systems
	Wrapper options for federated systems
	Default forward data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for UNIX and Windows data sources
	Informix data sources
	Oracle SQLNET data sources
	Oracle NET8 data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Sybase data sources

	Default reverse data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for UNIX and Windows data sources
	Informix data sources
	Oracle SQLNET data sources
	Oracle NET8 data sources
	Microsoft SQL Server data sources
	Sybase data sources

	Appendix F. The SAMPLE database
	Creating the SAMPLE database
	Erasing the SAMPLE database
	CL_SCHED table
	DEPARTMENT table
	EMPLOYEE table
	EMP_ACT table
	EMP_PHOTO table
	EMP_RESUME table
	IN_TRAY table
	ORG table
	PROJECT table
	SALES table
	STAFF table
	STAFFG table (double-byte code pages only)
	Sample files with BLOB and CLOB data type
	Quintana photo
	Quintana resume
	Nicholls photo
	Nicholls resume
	Adamson photo
	Adamson resume
	Walker photo
	Walker resume

	Appendix G. Reserved schema names and reserved words
	Appendix H. Comparison of isolation levels
	Appendix I. Interaction of triggers and constraints
	Appendix J. Explain tables
	Explain tables
	EXPLAIN_ARGUMENT table
	EXPLAIN_INSTANCE table
	EXPLAIN_OBJECT table
	EXPLAIN_OPERATOR table
	EXPLAIN_PREDICATE table
	EXPLAIN_STATEMENT table
	EXPLAIN_STREAM table
	ADVISE_INDEX table
	ADVISE_WORKLOAD table

	Appendix K. Explain register values
	Appendix L. Recursion example: bill of materials
	Example 1: Single level explosion
	Example 2: Summarized explosion
	Example 3: Controlling depth

	Appendix M. Exception tables
	Rules for creating an exception table
	Handling rows in an exception table
	Querying exception tables

	Appendix N. SQL statements allowed in routines
	Appendix O. CALL invoked from a compiled statement
	Appendix P. Japanese and traditional-Chinese extended UNIX code (EUC) considerations
	Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers

	Data types
	Character strings
	Graphic strings
	Assignments and comparisons
	Rules for result data types
	Rules for string conversions

	Constants
	Graphic string constants

	Functions
	Expressions
	With the concatenation operator

	Predicates
	LIKE predicate

	Functions
	LENGTH
	SUBSTR
	TRANSLATE
	VARGRAPHIC

	Statements
	CONNECT
	PREPARE

	Appendix Q. Backus-Naur form (BNF) specifications for DATALINKs
	Appendix R. DB2 Universal Database technical information
	Overview of DB2 Universal Database technical information
	Categories of DB2 technical information
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Accessing online help
	Finding topics by accessing the DB2 Information Center from a browser
	Finding product information by accessing the DB2 Information Center from the administration tools
	Viewing technical documentation online directly from the DB2 HTML Documentation CD
	Updating the HTML documentation installed on your machine
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Troubleshooting DB2 documentation search with Netscape 4.x
	Searching the DB2 documentation
	Online DB2 troubleshooting information
	Accessibility
	Keyboard Input and Navigation
	Keyboard Input
	Keyboard Focus

	Accessible Display
	Font Settings
	Non-dependence on Color

	Alternative Alert Cues
	Compatibility with Assistive Technologies
	Accessible Documentation

	DB2 tutorials
	DB2 Information Center for topics

	Appendix S. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

