IBM~ DB2 Universal Database

SQL Reference Volume 1

Version 8

SC09-4844-00






IBM~ DB2 Universal Database

SQL Reference Volume 1

Version 8

SC09-4844-00



Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

+ To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order|

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com /planetwide|

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993 - 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.


http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book . . . . . . . . . .Xxi Remote unit of work . . . .30
Who should use this book . . . . . . .xi Application-directed dlstrlbuted unlt of
How this book is structured. . . . . . .xi work . . . . .. .33
A brief overview of Volume 2 . . . . . xii Data representatlon Con51derat10ns .. .38
How to read the syntax diagrams . . . . xiii DB2 federated systems . . . . . . . .39
Common syntax elements . . . . . . .Xxv Federated systems . . . . . . . . .39
Function designator . . . . . . . .Xv Data sources . . |
Method designator . . . . . . . . xvii The federated database .o .. .43
Procedure designator . . . . . . . xviii The SQL Compﬂer and the query
Conventions used in this manual . . . . . xx optimizer . . . oo 44
Error conditions. . . D 0 Compensation . . . . . . . . . .45
Highlighting conventlons B o Pass-through sessions . . . ... .46
Related documentation . . . . . . . .xxi Wrappers and wrapper modules ... .48
Server definitions and server options. . . 50
Chapter 1. Concepts . .1 User mappings and user options . . . .51
Relational databases. .1 Nicknames and data source objects .52
Structured Query Language (SQL) o1 Column options. .. . . . . .53
Authorization and privileges . .2 Data type mappings . . . . 54
Schemas. .4 Function mappings and functlon templates 56
Tables .5 Function mappings options . . . . . .57
Views .6 Index specifications . . . . . . . .58
Aliases . .7
Indexes . .7 Chapter 2. Language elements . . . . .61
Keys . .7 Characters . . . . . . . . . . . .6l
Constraints. . . 8 Tokens. . . . . . . . . . . . . .63
Unique constraints . .9 Identifiers. . . . . 65
Referential constraints . .9 Naming conventlons and 1Inphc1t ob]ect
Table check constraints .12 name qualifications . 65
Isolation levels . .13 Aliases . . 70
Queries . . 16 Authorization IDs and authorlzatlon
Table expressions e . 16 names . . .71
Application processes, concurrency, and Column names . .76
recovery . . . 16 References to host varlables . 83
DB2 Call level 1nterface (CLI) and open Data types .92
database connectivity (ODBC) . 19 Data types .92
Java database connectivity (JDBC) and Numbers . .94
embedded SQL for Java (SQL]) programs . . 19 Character strings . 95
Packages . . .. 20 Graphic strings . .97
Catalog views . 20 Binary strings . 98
Character conversion . . 20 Large objects (LOBs) . .99
Event monitors . .23 Datetlme values . 101
Triggers . . .24 DATALINK values . 105
Table spaces and other storage structures . 26 XML values. . 107
Data partitioning across multiple partitions 28 User-defined types . 108
Distributed relational databases .29 Promotion of data types. . 111
© Copyright IBM Corp. 1993 - 2002 iii



Casting between data types
Assignments and comparisons
Rules for result data types .
Rules for string conversions
Partition-compatible data types .

Constants

Integer constants .

Floating-point constants.

Decimal constants.

Character string constants .
Hexadecimal constants .
Graphic string constants

Special registers

Special registers
CLIENT ACCTNG
CLIENT APPLNAME
CLIENT USERID .

CLIENT WRKSTNNAME .

CURRENT DATE .

CURRENT DBPARTITIONNUM
CURRENT DEFAULT TRANSFORM

GROUP . .
CURRENT DEGREE

CURRENT EXPLAIN MODE .
CURRENT EXPLAIN SNAPSHOT .
CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION
CURRENT PATH .

CURRENT QUERY OPTIMIZATION
CURRENT REFRESH AGE.

CURRENT SCHEMA
CURRENT SERVER .
CURRENT TIME .

CURRENT TIMESTAMP
CURRENT TIMEZONE .

USER .

Functions

External, SQL, and sourced user- defmed

functions.

Scalar, column, row, and table
user-defined functions .

Function signatures .
Function resolution .
Function invocation .

Conservative binding semantlcs .

Methods .

iv

External and SQL user—defmed methods

Method signatures
Method resolution
Method invocation

SQL Reference, Volume 1

. 113
. 117
. 134
. 140
. 141
. 143
. 143
. 144
. 144
. 144
. 145
. 145
. 146
. 146
. 148
. 149
. 150
. 151
. 152
. 153

. 154
. 155
. 156
. 157

. 158
. 159
. 160
. 161
. 162
. 163
. 164
. 165
. 166
. 167

. 168

. 168

. 168
. 169
. 170
. 174
. 175
. 178

178

. 179
. 180
. 183

Dynamic dispatch of methods

Expressions .

Expressmns Wlthout operators
Expressions with the concatenation

operator .

Expressions with arlthmetlc operators .
Two-integer operands

Integer and decimal operands.
Two-decimal operands .

Decimal arithmetic in SQL .
Floating-point operands.

User-defined types as operands .

Scalar fullselect

Datetime operations and duratlons .
Datetime arithmetic in SQL
Precedence of operations

CASE expressions.

CAST specifications .
Dereference operations .

OLAP functions
XML functions .
Method invocation
Subtype treatment
Sequence reference
Predicates

Predicates

Search conditions .
Basic predicate.

Quantified predicate .
BETWEEN predicate .

EXISTS predicate .
IN predicate

LIKE predicate.
NULL predicate
TYPE predicate

Chapter 3. Functions .

Functions overview .
Aggregate functions .
AVG .
CORRELATION
COUNT .
COUNT_BIG
COVARIANCE.
GROUPING

MAX .

MIN . . . . . .
Regression functions .
STDDEV .

SUM .

. 184
. 187
. 188

. 188
. 191
. 192
. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 196
. 200
. 201
. 203
. 206
. 207
. 214
. 218
. 219
. 220
. 225
. 225
. 226
. 229
. 230
. 233
. 234
. 235
. 238
. 243
. 244

. 247
. 247
. 269
. 270
. 272
. 273
. 275
. 277
. 278
. 280
. 282
. 284
. 288
. 289



VARIANCE .
Scalar functions
ABS or ABSVAL .
ACOS.

ASCII.

ASIN .

ATAN.

ATAN2

ATANH .

BIGINT .

BLOB. ..
CEILING or CEIL.
CHAR

CHR .

CLOB.
COALESCE .
CONCAT

COSs

COSH.

COT .

DATE.

DAY . . .
DAYNAME .
DAYOFWEEK .
DAYOFWEEK_ISO
DAYOFYEAR .
DAYS.

DBCLOB. ..
DBPARTITIONNUM.
DECIMAL .

DECRYPT_BIN and DECRYPT_CHAR.

DEGREES

DEREF

DIFFERENCE .

DIGITS

DLCOMMENT.
DLLINKTYPE .
DLNEWCOPY .
DLPREVIOUSCOPY .
DLREPLACECONTENT
DLURLCOMPLETE .
DLURLCOMPLETEONLY .
DLURLCOMPLETEWRITE.
DLURLPATH .
DLURLPATHONLY .
DLURLPATHWRITE .
DLURLSCHEME .
DLURLSERVER
DLVALUE

DOUBLE.

. 290
. 291
. 292
. 293
. 294
. 295
. 296
. 297
. 298
. 299
. 301
. 302
. 303
. 309
. 310
. 311
. 312
. 313
. 314
. 315
. 316
. 318
. 319
. 320
. 321
. 322
. 323
. 324
. 325
. 330
. 332
. 334
. 335
. 336
. 337
. 338
. 339
. 340
. 343
. 345
. 347
. 348
. 349
. 350
. 351
. 352
. 353
. 354
. 355
. 357

ENCRYPT .
EVENT_MON_STATE
EXP

FLOAT

FLOOR .

GETHINT .
GENERATE_UNIQUE
GRAPHIC
HASHEDVALUE .

HEX .

HOUR R
IDENTITY_VAL_LOCAL
INSERT .

INTEGER
JULIAN_DAY .

LCASE or LOWER

LCASE (SYSFUN schema) .

LEFT .

LENGTH

ILN. . .

LOCATE.

LOG .

LOGI10 .
LONG_VARCHAR
LONG_VARGRAPHIC .
LTRIM

LTRIM (SYSFUN schema) .

MICROSECOND .
MIDNIGHT_SECONDS.
MINUTE.

MOD .

MONTH.
MONTHNAME
MQPUBLISH
MQREAD
MQREADCLOB
MQRECEIVE )
MQRECEIVECLOB .
MQSEND
MQSUBSCRIBE . .
MQUNSUBSCRIBE .
MULTIPLY_ALT .
NULLIF .

POSSTR .

POWER .
QUARTER .
RADIANS
RAISE_ERROR.
RAND

REAL.

. 359
. 362
. 363
. 364
. 365
. 366
. 367
. 369
. 371
. 373
. 375
. 376
. 382
. 384
. 386
. 387
. 388
. 389
. 390
. 392
. 393
. 394
. 395
. 396
. 397
. 398
. 400
. 401
. 402
. 403
. 404
. 405
. 406
. 407
. 410
. 412
. 414
. 416
. 418
. 420
. 422
. 424
. 426
. 427
. 429
. 430
. 431
. 432
. 434
. 435

Contents

A\



REC2XML .

REPEAT .

REPLACE

RIGHT

ROUND .

RTRIM

RTRIM (SYSFUN schema)
SECOND .
SIGN .

SIN

SINH .

SMALLINT .
SOUNDEX .

SPACE

SQRT .

SUBSTR .
TABLE_NAME.
TABLE_SCHEMA .

TAN .

TANH

TIME .

TIMESTAMP
TIMESTAMP_ FORMAT
TIMESTAMP_ISO.
TIMESTAMPDIFE.
TO_CHAR .

TO_DATE

TRANSLATE
TRUNCATE or TRUNC
TYPE_ID.

TYPE_NAME .
TYPE_SCHEMA .
UCASE or UPPER
VALUE .

VARCHAR . .
VARCHAR_FORMAT
VARGRAPHIC.

WEEK

WEEK_ISO .

YEAR.

Table functions.
MQREADALL .
MQREADALLCLOB.
MQRECEIVEALL .
MQRECEIVEALLCLOB.
SNAPSHOT_AGENT
SNAPSHOT_APPL
SNAPSHOT_APPL_INFO .
SNAPSHOT_BP
SNAPSHOT CONTAINER

vi SQL Reference, Volume 1

. 436
. 441
. 442
. 443
. 444
. 446
. 447
. 448
. 449
. 450
. 451
. 452
. 453
. 454
. 455
. 456
. 460
. 461
. 463
. 464
. 465
. 466
. 468
. 470
. 471
. 473
. 474
. 475
. 478
. 480
. 481
. 482
. 483
. 484
. 485
. 487
. 489
. 491
. 492
. 493
. 494
. 495
. 497
. 499
. 502
. 505
. 506
. 510
. 512
. 514

SNAPSHOT_DATABASE
SNAPSHOT_DBM
SNAPSHOT_DYN_SQL.
SNAPSHOT_FCM
SNAPSHOT_ FCMPARTITION
SNAPSHOT_LOCK .
SNAPSHOT_LOCKWAIT .
SNAPSHOT_QUIESCERS .
SNAPSHOT_RANGES .
SNAPSHOT_STATEMENT .
SNAPSHOT_SUBSECT .
SNAPSHOT_SWITCHES
SNAPSHOT_TABLE .
SNAPSHOT_TBS .
SNAPSHOT_TBS_CFG .
SQLCACHE_SNAPSHOT .
Procedures .
GET_ROUTINE SAR
PUT_ROUTINE_SAR
User-defined functions .

Chapter 4. Queries .

SQL queries.

Subselect.
select-clause.
from-clause .
table-reference .
joined-table .
where-clause
group-by-clause
having-clause .
order-by-clause
fetch-first-clause
Examples of subselects .
Examples of joins .

Examples of grouping sets, Cube and

rollup .
Fullselect.

Examples of a fullselect
Select-statement

common-table- expressmn .

update-clause .
read-only-clause
optimize-for-clause

Examples of a select—statement

Appendix A. SQL limits

Appendix B. SQLCA (SQL
communications area)

. 516
. 521
. 523
. 525
. 526
. 527
. 529
. 531
. 532
. 533
. 535
. 537
. 538
. 540
. 542
. 544
. 545
. 546
. 548
. 550

. 553
. 553
. 554
. 555
. 560
. 561
. 565
. 568
. 569
. 576
. 576
. 579
. 580
. 583

. 586
. 597
. 598
. 601
. 601
. 603
. 604
. 605
. 605

. 607

. 615



SQLCA field descriptions .

Error reporting. .
SQLCA usage in partltloned database
systems . e

Appendix C. SQLDA (SQL descrlptor
area) . .
SQLDA fleld descrlptlons .
Fields in the SQLDA header
Fields in an occurrence of a base SQLVAR
Fields in an occurrence of a secondary
SQLVAR .
Effect of DESCRIBE on the SQLDA
SQLTYPE and SQLLEN. .
Unrecognized and unsupported
SQLTYPEs . .
Packed decimal numbers
SQLLEN field for decimal .

Appendix D. Catalog views .

‘Road map’ to catalog views . .
‘Road map’ to updatable catalog views
System catalog views
SYSIBM.SYSDUMMY1 .
SYSCAT.ATTRIBUTES

SYSCAT. BUFFERPOOLDBPARTITIONS
SYSCAT.BUFFERPOOLS
SYSCAT.CASTFUNCTIONS
SYSCAT.CHECKS.
SYSCAT.COLAUTH .
SYSCAT.COLCHECKS .
SYSCAT.COLDIST
SYSCAT.COLGROUPDIST .
SYSCAT.COLGROUPDISTCOUNTS.
SYSCAT.COLGROUPS .
SYSCAT.COLOPTIONS .
SYSCAT.COLUMNS .
SYSCAT.COLUSE .
SYSCAT.CONSTDEP .
SYSCAT.DATATYPES
SYSCAT.DBAUTH

SYSCAT. DBPARTITIONGROUPDEF
SYSCAT.DBPARTITIONGROUPS
SYSCAT.EVENTMONITORS .
SYSCAT.EVENTS .
SYSCAT.EVENTTABLES
SYSCAT.FULLHIERARCHIES.
SYSCAT.FUNCMAPOPTIONS
SYSCAT.FUNCMAPPARMOPTIONS
SYSCAT.FUNCMAPPINGS.

. 615
. 619

. 620

. 621

. 621
. 622

623

. 625
. 627
. 629

. 631
. 631
. 632

. 633
. 633
. 636
. 636
. 638
. 639
. 641
. 642
. 643
. 644
. 645
. 646
. 647
. 648
. 649
. 650
. 651
. 652
. 657
. 658
. 659
. 661
. 663
. 664
. 665
. 667
. 668
. 669
. 670
. 671
. 672

SYSCAT.HIERARCHIES.
SYSCAT.INDEXAUTH .
SYSCAT.INDEXCOLUSE
SYSCAT.INDEXDEP .
SYSCAT.INDEXES

SYSCAT. INDEXEXPLOITRULES
SYSCAT.INDEXEXTENSIONDEP
SYSCAT.INDEXEXTENSIONMETHODS .
SYSCAT.INDEXEXTENSIONPARMS
SYSCAT.INDEXEXTENSIONS.
SYSCAT.INDEXOPTIONS .
SYSCAT.KEYCOLUSE
SYSCAT.NAMEMAPPINGS
SYSCAT.PACKAGEAUTH .
SYSCAT.PACKAGEDEP.
SYSCAT.PACKAGES.
SYSCAT.PARTITIONMAPS
SYSCAT.PASSTHRUAUTH.
SYSCAT.PREDICATESPECS
SYSCAT.PROCOPTIONS
SYSCAT.PROCPARMOPTIONS .
SYSCAT.REFERENCES .
SYSCAT.REVTYPEMAPPINGS
SYSCAT.ROUTINEAUTH .
SYSCAT.ROUTINEDEP .
SYSCAT.ROUTINEPARMS .
SYSCAT.ROUTINES .
SYSCAT.SCHEMAAUTH
SYSCAT.SCHEMATA
SYSCAT.SEQUENCEAUTH
SYSCAT.SEQUENCES
SYSCAT.SERVEROPTIONS.
SYSCAT.SERVERS.
SYSCAT.STATEMENTS .
SYSCAT.TABAUTH .
SYSCAT.TABCONST .
SYSCAT.TABDEP .
SYSCAT.TABLES .
SYSCAT.TABLESPACES.
SYSCAT.TABOPTIONS .
SYSCAT.TBSPACEAUTH
SYSCAT.TRANSFORMS.
SYSCAT.TRIGDEP
SYSCAT.TRIGGERS .
SYSCAT.TYPEMAPPINGS .
SYSCAT.USEROPTIONS
SYSCAT.VIEWS .
SYSCAT.WRAPOPTIONS .
SYSCAT.WRAPPERS.
SYSSTAT.COLDIST

Contents

. 673
. 674
. 675
. 676
. 677
. 682
. 683
. 684
. 685
. 686
. 687
. 688
. 689
. 690
. 691
. 693
. 699
. 700
. 701
. 702
. 703
. 704
. 705
. 707
. 708
. 709
. 711
. 718
. 719
. 720
. 721
. 723
. 724
. 725
. 726
. 728
. 729
. 730
. 735
. 736
. 737
. 738
. 739
. 740
. 741
. 743
. 744
. 745
. 746
. 747

vii



SYSSTAT.COLUMNS.
SYSSTATINDEXES
SYSSTAT.ROUTINES.
SYSSTAT.TABLES .

Appendix E. Federated systems .
Valid server types in SQL statements

CTLIB wrapper

DBLIB wrapper .

DJXMSSQL3 wrapper

DRDA wrapper

Informix wrapper .

MSSQLODBC3 wrapper

NET8 wrapper .

ODBC wrapper

OLE DB wrapper .

SQLNET wrapper. .
Column options for federated systems
Function mapping options for federated
systems . .

Server options for federated systems

User options for federated systems .

Wrapper options for federated systems

Default forward data type mappings .
DB2 for z/OS and OS/390 data sources
DB2 for iSeries data sources

DB2 Server for VM and VSE data sources
DB2 for UNIX and Windows data sources

Informix data sources .
Oracle SQLNET data sources .
Oracle NET8 data sources . .
Microsoft SQL Server data sources .
ODBC data sources .
Sybase data sources .

Default reverse data type mappmgs .
DB2 for z/0OS and OS/390 data sources
DB2 for iSeries data sources

DB2 Server for VM and VSE data sources
DB2 for UNIX and Windows data sources

Informix data sources .
Oracle SQLNET data sources .
Oracle NET8 data sources .
Microsoft SQL Server data sources .
Sybase data sources .

Appendix F. The SAMPLE database .
Creating the SAMPLE database .
Erasing the SAMPLE database
CL_SCHED table . .
DEPARTMENT table.

viii SQL Reference, Volume 1

. 749
. 751
. 755
. 757

. 759
. 759
. 759
. 759
. 759
. 759
. 761
. 761
. 761
. 761
. 761
. 761
. 762

. 763
. 764
. 773
. 774
. 775

776

. 777

779
780

. 781
. 782
. 783
. 785
. 788
. 789
. 791

792

. 793

795
796

. 797
. 798
. 799
. 801
. 801

. 803
. 803
. 803
. 803
. 804

EMPLOYEE table .
EMP_ACT table
EMP_PHOTO table .
EMP_RESUME table .
IN_TRAY table.

ORG table

PROJECT table.
SALES table

STAFF table.

STAFFG table (double byte code pages only)
Sample files with BLOB and CLOB data type
. 816
. 816
. 818
. 818
. 819
. 819
. 821
. 821

Quintana photo
Quintana resume .
Nicholls photo .
Nicholls resume
Adamson photo
Adamson resume .
Walker photo .
Walker resume.

Appendix G. Reserved schema names
and reserved words

Appendix H. Comparison of isolation
levels

Appendix I. Interaction of triggers and
constraints

Appendix J. Explain tables .
Explain tables .

EXPLAIN ARGUMENT table
EXPLAIN_INSTANCE table
EXPLAIN_OBJECT table
EXPLAIN_OPERATOR table .
EXPLAIN_PREDICATE table .
EXPLAIN_STATEMENT table.
EXPLAIN_STREAM table .
ADVISE_INDEX table
ADVISE_WORKLOAD table .

Appendix K. Explain register values.

Appendix L. Recursion example: bill of
materials .

Example 1: Single level exploswn
Example 2: Summarized explosion .
Example 3: Controlling depth .

. 806
. 808
. 810
. 810
. 811
. 811
. 811
. 812

. 814
815
816

. 823

. 827

. 829

. 833
. 833
. 834
. 838
. 841
. 844
. 846
. 848
. 851
. 853
. 856

. 857

. 861
. 861
. 863
. 864



Appendix M. Exception tables .
Rules for creating an exception table
Handling rows in an exception table
Querying exception tables .

Appendix N. SQL statements allowed in
routines e

Appendix O. CALL invoked from a
compiled statement

Appendix P. Japanese and
traditional-Chinese extended UNIX code
(EUC) considerations .
Language elements

Characters .

Tokens

Identifiers

Data types .

Constants

Functions

Expressions .

Predicates
Functions

LENGTH

SUBSTR .

TRANSLATE

VARGRAPHIC.
Statements .

CONNECT .

PREPARE

Appendix Q. Backus-Naur form (BNF)
specifications for DATALINKS .

Appendix R. DB2 Universal Database
technical information . .
Overview of DB2 Universal Database
technical information

. 867
. 867
. 869
. 870

. 873

. 877

. 883
. 883
. 883
. 883
. 883
. 884
. 886
. 886
. 887
. 887
. 888
. 888
. 888
. 888
. 889
. 889
. 889
. 889

. 891

. 895

. 895

Categories of DB2 technical information
Printing DB2 books from PDF files .
Ordering printed DB2 books .

Accessing online help .

Finding topics by accessing the DB2
Information Center from a browser .
Finding product information by accessing
the DB2 Information Center from the
administration tools . .

Viewing technical documentatlon onhne

directly from the DB2 HTML Documentation

CD.

Updating the HTML documentatlon mstalled
. 910

on your machine .
Copying files from the DB2 HTML
Documentation CD to a Web Server.
Troubleshooting DB2 documentation search
with Netscape 4.x. .
Searching the DB2 documentatlon
Online DB2 troubleshooting information .
Accessibility . .
Keyboard Input and Nav1gat10n .
Accessible Display
Alternative Alert Cues .

Compatibility with Assistive Technologles

Accessible Documentation .
DB2 tutorials . .
DB2 Information Center for toplcs .

Appendix S. Notices
Trademarks .

Index

Contacting IBM .
Product information .

Contents

896

. 903
. 904
. 904

. 906

. 908

. 909

. 912

. 912
. 913
. 914
. 915
. 915
. 916
. 916

916

. 916
. 916
. 917

. 919
. 922

. 925

. 945
. 945

ix



X  SQL Reference, Volume 1



About this book

The SQL Reference in its two volumes defines the SQL language used by DB2

Universal Database Version 8, and includes:

* Information about relational database concepts, language elements,
functions, and the forms of queries (Volume 1).

* Information about the syntax and semantics of SQL statements (Volume 2).

Who should use this book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and
database administrators, but it can also be used by those who access
databases through the command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be
writing application programs and therefore presents the full functions of the
database manager.

How this book is structured

This book contains information about the following major topics:

+ [Chapter 1, “Concepts” on page 1|discusses the basic concepts of relational
databases and SQL.

* [Chapter 2, “Language elements” on page 61| describes the basic syntax of

SQL and the language elements that are common to many SQL statements.

+ [Chapter 3, “Functions” on page 247| contains syntax diagrams, semantic
descriptions, rules, and usage examples of SQL column and scalar
functions.

* [Chapter 4, “Queries” on page 553| describes the various forms of a query.

+ [Appendix A, “SQL limits” on page 607] lists SQL limitations.

« [Appendix B, “SQLCA (SQL communications area)” on page 615| describes
the SQLCA structure.

* [Appendix C, “SQLDA (SQL descriptor area)” on page 621| describes the
SQLDA structure.

* |Appendix D, “Catalog views” on page 633 describes the database catalog
views.

* |Appendix E, “Federated systems” on page 759| describes options and type
mappings for Federated Systems.

© Copyright IBM Corp. 1993 - 2002

xi



How this book is structured

xii

A brief

* |Appendix F, “The SAMPLE database” on page 803|describes the sample
tables used in examples.

* [Appendix G, “Reserved schema names and reserved words” on page 823
contains the reserved schema names and the reserved words for the IBM
SQL and ISO/ANS SQL99 standards.

* |Appendix H, “Comparison of isolation levels” on page 827| contains a
summary of the isolation levels.

+ |Appendix I, “Interaction of triggers and constraints” on page 829 discusses
the interaction of triggers and referential constraints.

* |Appendix J, “Explain tables” on page 833| describes the Explain tables.

* |Appendix K, “Explain register values” on page 857|describes the interaction
of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values with each other and with the PREP and BIND
commands.

* |Appendix L, “Recursion example: bill of materials” on page 861 contains an
example of a recursive query.

+ |Appendix M, “Exception tables” on page 867 contains information about
user-created tables that are used with the SET INTEGRITY statement.

+ [Appendix N, “SQL statements allowed in routines” on page 873 lists the
SQL statements that are allowed to execute in routines with different SQL
data access contexts.

* [Appendix O, “CALL invoked from a compiled statement” on page 877
describes the CALL statement that can be invoked from a compiled
statement.

+ [Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)|
considerations” on page 883|lists considerations when using extended UNIX
code (EUC) character sets.

* [Appendix Q, “Backus-Naur form (BNF) specifications for DATALINKs” on|

page 891] contains the Backus-Naur form (BNF) specifications for
DATALINKS.

overview of Volume 2

The second volume of the SQL Reference contains information about the
syntax and semantics of SQL statements. The specific chapters in that volume
are briefly described here:

* “SQL statements” contains syntax diagrams, semantic descriptions, rules,
and examples of all SQL statements.

* “SQL control statements” contains syntax diagrams, semantic descriptions,
rules, and examples of SQL procedure statements.

SQL Reference, Volume 1



How to read the syntax diagrams

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a syntax diagram.

The — symbol indicates that the syntax is continued on the next line.

The »— symbol indicates that the syntax is continued from the previous line.
The —>< symbol indicates the end of a syntax diagram.

Syntax fragments start with the — symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

»>—required_item ><

Optional items appear below the main path.

»>—required_item <
I—opt ional_i tem—|

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

|—opt ional_i tem—l
»>—required_item ><

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

»>—required i tem—[requ ired_choicel >
requi red_choiceZ—|

If choosing one of the items is optional, the entire stack appears below the
main path.

About this book  Xxiii



How to read the syntax diagrams

Xiv

»>—required_item >
kopt ionaZ_choiceJ:I

optional_choicez

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

defaul t_choice—|

»>—required_item <
I:opt ionaZ_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can

be repeated. In this case, repeated items must be separated by one or more
blanks.

v

»>—required_item

repeatable_item >«

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

v

»>—required_item

repeatable_item ><

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents
the whole syntax fragment that is labeled parameter-block:

»—required_item—l parameter-block i ><

SQL Reference, Volume 1



How to read the syntax diagrams

parameter-block:

parameterl |
parameter? parame ter3:|J

I:par'ameteM

Adjacent segments occurring between “large bullets” (@) may be specified in
any sequence.

»>—required_item—iteml —@—item—@—item3—@—item4 >

The above diagram shows that item2 and item3 may be specified in either
order. Both of the following are valid:

required_item iteml item2 item3 item4
required_item iteml item3 item2 item4

Common syntax elements

The following sections describe a number of syntax fragments that are used in
syntax diagrams. The fragments are referenced as follows:

»—| fragment i ><

Function designator

A function designator uniquely identifies a single function. Function
designators typically appear in DDL statements for functions (such as DROP
or ALTER).

Syntax:

function-designator:

FUNCTION—function-name
L ) '

\\( Y data- l‘ype——)J

SPECIFIC FUNCTION—specific-name

Description:

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one
function instance with the name function-name in the schema. The
identified function can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the

About this book XV



Function designator

QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no function by this name exists in the named
or implied schema, an error (SQLSTATE 42704) is raised. If there is more
than one instance of the function in the named or implied schema, an
error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function.
The function resolution algorithm is not used.

function-name

Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)

Values must match the data types that were specified (in the
corresponding position) on the CREATE FUNCTION statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for #,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, using the name that is
specified or defaulted to at function creation time. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements, the QUALIFIER

xvi SQL Reference, Volume 1



Function designator

precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific function instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Method designator

A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

Syntax:
method-designator:

ETHOD—method-name |_ _| FOR—type—name——|
( )

\\(—'data— type——)J

SPECIFIC METHOD—specific-name

Description:

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name. The
identified method can have any number of parameters defined for it. If no
method by this name exists for the type, an error (SQLSTATE 42704) is
raised. If there is more than one instance of the method for the type, an
error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The number
of data types, and the logical concatenation of the data types, is used
to identify the specific method instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

About this book  XVvii



Method designator

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for #,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated.
The name must identify a type already described in the catalog
(SQLSTATE 42704). In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific method instance in
the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Procedure designator

A procedure designator uniquely identifies a single stored procedure.
Procedure designators typically appear in DDL statements for procedures
(such as DROP or ALTER).

Syntax:

procedure-designator:

PROCEDURE—procedure-name |
L ) '

\\( Y _data- type——)J

SPECIFIC PROCEDURE—specific-name

Description:

xviii SQL Reference, Volume 1



Procedure designator

PROCEDURE procedure-name
Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The
identified procedure can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no procedure by this name exists in the
named or implied schema, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the procedure in the named or implied schema,
an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure. The procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE PROCEDURE statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

About this book  XiX



Procedure designator

If no procedure with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or
defaulted to at procedure creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific procedure instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is

raised.

Conventions used in this manual

XX

This section specifies some conventions which are used consistently
throughout this manual.

Error conditions

An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses. For example:

A duplicate signature raises an SQL error (SQLSTATE 42723).

Highlighting conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:

Names or values (variables) that must be supplied by the user.
General emphasis.
The introduction of a new term.

A reference to another source of information.

Monospace Indicates one of the following:

Files and directories.

Information that you are instructed to type at a command prompt or
in a window.

Examples of specific data values.
Examples of text similar to what may be displayed by the system.

Examples of system messages.

SQL Reference, Volume 1



Related documentation

Related documentation

The following publications may prove useful in preparing applications:

Administration Guide

— Contains information required to design, implement, and maintain a
database to be accessed either locally or in a client/server environment.

Application Development Guide

— Discusses the application development process and how to code,
compile, and execute application programs that use embedded SQL and
APIs to access the database.

DB2 Universal Database for iSeries SQL Reference

— This book defines Structured Query Language (SQL) as supported by
DB2 Query Manager and SQL Development Kit on iSeries (AS/400). It
contains reference information for the tasks of system administration,
database administration, application programming, and operation. This
manual includes syntax, usage notes, keywords, and examples for each
of the SQL statements used on iSeries (AS/400) systems running DB2.

DB2 Universal Database for z/OS and OS/390 SQL Reference

— This book defines Structured Query Language (SQL) used in DB2 for
z/0S (0S/390). It provides query forms, SQL statements, SQL procedure
statements, DB2 limits, SQLCA, SQLDA, catalog tables, and SQL
reserved words for z/OS (0OS/390) systems running DB2.

DB2 Spatial Extender User’s Guide and Reference

— This book discusses how to write applications to create and use a
geographic information system (GIS). Creating and using a GIS involves
supplying a database with resources and then querying the data to
obtain information such as locations, distances, and distributions within
areas.

IBM SQL Reference

— This book contains all the common elements of SQL that span IBM’s
database products. It provides limits and rules that assist in preparing
portable programs using IBM databases. This manual provides a list of
SQL extensions and incompatibilities among the following standards and
products: SQL92E, XPG4-SQL, IBM-SQL and the IBM relational database
products.

American National Standard X3.135-1992, Database Language SQL
— Contains the ANSI standard definition of SQL.

ISO/IEC 9075:1992, Database Language SQL

— Contains the 1992 ISO standard definition of SQL.

ISO/IEC 9075-2:1999, Database Language SQL -- Part 2: Foundation
(SQL/Foundation)

— Contains a large portion of the 1999 ISO standard definition of SQL.

About this book  XXxi



Related documentation

» ISO/IEC 9075-4:1999, Database Language SQL -- Part 4: Persistent Stored
Modules (SQL/PSM)

— Contains the 1999 ISO standard definition for SQL procedure control
statements.
* ISO/IEC 9075-5:1999, Database Language SQL -- Part 4: Host Language Bindings
(SQL/Bindings)
— Contains the 1999 ISO standard definition for host language bindings
and dynamic SQL.

xxii SQL Reference, Volume 1



Chapter 1. Concepts

This chapter provides a high-level view of concepts that are important to
understand when using Structured Query Language (SQL). The reference
material contained in the rest of this manual provides a more detailed view.

Relational databases

A relational database is a database that is treated as a set of tables and
manipulated in accordance with the relational model of data. It contains a set
of objects used to store, manage, and access data. Examples of such objects are
tables, views, indexes, functions, triggers, and packages.

A partitioned relational database is a relational database whose data is
managed across multiple partitions (also called nodes). This separation of data
across partitions is transparent to users of most SQL statements. However,
some data definition language (DDL) statements take partition information
into consideration (for example, CREATE DATABASE PARTITION GROUP).
(Data definition language is the subset of SQL statements used to describe
data relationships in a database.)

A federated database is a relational database whose data is stored in multiple
data sources (such as separate relational databases). The data appears as if it
were all in a single large database and can be accessed through traditional
SQL queries. Changes to the data can be explicitly directed to the appropriate
data source.

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a
relational database. In accordance with the relational model of data, the
database is treated as a set of tables, relationships are represented by values in
tables, and data is retrieved by specifying a result table that can be derived
from one or more base tables.

SQL statements are executed by a database manager. One of the functions of
the database manager is to transform the specification of a result table into a
sequence of internal operations that optimize data retrieval. The
transformation occurs in two phases: preparation and binding.

© Copyright IBM Corp. 1993 - 2002 1



Structured Query Language (SQL)

All executable SQL statements must be prepared before they can be executed.
The result of preparation is the executable or operational form of the
statement. The method of preparing an SQL statement and the persistence of
its operational form distinguish static SQL from dynamic SQL.

Authorization and privileges

2

An authorization allows a user or group to perform a general task, such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way.

The database manager requires that a user be specifically authorized, either
implicitly or explicitly, to use each database function needed to perform a
specific task. Explicit authorities or privileges are granted to the user
(GRANTEETYPE of U). Implicit authorities or privileges are granted to a
group to which the user belongs (GRANTEETYPE of G). Thus, to create a
table, a user must be authorized to create tables; to alter a table, a user must
be authorized to alter the table; and so on.

SYSADM
(System Administrator)

|

DBADM SYSCTRL
(Database Administrator) (System Resource Administrator)
SYSMAINT
(System Maintenance Administrator)

RERRRRRRRRRRRRRRARR

Database Users with Privileges
Figure 1. Hierarchy of Authorities and Privileges

Persons with administrative authority have the task of controlling the
database manager and are responsible for the safety and integrity of the data.
They control who will have access to the database manager and to what
extent each user has access.

The database manager provides two administrative authorities:

* SYSADM - system administrator authority

SQL Reference, Volume 1



Authorization and privileges

SYSADM authority is the highest level of authority and has control over all
the resources created and maintained by the database manager. SYSADM
authority includes all the authorities of DBADM, SYSCTRL, and
SYSMAINT, and the authority to grant or revoke DBADM authorities.

* DBADM - database administrator authority

DBADM authority is the administrative authority specific to a single
database. This authority includes privileges to create objects, issue database
commands, and access the data in any of its tables through SQL statements.
DBADM authority also includes the authority to grant or revoke CONTROL
and individual privileges.

The database manager also provides two system control authorities:
¢ SYSCTRL - system control authority

SYSCTRL authority is the higher level of system control authority and
applies only to operations affecting system resources. It does not allow
direct access to data. This authority includes privileges to create, update, or
drop a database; to stop an instance or a database; and to create or drop a
table space.

¢ SYSMAINT - system maintenance authority

SYSMAINT authority is the second level of system control authority. A user
with SYSMAINT authority can perform maintenance operations on all
databases associated with an instance. It does not allow direct access to
data. This authority includes privileges to update database configuration
files; to back up a database or a table space; to restore an existing database;
and to monitor a database.

Database authorities apply to activities that an administrator has allowed a
user to perform within a database; they do not apply to a specific instance of
a database object. For example, a user may be granted the authority to create
packages but not to create tables.

Privileges apply to activities that an administrator or an object owner has
allowed a user to perform on database objects. Users with privileges can
create objects, strictly defined by the privileges they hold. For example, a user
may have the privilege to create a view on a table but not a trigger on the
same table. Users with privileges have access to the objects they own, and can
pass privileges on their own objects to other users through the GRANT
statement.

CONTROL privilege allows a user to access a specific database object, as

required, and to grant and revoke privileges to and from other users on that
object. DBADM authority is required to grant CONTROL privilege.

Chapter 1. Concepts 3



Authorization and privileges

Individual privileges and database authorities allow a specific function but do
not include the right to grant the same privileges or authorities to other users.
The right to grant table, view, or schema privileges to others can be extended
to other users through the WITH GRANT OPTION on the GRANT statement.

Schemas

A schema is a collection of named objects. Schemas provide a logical
classification of objects in the database. A schema can contain tables, views,
nicknames, triggers, functions, packages, and other objects.

A schema is also an object in the database. It is explicitly created using the
CREATE SCHEMA statement with the current user recorded as the schema
owner. It can also be implicitly created when another object is created,
provided that the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is
created, the default schema name is used.

For example, a user with DBADM authority creates a schema called C for
user A:

CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in
schema C:

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to
the SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, all users have IMPLICIT_SCHEMA authority. This
allows any user to create objects in any schema not already in existence. An
implicitly created schema allows any user to create other objects in this
schema.The ability to create aliases, distinct types, functions, and triggers is
extended to implicitly created schemas. The default privileges on an implicitly
created schema provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created
by users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA

4  SQL Reference, Volume 1



Schemas

authority from PUBLIC increases control over the use of schema names, it can
result in authorization errors when existing applications attempt to create
objects.

Schemas also have privileges, allowing the schema owner to control which
users have the privilege to create, alter, and drop objects in the schema. A
schema owner is initially given all of these privileges on the schema, with the
ability to grant them to others. An implicitly created schema is owned by the
system, and all users are initially given the privilege to create objects in such a
schema. A user with SYSADM or DBADM authority can change the privileges
held by users on any schema. Therefore, access to create, alter, and drop
objects in any schema (even one that was implicitly created) can be controlled.

Tables

Tables are logical structures maintained by the database manager. Tables are
made up of columns and rows. The rows are not necessarily ordered within a
table (order is determined by the application program). At the intersection of
every column and row is a specific data item called a value. A column is a set
of values of the same type or one of its subtypes. A row is a sequence of
values arranged so that the nth value is a value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a query.

A summary table is a table defined by a query that is also used to determine
the data in the table. Summary tables can be used to improve the performance
of queries. If the database manager determines that a portion of a query can
be resolved using a summary table, the database manager can rewrite the
query to use the summary table. This decision is based on database
configuration settings, such as the CURRENT REFRESH AGE and the
CURRENT QUERY OPTIMIZATION special registers.

A table can define the data type of each column separately, or base the types
on the attributes of a user-defined structured type. This is called a typed table.
A user-defined structured type may be part of a type hierarchy. A subtype
inherits attributes from its supertype. Similarly, a typed table can be part of a
table hierarchy. A subtable inherits columns from its supertable. Note that the
term subtype applies to a user-defined structured type and all user-defined
structured types that are below it in the type hierarchy. A proper subtype of a
structured type T is a structured type below T in the type hierarchy. Similarly,
the term subtable applies to a typed table and all typed tables that are below it
in the table hierarchy. A proper subtable of a table T is a table below T in the
table hierarchy.

Chapter 1. Concepts 5



Tables

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects
from the database.

Views

A view provides a different way of looking at the data in one or more tables; it
is a named specification of a result table. The specification is a SELECT
statement that is run whenever the view is referenced in an SQL statement. A
view has columns and rows just like a base table. All views can be used just
like base tables for data retrieval. Whether a view can be used in an insert,
update, or delete operation depends on its definition.

You can use views to control access to sensitive data, because views allow
multiple users to see different presentations of the same data. For example,
several users may be accessing a table of data about employees. A manager
sees data about his or her employees but not employees in another
department. A recruitment officer sees the hire dates of all employees, but not
their salaries; a financial officer sees the salaries, but not the hire dates. Each
of these users works with a view derived from the base table. Each view
appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base
table, that view column inherits any constraints that apply to the base table
column. For example, if a view includes a foreign key of its base table, insert
and update operations using that view are subject to the same referential
constraints as is the base table. Also, if the base table of a view is a parent
table, delete and update operations using that view are subject to the same
rules as are delete and update operations on the base table.

A view can derive the data type of each column from the result table, or base
the types on the attributes of a user-defined structured type. This is called a
typed view. Similar to a typed table, a typed view can be part of a view
hierarchy. A subview inherits columns from its superview. The term subview
applies to a typed view and to all typed views that are below it in the view
hierarchy. A proper subview of a view V is a view below V in the typed view
hierarchy.

A view can become inoperative (for example, if the base table is dropped); if
this occurs, the view is no longer available for SQL operations.

6  SQL Reference, Volume 1



Aliases

Aliases

An alias is an alternative name for a table or a view. It can be used to
reference a table or a view if an existing table or view can be referenced. An
alias cannot be used in all contexts; for example, it cannot be used in the
check condition of a check constraint. An alias cannot reference a declared
temporary table.

Like tables or views, an alias can be created, dropped, and have comments
associated with it. However, unlike tables, aliases can refer to each other in a
process called chaining. Aliases are publicly referenced names, so no special
authority or privilege is required to use them. Access to the table or the view
referred to by an alias, however, does require the authorization associated
with these objects.

There are other types of aliases, such as database and network aliases. Aliases
can also be created for nicknames that refer to data tables or views located on
federated systems.

Indexes

An index is an ordered set of pointers to rows in a base table. Each index is
based on the values of data in one or more table columns. An index is an
object that is separate from the data in the table. When an index is created,
the database manager builds this object and maintains it automatically.

Indexes are used by the database manager to:

* Improve performance. In most cases, access to data is faster with an index.
Although an index cannot be created for a view, an index created for the
table on which a view is based can sometimes improve the performance of
operations on that view.

¢ Ensure uniqueness. A table with a unique index cannot have rows with
identical keys.

Keys

A key is a set of columns that can be used to identify or access a particular
row or rows. The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

A key that is composed of more than one column is called a composite key. In a
table with a composite key, the order of the columns within the composite key
is not constrained by the order of the columns within the table. The value of a
composite key denotes a composite value. Thus, a rule such as “the value of

Chapter 1. Concepts 7



Keys

the foreign key must be equal to the value of the primary key” means that
each component of the value of the foreign key must be equal to the
corresponding component of the value of the primary key.

A unique key is a key that is constrained so that no two of its values are equal.
The columns of a unique key cannot contain null values. The constraint is
enforced by the database manager during the execution of any operation that
changes data values, such as INSERT or UPDATE. The mechanism used to
enforce the constraint is called a unique index. Thus, every unique key is a key
of a unique index. Such an index is also said to have the UNIQUE attribute.

A primary key is a special case of a unique key. A table cannot have more than
one primary key.

A foreign key is a key that is specified in the definition of a referential
constraint.

A partitioning key is a key that is part of the definition of a table in a
partitioned database. The partitioning key is used to determine the partition
on which the row of data is stored. If a partitioning key is defined, unique
keys and primary keys must include the same columns as the partitioning
key, but can have additional columns. A table cannot have more than one
partitioning key.

Constraints

A constraint is a rule that the database manager enforces.

There are three types of constraints:

* A unique constraint is a rule that forbids duplicate values in one or more
columns within a table. Unique and primary keys are the supported unique
constraints. For example, a unique constraint can be defined on the supplier
identifier in the supplier table to ensure that the same supplier identifier is
not given to two suppliers.

* A referential constraint is a logical rule about values in one or more columns
in one or more tables. For example, a set of tables shares information about
a corporation’s suppliers. Occasionally, a supplier’s name changes. You can
define a referential constraint stating that the ID of the supplier in a table
must match a supplier ID in the supplier information. This constraint
prevents insert, update, or delete operations that would otherwise result in
missing supplier information.

* A table check constraint sets restrictions on data added to a specific table. For
example, a table check constraint can ensure that the salary level for an

8 SQL Reference, Volume 1



Constraints

employee is at least $20,000 whenever salary data is added or updated in a
table containing personnel information.

Referential and table check constraints can be turned on or off. It is generally
a good idea, for example, to turn off the enforcement of a constraint when
large amounts of data are loaded into a database.

Unique constraints

A unique constraint is the rule that the values of a key are valid only if they
are unique within a table. Unique constraints are optional and can be defined
in the CREATE TABLE or ALTER TABLE statement using the PRIMARY KEY
clause or the UNIQUE clause. The columns specified in a unique constraint
must be defined as NOT NULL. The database manager uses a unique index to
enforce the uniqueness of the key during changes to the columns of the
unique constraint.

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than
one unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential
constraint is called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique
index is automatically created by the database manager and designated as a
primary or unique system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary
or unique system-required index.

Note that there is a distinction between defining a unique constraint and
creating a unique index. Although both enforce uniqueness, a unique index
allows nullable columns and generally cannot be used as a parent key.

Referential constraints

Referential integrity is the state of a database in which all values of all foreign
keys are valid. A foreign keyis a column or a set of columns in a table whose
values are required to match at least one primary key or unique key value of
a row in its parent table. A referential constraint is the rule that the values of
the foreign key are valid only if one of the following conditions is true:

* They appear as values of a parent key.
* Some component of the foreign key is null.

Chapter 1. Concepts 9



Referential constraints

10

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of
that table.

Referential constraints are optional and can be defined in the CREATE TABLE
statement or the ALTER TABLE statement. Referential constraints are enforced
by the database manager during the execution of INSERT, UPDATE, DELETE,
ALTER TABLE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential constraints with a delete or an update rule of RESTRICT are
enforced before all other referential constraints. Referential constraints with a
delete or an update rule of NO ACTION behave like RESTRICT in most cases.

Note that referential constraints, check constraints, and triggers can be
combined.

Referential integrity rules involve the following concepts and terminology:

Parent key
A primary key or a unique key of a referential constraint.

Parent row
A row that has at least one dependent row.

Parent table
A table that contains the parent key of a referential constraint. A table
can be a parent in an arbitrary number of referential constraints. A
table that is the parent in a referential constraint can also be the
dependent in a referential constraint.

Dependent table
A table that contains at least one referential constraint in its definition.
A table can be a dependent in an arbitrary number of referential
constraints. A table that is the dependent in a referential constraint can
also be the parent in a referential constraint.

Descendent table
A table is a descendent of table T if it is a dependent of T or a
descendent of a dependent of T.

Dependent row
A row that has at least one parent row.

Descendent row
A row is a descendent of row r if it is a dependent of r or a
descendent of a dependent of r.

Referential cycle
A set of referential constraints such that each table in the set is a
descendent of itself.

SQL Reference, Volume 1



Referential constraints

Self-referencing table
A table that is a parent and a dependent in the same referential
constraint. The constraint is called a self-referencing constraint.

Self-referencing row
A row that is a parent of itself.

Insert rule
The insert rule of a referential constraint is that a non-null insert value of the

foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.
This rule is implicit when a foreign key is specified.

Update rule
The update rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION and RESTRICT. The
update rule applies when a row of the parent or a row of the dependent table
is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:

 If any row in the dependent table matches the original value of the key, the
update is rejected when the update rule is RESTRICT.

* If any row in the dependent table does not have a corresponding parent
key when the update statement is completed (excluding AFTER triggers),
the update is rejected when the update rule is NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when
a foreign key is specified. NO ACTION means that a non-null update value of
a foreign key must match some value of the parent key of the parent table
when the update statement is completed.

The value of a composite foreign key is null if any component of the value is
null.

Delete rule
The delete rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or
SET NULL. SET NULL can be specified only if some column of the foreign
key allows null values.

The delete rule of a referential constraint applies when a row of the parent
table is deleted. More precisely, the rule applies when a row of the parent
table is the object of a delete or propagated delete operation (defined below),
and that row has dependents in the dependent table of the referential
constraint. Consider an example where P is the parent table, D is the

Chapter 1. Concepts 11



Delete rule

dependent table, and p is a parent row that is the object of a delete or
propagated delete operation. The delete rule works as follows:

e With RESTRICT or NO ACTION, an error occurs and no rows are deleted.

» With CASCADE, the delete operation is propagated to the dependents of p
in table D.

* With SET NULL, each nullable column of the foreign key of each
dependent of p in table D is set to null.

Each referential constraint in which a table is a parent has its own delete rule,
and all applicable delete rules are used to determine the result of a delete
operation. Thus, a row cannot be deleted if it has dependents in a referential
constraint with a delete rule of RESTRICT or NO ACTION, or the deletion
cascades to any of its descendents that are dependents in a referential
constraint with the delete rule of RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect
rows of these tables:

 If table D is a dependent of P and the delete rule is RESTRICT or NO
ACTION, then D is involved in the operation but is not affected by the
operation.

* If D is a dependent of P and the delete rule is SET NULL, then D is
involved in the operation, and rows of D can be updated during the
operation.

e If D is a dependent of P and the delete rule is CASCADE, then D is
involved in the operation and rows of D can be deleted during the
operation.

If rows of D are deleted, then the delete operation on P is said to be
propagated to D. If D is also a parent table, then the actions described in
this list apply, in turn, to the dependents of D.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a
dependent of P, or a dependent of a table to which delete operations from P
cascade.

Table check constraints

A table check constraint is a rule that specifies the values allowed in one or
more columns of every row in a table. A constraint is optional, and can be
defined using the CREATE TABLE or the ALTER TABLE statement. Specifying
table check constraints is done through a restricted form of a search condition.
One of the restrictions is that a column name in a table check constraint on
table T must identify a column of table T.

12  SQL Reference, Volume 1



Table check constraints

A table can have an arbitrary number of table check constraints. A table check
constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is
false for any row.

When one or more table check constraints is defined in the ALTER TABLE
statement for a table with existing data, the existing data is checked against
the new condition before the ALTER TABLE statement completes. The SET
INTEGRITY statement can be used to put the table in check pending state,
which allows the ALTER TABLE statement to proceed without checking the
data.

Related reference:
» “SET INTEGRITY statement” in the SQL Reference, Volume 2

* |Appendix I, “Interaction of triggers and constraints” on page 829

Isolation levels

The isolation level associated with an application process defines the degree of

isolation of that application process from other concurrently executing

application processes. The isolation level of an application process therefore

specifies:

* The degree to which the rows read and updated by the application are
available to other concurrently executing application processes.

* The degree to which the update activity of other concurrently executing
application processes can affect the application.

The isolation level is specified as an attribute of a package and applies to the
application processes that use the package. The isolation level is specified in
the program preparation process. Depending on the type of lock, this limits or
prevents access to the data by concurrent application processes. (Declared
temporary tables and their rows cannot be locked because they are only
accessible to the application that declared them.)

The database manager supports three general categories of locks:

Share Limits concurrent application processes to read-only operations on the
data.

Update
Limits concurrent application processes to read-only operations on the
data, if these processes have not declared that they might update the
row. The database manager assumes that the process currently looking
at a row may update it.

Chapter 1. Concepts 13



Isolation levels

Exclusive
Prevents concurrent application processes from accessing the data in
any way. Does not apply to application processes with an isolation
level of uncommitted read, which can read but not modify the data.

Locking occurs at the base table row. The database manager, however, can
replace multiple row locks with a single table lock. This is called lock
escalation. An application process is guaranteed at least the minimum
requested lock level.

The DB2® Universal Database database manager supports four isolation
levels. Regardless of the isolation level, the database manager places exclusive
locks on every row that is inserted, updated, or deleted. Thus, all isolation
levels ensure that any row that is changed by this application process during
a unit of work is not changed by any other application processes until the
unit of work is complete. The isolation levels are:

* Repeatable Read (RR)
This level ensures that:

— Any row read during a unit of work is not changed by other application
processes until the unit of work is complete. The rows are read in the
same unit of work as the corresponding OPEN statement. Use of the
optional WITH RELEASE clause on the CLOSE statement means that any
guarantees against non-repeatable reads and phantom reads no longer
apply to any previously accessed rows if the cursor is reopened.

— Any row changed by another application process cannot be read until it
is committed by that application process.

The Repeatable Read level does not allow phantom rows to be viewed (see
Read Stability).

In addition to any exclusive locks, an application process running at the RR
level acquires at least share locks on all the rows it references. Furthermore,
the locking is performed so that the application process is completely
isolated from the effects of concurrent application processes.

* Read Stability (RS)

Like the Repeatable Read level, the Read Stability level ensures that:

— Any row read during a unit of work is not changed by other application
processes until the unit of work is complete. The rows are read in the
same unit of work as the corresponding OPEN statement. Use of the
optional WITH RELEASE clause on the CLOSE statement means that any
guarantees against non-repeatable reads no longer apply to any
previously accessed rows if the cursor is reopened.

— Any row changed by another application process cannot be read until it
is committed by that application process.

14 SQL Reference, Volume 1



Isolation levels

Unlike Repeatable Read, Read Stability does not completely isolate the
application process from the effects of concurrent application processes. At
the RS level, application processes that issue the same query more than
once may see additional rows caused by other application processes
appending new information to the database. These additional rows are
called phantom rows.

For example, a phantom row can occur in the following situation:

1. Application process P1 reads the set of rows # that satisfy some search
condition.

2. Application process P2 then inserts one or more rows that satisfy the
search condition and commits those new inserts.

3. P1 reads the set of rows again with the same search condition and
obtains both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at the RS
isolation level acquires at least share locks on all the qualifying rows.

* Cursor Stability (CS)
Like the Repeatable Read level, the Cursor Stability level ensures that any
row that was changed by another application process cannot be read until it
is committed by that application process.
Unlike Repeatable Read, Cursor Stability only ensures that the current row
of every updatable cursor is not changed by other application processes.
Thus, the rows that were read during a unit of work can be changed by
other application processes.
In addition to any exclusive locks, an application process running at the CS
isolation level acquires at least a share lock on the current row of every
Cursor.

¢ Uncommitted Read (UR)
For SELECT INTO, FETCH with a read-only cursor, fullselect in an INSERT,
row fullselect in an UPDATE, or scalar fullselect (wherever it is used), the
Uncommitted Read level allows:
— Any row read during a unit of work to be changed by other application

processes.

— Any row changed by another application process to be read, even if the
change has not been committed by that application process.

For other operations, rules associated with the CS level apply.

Related reference:
* “DECLARE CURSOR statement” in the SQL Reference, Volume 2

* |Appendix H, “Comparison of isolation levels” on page 827

Chapter 1. Concepts 15



Queries

Queries

A query is a component of certain SQL statements; it specifies a (temporary)
result table.

Related reference:

* I’SQL queries” on page 553

Table expressions

A table expression creates a temporary result table from a simple query. Clauses
further refine the result table. For example, you can use a table expression as
a query to select all of the managers from several departments, specify that
they must have over 15 years of working experience, and be located at the
New York branch office.

A common table expression is like a temporary view within a complex query. It
can be referenced in other places within the query, and can be used in place of
a view. Each use of a specific common table expression within a complex
query shares the same temporary view.

Recursive use of a common table expression within a query can be used to
support applications such as airline reservation systems, bill of materials

(BOM) generators, and network planning.

Related reference:

* |Appendix L, “Recursion example: bill of materials” on page 861

Application processes, concurrency, and recovery

All SQL programs execute as part of an application process or agent. An
application process involves the execution of one or more programs, and is
the unit to which the database manager allocates resources and locks.
Different application processes may involve the execution of different
programs, or different executions of the same program.

More than one application process may request access to the same data at the
same time. Locking is the mechanism used to maintain data integrity under
such conditions, preventing, for example, two application processes from
updating the same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made
by one application process from being accidentally perceived by any other

process. The database manager releases all locks it has acquired and retained

16 SQL Reference, Volume 1



Application processes, concurrency, and recovery

on behalf of an application process when that process ends. However, an
application process can explicitly request that locks be released sooner. This is
done using a commit operation, which releases locks acquired during the unit
of work and also commits database changes made during the unit of work.

The database manager provides a means of backing out uncommitted changes
made by an application process. This might be necessary in the event of a
failure on the part of an application process, or in the case of a deadlock, or a
lock time-out situation. An application process can explicitly request that its
database changes be backed out. This is done using a rollback operation.

A unit of work is a recoverable sequence of operations within an application
process. A unit of work is initiated when an application process is started, or
when the previous unit of work is ended by something other than the
termination of the application process. A unit of work is ended by a commit
operation, a rollback operation, or the end of an application process. A
commit or rollback operation affects only the database changes made within
the unit of work it is ending.

As long as these changes remain uncommitted, other application processes are
unable to perceive them, and they can be backed out. This is not true,
however, when the isolation level is uncommitted read (UR). Once committed,
these database changes are accessible by other application processes and can
no longer be backed out through a rollback.

Both DB2® call level interface (CLI) and embedded SQL allow for a
connection mode called concurrent transactions, which supports multiple
connections, each of which is an independent transaction. An application can
have multiple concurrent connections to the same database.

Locks acquired by the database manager on behalf of an application process
are held until the end of a unit of work. This is not true, however, when the
isolation level is cursor stability (CS, in which the lock is released as the
cursor moves from row to row) or uncommitted read (UR, in which locks are
not obtained).

An application process is never prevented from performing operations
because of its own locks. However, if an application uses concurrent
transactions, the locks from one transaction may affect the operation of a
concurrent transaction.

The initiation and the termination of a unit of work define points of
consistency within an application process. For example, a banking transaction
may involve the transfer of funds from one account to another. Such a
transaction would require that these funds be subtracted from the first
account, and then added to the second account. Following the subtraction

Chapter 1. Concepts 17



Application processes, concurrency, and recovery

step, the data is inconsistent. Only after the funds have been added to the
second account is consistency reestablished. When both steps are complete,
the commit operation can be used to end the unit of work, thereby making
the changes available to other application processes. If a failure occurs before
the unit of work ends, the database manager will roll back uncommitted
changes to restore the data consistency that it assumes existed when the unit
of work was initiated.

Point of New point of
consistency consistency

14— one unit of work —»l
TIME LINE database updates

| T

Begin unit Commit
of work End unit of work

Figure 2. Unit of Work with a COMMIT Statement

Point of New point of
consistency consistency

}— one unit of work —»l

back out
updates

database
updates

TIME LINE

T | |

Begin unit Failure; Data is returned to
of work Begin rollback its initial state;
End unit of work

Figure 3. Unit of Work with a ROLLBACK Statement

Related concepts:

* ['Isolation levels” on page 13|

18  SQL Reference, Volume 1



DB2 Call level interface (CLI) and open database connectivity (ODBC)

DB2 Call level interface (CLI) and open database connectivity (ODBC)

The DB2® call level interface is an application programming interface that
provides functions for processing dynamic SQL statements to application
programs. CLI programs can also be compiled using an open database
connectivity Software Developer’s Kit (available from Microsoft® or other
vendors), which enables access to ODBC data sources. Unlike embedded SQL,
this interface requires no precompilation. Applications can be run against a
variety of databases without having to be compiled against each of these
databases. Applications use procedure calls at run time to connect to
databases, issue SQL statements, and retrieve data and status information.

The DB2 CLI interface provides many features not available in embedded
SQL. For example:

* CLI provides function calls that support a way of querying database
catalogs that is consistent across the DB2 family. This reduces the need to
write catalog queries that must be tailored to specific database servers.

 CLI provides the ability to scroll through a cursor:
— Forward by one or more rows
— Backward by one or more rows
— Forward from the first row by one or more rows
- Backward from the last row by one or more rows
— From a previously stored location in the cursor.

* Stored procedures called from application programs that were written using
CLI can return result sets to those programs.

Java database connectivity (JDBC) and embedded SQL for Java (SQLJ)
programs

DB2® Universal Database implements two standards-based Java™
programming APlIs: Java database connectivity (JDBC) and embedded SQL for
Java (SQLJ). Both can be used to create Java applications and applets that
access DB2:

* JDBC calls are translated into DB2 CLI calls through Java native methods.
JDBC requests flow from the DB2 client through DB2 CLI to the DB2 server.
JDBC cannot use static SQL.

* SQLJ applications use JDBC as a foundation for such tasks as connecting to
databases and handling SQL errors, but can also contain embedded static
SQL statements in the SQL]J source files. An SQL]J source file must be
translated by the SQL] translator before the resulting Java source code can
be compiled.

Chapter 1. Concepts 19



Packages

Packages

A package is an object produced during program preparation that contains all
of the sections in a single source file. A section is the compiled form of an SQL
statement. Although every section corresponds to one statement, not every
statement has a section. The sections created for static SQL are comparable to
the bound, or operational, form of SQL statements. The sections created for
dynamic SQL are comparable to placeholder control structures used at run
time.

Catalog views

The database manager maintains a set of base tables and views that contain
information about the data under its control. These base tables and views are
collectively known as the catalog. The catalog contains information about the
logical and physical structure of database objects such as tables, views,
indexes, packages, and functions. It also contains statistical information. The
database manager ensures that the descriptions in the catalog are always
accurate.

The catalog views are like any other database view. SQL statements can be
used to look at the data in the catalog views. A set of updatable catalog views

can be used to modify certain values in the catalog.

Related reference:

* ['System catalog views” on page 636|

Character conversion

A string is a sequence of bytes that may represent characters. All the
characters within a string have a common coding representation. In some
cases, it may be necessary to convert these characters to a different coding
representation, a process known as character conversion. Character conversion,
when required, is automatic, and when successful, it is transparent to the
application.

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, the following scenarios in which the coding
representations may be different at the sending and receiving systems:

* The values of host variables are sent from the application requester to the
application server.

* The values of result columns are sent from the application server to the
application requester.

20 SQL Reference, Volume 1



Character conversion

Following is a list of terms used when discussing character conversion:

character set
A defined set of characters. For example, the following character set
appears in several code pages:

* 26 non-accented letters A through Z
* 26 non-accented letters a through z
* digits 0 through 9

e L, ?2(0)"" /- _&+%Fr=<>

code page
A set of assignments of characters to code points. In the ASCII
encoding scheme for code page 850, for example, "A" is assigned code
point X'41', and "B" is assigned code point X'42'. Within a code page,
each code point has only one specific meaning. A code page is an
attribute of the database. When an application program connects to
the database, the database manager determines the code page of the
application.

code point
A unique bit pattern that represents a character.

encoding scheme
A set of rules used to represent character data, for example:

* Single-Byte ASCII

* Single-Byte EBCDIC

* Double-Byte ASCII

* Mixed single- and double-byte ASCII

The following figure shows how a typical character set might map to different
code points in two different code pages. Even with the same encoding
scheme, there are many different code pages, and the same code point can
represent a different character in different code pages. Furthermore, a byte in
a character string does not necessarily represent a character from a single-byte
character set (SBCS). Character strings are also used for mixed and bit data.
Mixed data is a mixture of single-byte, double-byte, or multi-byte characters.
Bit data (columns defined as FOR BIT DATA, or BLOBs, or binary strings) is
not associated with any character set.

Chapter 1. Concepts 21



Character conversion

code page: pp1 (ASCII) code page: pp2 (EBCDIC)
o|1|2|3|4]|5 E| F 0| 1 A|B|C|D|E]|F
0 0| @| P A 0 # 0
1 1 A | Q Al a 1 $|A|J 1
2 " 2| B|R Al B 2 s |%|B|K| S| 2
3 3(C| S AlY 3 t|—™|C|L|T]| 3
4 4| D|T Als ||4 ul *ID|M|U| 4
5 %| 5| E|U Ale|]|s v | (|E|N|V]|S5
R R I o R
. \ \ ' | N | \ \ \ I I I
R | e T T R A
Lo \ P | 1 1 L ! w w w b | | !
E > | N %10 ||E ! Al}
F /| *]0 ® F Alel| | Al {
T B ——
code point: 2F character set ss1 character set ss1
(in code page pp1) (in code page pp2)

Figure 4. Mapping a Character Set in Different Code Pages

The database manager determines code page attributes for all character strings
when an application is bound to a database. The possible code page attributes
are:

Database code page
The database code page is stored in the database configuration file.
The value is specified when the database is created and cannot be
altered.

Application code page
The code page under which the application runs. This is not
necessarily the same code page under which the application was
bound.

22 SQL Reference, Volume 1



Character conversion

Code Page 0
This represents a string that is derived from an expression that
contains a FOR BIT DATA value or a BLOB value.

Character string code pages have the following attributes:

¢ Columns can be in the database code page or code page 0 (if defined as
character FOR BIT DATA or BLOB).

* Constants and special registers (for example, USER, CURRENT SERVER)
are in the database code page. Constants are converted to the database code
page when an SQL statement is bound to the database.

* Input host variables are in the application code page. As of Version 8, string
data in input host variables is converted, if necessary, from the application
code page to the database code page before being used. The exception
occurs when a host variable is used in a context where it is to be
interpreted as bit data; for example, when the host variable is to be
assigned to a column that is defined as FOR BIT DATA.

A set of rules is used to determine code page attributes for operations that
combine string objects, such as scalar operations, set operations, or
concatenation. Code page attributes are used to determine requirements for
code page conversion of strings at run time.

Related reference:

+ [“Assignments and comparisons” on page 117

* [‘Rules for string conversions” on page 139|

Event monitors

Event monitors are used to collect information about the database and any
connected applications when specified events occur. Events represent
transitions in database activity: for instance, connections, deadlocks,
statements, and transactions. You can define an event monitor by the type of
event or events you want it to monitor. For example, a deadlock event
monitor waits for a deadlock to occur; when one does, it collects information
about the applications involved and the locks in contention. Whereas the
snapshot monitor is typically used for preventative maintenance and problem
analysis, event monitors are used to alert administrators to immediate
problems or to track impending ones.

To create an event monitor, use the CREATE EVENT MONITOR SQL
statement. Event monitors collect event data only when they are active. To
activate or deactivate an event monitor, use the SET EVENT MONITOR
STATE SQL statement. The status of an event monitor (whether it is active or
inactive) can be determined by the SQL function EVENT_MON_STATE.

Chapter 1. Concepts 23



Event monitors

When the CREATE EVENT MONITOR SQL statement is executed, the
definition of the event monitor it creates is stored in the following database
system catalog tables:

¢ SYSCAT.EVENTMONITORS: event monitors defined for the database.
¢ SYSCAT.EVENTS: events monitored for the database.
* SYSCAT.EVENTTABLES: target tables for table event monitors.

Each event monitor has its own private logical view of the instance’s data in
the data elements. If a particular event monitor is deactivated and then
reactivated, its view of these counters is reset. Only the newly activated event
monitor is affected; all other event monitors will continue to use their view of
the counter values (plus any new additions).

Event monitor output can be directed to SQL tables, a file, or a named pipe.

Related concepts:
* “Database system monitor” in the System Monitor Guide and Reference

Related tasks:

* “Collecting information about database system events” in the System
Monitor Guide and Reference

* “Creating an event monitor” in the System Monitor Guide and Reference

Related reference:
* “Event monitor sample output” in the System Monitor Guide and Reference
* “Event types” in the System Monitor Guide and Reference

Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation
is executed, the trigger is said to have been activated.

Triggers are optional and are defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints,
to enforce data integrity rules. Triggers can also be used to cause updates to
other tables, automatically generate or transform values for inserted or
updated rows, or invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional
business rules, which are rules that involve different states of the data (for
example, a salary that cannot be increased by more than 10 percent).

24  SQL Reference, Volume 1



Triggers

Using triggers places the logic that enforces business rules inside the database.
This means that applications are not responsible for enforcing these rules.
Centralized logic that is enforced on all of the tables means easier
maintenance, because changes to application programs are not required when
the logic changes.

The following are specified when creating a trigger:
* The subject table specifies the table for which the trigger is defined.

* The trigger event defines a specific SQL operation that modifies the subject
table. The event can be an insert, update, or delete operation.

* The trigger activation time specifies whether the trigger should be activated
before or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected
rows. These are the rows of the subject table that are being inserted, updated,
or deleted. The trigger granularity specifies whether the actions of the trigger
are performed once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL
statements are only executed if the search condition evaluates to true. If the
trigger activation time is before the trigger event, triggered actions can include
statements that select, set transition variables, or signal SQLstates. If the
trigger activation time is after the trigger event, triggered actions can include
statements that select, insert, update, delete, or signal SQLstates.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the
subject table, qualified by a specified name that identifies whether the
reference is to the old value (before the update) or the new value (after the
update). The new value can also be changed using the SET Variable statement
in before, insert, or update triggers.

Another means of referring to the values in the set of affected rows is to use
transition tables. Transition tables also use the names of the columns in the
subject table, but specify a name to allow the complete set of affected rows to
be treated as a table. Transition tables can only be used in after triggers, and
separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or
activation time. The order in which the triggers are activated is the same as
the order in which they were created. Thus, the most recently created trigger
is the last trigger to be activated.

Chapter 1. Concepts 25



Triggers

The activation of a trigger may cause trigger cascading, which is the result of
the activation of one trigger that executes SQL statements that cause the
activation of other triggers or even the same trigger again. The triggered
actions may also cause updates resulting from the application of referential
integrity rules for deletions that can, in turn, result in the activation of
additional triggers. With trigger cascading, a chain of triggers and referential
integrity delete rules can be activated, causing significant change to the
database as a result of a single INSERT, UPDATE, or DELETE statement.

Table spaces

and other storage structures

Storage structures contain database objects. The basic storage structure is the
table space; it contains tables, indexes, large objects, and data defined with a
LONG data type. There are two types of table spaces:

Database managed space (DMS)
A table space that is managed by the database manager.

System managed space (SMS)
A table space that is managed by the operating system.

All table spaces consist of containers. A container describes where objects are
stored. A subdirectory in a file system is an example of a container.

When data is read from table space containers, it is placed in an area of
memory called a buffer pool. A buffer pool is associated with a specific table
space, thereby allowing control over which data will share the same memory
areas for data buffering.

In a partitioned database, data is spread across different database partitions.
Exactly which partitions are included is determined by the database partition
group that is assigned to the table space. A database partition group is a group
of one or more partitions that are defined as part of the database. A table
space includes one or more containers for each partition in the database
partition group. A partitioning map, associated with each database partition
group, is used by the database manager to determine on which partition a
given row of data is to be stored. The partitioning map is an array of 4096
partition numbers. The partitioning map index produced by the partitioning
function for each row in a table is used as an index into the partitioning map
to determine the partition on which a row is to be stored. As an example, the
following figure shows how a row with partitioning key value (c1, c2, c3) is
mapped to partitioning map index 2 which, in turn, references partition p5.

26  SQL Reference, Volume 1



Table spaces and other storage structures

Row
partitioning key
(...c1,c2,c3..)

partitioning function maps (c1, c2, c3)
to partitioning map index 2

Partitioning Map

pO

0 1 2 3 4 5 4095

Nodegroup partitions are p0, p2, and p5
Note: Partition numbers start at 0.

Figure 5. Data Distribution

The partitioning map can be changed, allowing the data distribution to be
changed without modifying the partitioning key or the actual data. The new
partitioning map is specified as part of the REDISTRIBUTE DATABASE
PARTITION GROUP command or the sqludrdt application programming
interface (API), which use it to redistribute the tables in the database partition

group.

The DB2® Data Links Manager product provides functionality that supports
additional storage capabilities. A normal user table can include columns
(defined with the DATALINK data type) that register links to data stored in
external files. DATALINK values point to data files that are stored on an
external file server.

Related concepts:

[‘Data partitioning across multiple partitions” on page 28

Related reference:

“CREATE BUFFERPOOL statement” in the SQL Reference, Volume 2

“CREATE DATABASE PARTITION GROUP statement” in the SQL Reference,
Volume 2

“CREATE TABLESPACE statement” in the SQL Reference, Volume 2

Chapter 1. Concepts 27



Data partitioning across multiple partitions

Data partitioning across multiple partitions

28

DB2® allows great flexibility in spreading data across multiple partitions
(nodes) of a partitioned database. Users can choose how to partition their data
by declaring partitioning keys, and can determine which and how many
partitions their table data can be spread across by selecting the database
partition group and table space in which the data should be stored. In
addition, a partitioning map (which is updatable) specifies the mapping of
partitioning key values to partitions. This makes it possible for flexible
workload parallelization across a partitioned database for large tables, while
allowing smaller tables to be stored on one or a small number of partitions if
the application designer so chooses. Each local partition may have local
indexes on the data it stores to provide high performance local data access.

A partitioned database supports a partitioned storage model, in which the
partitioning key is used to partition table data across a set of database
partitions. Index data is also partitioned with its corresponding tables, and
stored locally at each partition.

Before partitions can be used to store database data, they must be defined to
the database manager. Partitions are defined in a file called db2nodes.cfg.

The partitioning key for a table in a table space on a partitioned database
partition group is specified in the CREATE TABLE statement or the ALTER
TABLE statement. If not specified, a partitioning key for a table is created by
default from the first column of the primary key. If no primary key is defined,
the default partitioning key is the first column defined in that table that has a
data type other than a long or a LOB data type. Partitioned tables must have
at least one column that is neither a long nor a LOB data type. A table in a
table space that is in a single partition database partition group will have a
partitioning key only if it is explicitly specified.

Hash partitioning is used to place a row in a partition as follows:

1. A hashing algorithm (partitioning function) is applied to all of the columns
of the partitioning key, which results in the generation of a partitioning
map index value.

2. The partition number at that index value in the partitioning map identifies
the partition in which the row is to be stored.

DB2 supports partial declustering, which means that a table can be partitioned
across a subset of partitions in the system (that is, a database partition group).
Tables do not have to be partitioned across all of the partitions in the system.

DB2 has the capability of recognizing when data being accessed for a join or a
subquery is located at the same partition in the same database partition

SQL Reference, Volume 1



Data partitioning across multiple partitions

group. This is known as table collocation. Rows in collocated tables with the
same partitioning key values are located on the same partition. DB2 can
choose to perform join or subquery processing at the partition in which the
data is stored. This can have significant performance advantages.

Collocated tables must:

* Be in the same database partition group, one that is not being redistributed.
(During redistribution, tables in the database partition group may be using
different partitioning maps — they are not collocated.)

* Have partitioning keys with the same number of columns.

* Have the corresponding columns of the partitioning key be partition
compatible.

* Be in a single partition database partition group defined on the same
partition.

Related reference:

* [“Partition-compatible data types” on page 141]

Distributed relational databases

A distributed relational database consists of a set of tables and other objects that
are spread across different but interconnected computer systems. Each
computer system has a relational database manager to manage the tables in its
environment. The database managers communicate and cooperate with each
other in a way that allows a given database manager to execute SQL
statements on another computer system.

Distributed relational databases are built on formal requester-server protocols
and functions. An application requester supports the application end of a
connection. It transforms a database request from the application into
communication protocols suitable for use in the distributed database network.
These requests are received and processed by a database server at the other end
of the connection. Working together, the application requester and the
database server handle communication and location considerations, so that the
application can operate as if it were accessing a local database.

An application process must connect to a database manager’s application
server before SQL statements that reference tables or views can be executed.
The CONNECT statement establishes a connection between an application
process and its server.

There are two types of CONNECT statements:

* CONNECT (Type 1) supports the single database per unit of work (Remote
Unit of Work) semantics.

Chapter 1. Concepts 29



Distributed relational databases

30

* CONNECT (Iype 2) supports the multiple databases per unit of work
(Application-Directed Distributed Unit of Work) semantics.

The DB2® call level interface (CLI) and embedded SQL support a connection
mode called concurrent transactions, which allows multiple connections, each of
which is an independent transaction. An application can have multiple
concurrent connections to the same database.

The application server can be local to or remote from the environment in
which the process is initiated. An application server is present, even if the
environment is not using distributed relational databases. This environment
includes a local directory that describes the application servers that can be
identified in a CONNECT statement.

The application server runs the bound form of a static SQL statement that
references tables or views. The bound statement is taken from a package that
the database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use
statements and clauses that are supported by the application server’s database
manager. This is true even if an application is running through the application
requester of a database manager that does not support some of those
statements and clauses.

Remote unit of work

The remote unit of work facility provides for the remote preparation and
execution of SQL statements. An application process at computer system A
can connect to an application server at computer system B and, within one or
more units of work, execute any number of static or dynamic SQL statements
that reference objects at B. After ending a unit of work at B, the application
process can connect to an application server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed, with the
following restrictions:

* All objects referenced in a single SQL statement must be managed by the
same application server.

* All of the SQL statements in a unit of work must be executed by the same
application server.

At any given time, an application process is in one of four possible connection
States:

¢ Connectable and connected

An application process is connected to an application server, and
CONNECT statements can be executed.

If implicit connect is available:

SQL Reference, Volume 1



Remote unit of work

— The application process enters this state when a CONNECT TO
statement or a CONNECT without operands statement is successfully
executed from the connectable and unconnected state.

— The application process may enter this state from the implicitly
connectable state if any SQL statement other than CONNECT RESET,
DISCONNECT, SET CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:

— A CONNECT TO statement is successfully executed from the connectable
and unconnected state.

- A COMMIT or ROLLBACK statement is successfully issued, or a forced
rollback occurs from the unconnectable and connected state.

* Unconnectable and connected

An application process is connected to an application server, but a
CONNECT TO statement cannot be successfully executed to change
application servers. The application process enters this state from the
connectable and connected state when it executes any SQL statement other
than the following: CONNECT TO, CONNECT with no operand,
CONNECT RESET, DISCONNECT, SET CONNECTION, RELEASE,
COMMIT, or ROLLBACK.

* Connectable and unconnected

An application process is not connected to an application server.
CONNECT TO is the only SQL statement that can be executed; otherwise,
an error (SQLSTATE 08003) is raised.

Whether or not implicit connect is available, the application process enters
this state if an error occurs when a CONNECT TO statement is issued, or
an error occurs within a unit of work, causing the loss of a connection and
a rollback. An error that occurs because the application process is not in the
connectable state, or because the server name is not listed in the local
directory, does not cause a transition to this state.

If implicit connect is not available:
— The application process is initially in this state

— The CONNECT RESET and DISCONNECT statements cause a transition
to this state.

¢ Implicitly connectable (if implicit connect is available).
If implicit connect is available, this is the initial state of an application
process. The CONNECT RESET statement causes a transition to this state.
Issuing a COMMIT or ROLLBACK statement in the unconnectable and

connected state, followed by a DISCONNECT statement in the connectable
and connected state, also results in this state.

Availability of implicit connect is determined by installation options,
environment variables, and authentication settings.

Chapter 1. Concepts 31



Remote unit of work

It is not an error to execute consecutive CONNECT statements, because
CONNECT itself does not remove the application process from the
connectable state. It is, however, an error to execute consecutive CONNECT
RESET statements. It is also an error to execute any SQL statement other than
CONNECT TO, CONNECT RESET, CONNECT with no operand, SET
CONNECTION, RELEASE, COMMIT, or ROLLBACK, and then to execute a
CONNECT TO statement. To avoid this error, a CONNECT RESET,
DISCONNECT (preceded by a COMMIT or ROLLBACK statement),
COMMIT, or ROLLBACK statement should be executed before the CONNECT

TO statement.

CONNECT

Begin process / RESET

Failure of

implicit connect

Connectable
and
Unconnected

\

System failure
with rollback

Implicitly
Connectable

2

CONNECT
RESET

CONNECT TO,
COMMIT,
or ROLLBACK

CONNECT TO,
COMMIT, or
ROLLBACK

Unconnectable

Connectable
and ROLLBACK, and
Connected successful COMMIT, Connected
or deadlock /
SQL statement other than SQL statement other
CONNECT TO, CONNECT RESET, than CONNECT RESET,
COMMIT or ROLLBACK

COMMIT or ROLLBACK

Figure 6. Connection State Transitions If Implicit Connect Is Available

32 SQL Reference, Volume 1



Application-directed distributed unit of work

CONNECT RESET

Begin process
Successful CONNECT TO /

CONNECT TO

CONNECT TO,
COMMIT or
ROLLBACK

/

Connectable

Connectable . .
and with system failure and
Connected Unconnected

CONNECT
RESET
SQL statement other than
CONNECT TO, CONNECT RESET, CONNECT
COMMIT or ROLLBACK RESET

ROLLBACK, System failure
successful COMMIT, with rollback

or deadlock
Unconnectable

and
Connected

)

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

Figure 7. Connection State Transitions If Implicit Connect Is Not Available

Application-directed distributed unit of work

The application-directed distributed unit of work facility also provides for the
remote preparation and execution of SQL statements. An application process
at computer system A can connect to an application server at computer
system B by issuing a CONNECT or a SET CONNECTION statement. The
application process can then execute any number of static and dynamic SQL
statements that reference objects at B before ending the unit of work. All
objects referenced in a single SQL statement must be managed by the same
application server. However, unlike the remote unit of work facility, any
number of application servers can participate in the same unit of work. A
commit or a rollback operation ends the unit of work.

An application-directed distributed unit of work uses a type 2 connection. A
type 2 connection connects an application process to the identified application
server, and establishes the rules for application-directed distributed units of
work.

Chapter 1. Concepts 33



Application-directed distributed unit of work

A type 2 application process:

* Is always connectable

e Is either in the connected state or in the unconnected state
* Has zero or more connections.

Each connection of an application process is uniquely identified by the
database alias of the application server for the connection.

An individual connection always has one of the following connection states:
* current and held

* current and release-pending

e dormant and held

* dormant and release-pending

A type 2 application process is initially in the unconnected state, and does not
have any connections. A connection is initially in the current and held state.

34 SQL Reference, Volume 1



Begin
process

Application process

Current

connection states

States of a Connection

of the connection

The current connection is intentionally ended,
or a failure occurs causing the loss

v

A

Successful CONNECT or
SET CONNECTION

Dormant

A

Current

States of a Connection

Successful CONNECT or
SET CONNECTION
specifying another connection

Held

Successful CONNECT or
SET CONNECTION
specifying an
existing dormant connection

RELEASE

Dormant

Release-
pending

Figure 8. Application-Directed Distributed Unit of Work Connection State Transitions

Application process connection states

The following rules apply to the execution of a CONNECT statement:

* A context cannot have more than one connection to the same application
server at the same time.

* When an application process executes a SET CONNECTION statement, the
specified location name must be an existing connection in the set of

connections for the application process.

* When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect, the specified server name must not be
an existing connection in the set of connections for the application process.
For a description of the SQLRULES option, see [‘Options that govern|

(distributed unit of work semantics” on page 37}

Chapter 1. Concepts 35



Application process connection states

36

If an application process has a current connection, the application process is
in the connected state. The CURRENT SERVER special register contains the
name of the application server for the current connection. The application
process can execute SQL statements that refer to objects managed by that
application server.

An application process that is in the unconnected state enters the connected
state when it successfully executes a CONNECT or a SET CONNECTION
statement. If there is no connection, but SQL statements are issued, an implicit
connect is made, provided the DB2DBDFT environment variable has been set
with the name of a default database.

If an application process does not have a current connection, the application
process is in the unconnected state. The only SQL statements that can be
executed are CONNECT, DISCONNECT ALL, DISCONNECT (specifying a
database), SET CONNECTION, RELEASE, COMMIT, or ROLLBACK.

An application process in the connected state enters the unconnected state when
its current connection intentionally ends, or when an SQL statement fails,
causing a rollback operation at the application server and loss of the
connection. Connections end intentionally following the successful execution
of a DISCONNECT statement, or a COMMIT statement when the connection
is in release-pending state. (If the DISCONNECT precompiler option is set to
AUTOMATIC, all connections end. If it is set to CONDITIONAL, all
connections that do not have open WITH HOLD cursors end.)

Connection states
If an application process executes a CONNECT statement, and the server

name is known to the application requester but is not in the set of existing
connections for the application process:

* The current connection is placed into the dormant connection state, and
* The server name is added to the set of connections, and

* The new connection is placed into both the current connection state and the
held connection state.

If the server name is already in the set of existing connections for the
application process, and the application is precompiled with the
SQLRULES(STD) option, an error (SQLSTATE 08002) is raised.

Held and release-pending states. The RELEASE statement controls whether a
connection is in the held or the release-pending state. The release-pending state
means that a disconnect is to occur at the next successful commit operation.
(A rollback has no effect on connections.) The held state means that a
disconnect is not to occur at the next commit operation.

SQL Reference, Volume 1



Connection states

All connections are initially in the held state and can be moved to the
release-pending state using the RELEASE statement. Once in the
release-pending state, a connection cannot be moved back to the held state. A
connection remains in release-pending state across unit of work boundaries if
a ROLLBACK statement is issued, or if an unsuccessful commit operation
results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be
disconnected by a commit operation if the commit operation satisfies the
conditions of the DISCONNECT precompiler option.

Current® and dormant states. Regardless of whether a connection is in the
held state or the release-pending state, it can also be in the current state or the
dormant state. A connection in the current state is the connection being used
to execute SQL statements while in this state. A connection in the dormant
state is a connection that is not current.

The only SQL statements that can flow on a dormant connection are
COMMIT, ROLLBACK, DISCONNECT, or RELEASE. The SET CONNECTION
and CONNECT statements change the connection state of the specified server
to current, and any existing connections are placed or remain in dormant
state. At any point in time, only one connection can be in current state. If a
dormant connection becomes current in the same unit of work, the state of all
locks, cursors, and prepared statements is the same as the state they were in
the last time that the connection was current.

When a connection ends
When a connection ends, all resources that were acquired by the application

process through the connection, and all resources that were used to create and
maintain the connection are de-allocated. For example, if the application
process executes a RELEASE statement, any open cursors are closed when the
connection ends during the next commit operation.

A connection can also end because of a communications failure. If this
connection is in current state, the application process is placed in unconnected
state.

All connections for an application process end when the process ends.

Options that govern distributed unit of work semantics
The semantics of type 2 connection management are determined by a set of

precompiler options. These options are summarized below with default values

indicated by bold and underlined text.

* CONNECT (1 | 2). Specifies whether CONNECT statements are to be
processed as type 1 or type 2.

Chapter 1. Concepts 37



Options that govern distributed unit of work semantics

38

* SQLRULES (DB2 | STD). Specifies whether type 2 CONNECTs are to be
processed according to the DB2 rules, which allow CONNECT to switch to
a dormant connection, or the SQL92 Standard rules, which do not allow
this.

* DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC). Specifies
what database connections are to be disconnected when a commit operation
occurs:

— Those that have been explicitly marked for release by the SQL RELEASE
statement (EXPLICIT)

— Those that have no open WITH HOLD cursors, and those that are
marked for release (CONDITIONAL)

— All connections (AUTOMATIC).

* SYNCPOINT (ONEPHASE | TWOPHASE | NONE). Specifies how
COMMITs or ROLLBACKS are to be coordinated among multiple database
connections:

— Updates can only occur against one database in the unit of work, and all
other databases are read-only (ONEPHASE). Any update attempts to
other databases raise an error (SQLSTATE 25000).

— A transaction manager (TM) is used at run time to coordinate two-phase
COMMITs among those databases that support this protocol
(TWOPHASE).

— Does not use a TM to perform two-phase COMMITs, and does not
enforce single updater, multiple reader (NONE). When a COMMIT or a
ROLLBACK statement is executed, individual COMMITs or ROLLBACKSs
are posted to all databases. If one or more ROLLBACKSs fail, an error
(SQLSTATE 58005) is raised. If one or more COMMITs fail, another error
(SQLSTATE 40003) is raised.

To override any of the above options at run time, use the SET CLIENT
command or the sqlesetc application programming interface (API). Their
current settings can be obtained using the QUERY CLIENT command or the
sqleqryc APL Note that these are not SQL statements; they are APIs defined in
the various host languages and in the command line processor (CLP).

Data representation considerations

Different systems represent data in different ways. When data is moved from
one system to another, data conversion must sometimes be performed.
Products supporting DRDA® automatically perform any necessary
conversions at the receiving system. To perform conversions of numeric data,
the system needs to know the data type and how it is represented by the
sending system. Additional information is needed to convert character strings.
String conversion depends on both the code page of the data and the
operation that is to be performed on that data. Character conversions are
performed in accordance with the IBM® Character Data Representation

SQL Reference, Volume 1



Data representation considerations

Architecture (CDRA). For more information about character conversion, see
the Character Data Representation Architecture: Reference & Registry
(5C09-2190-00) manual.

Related reference:
* “CONNECT (Type 1) statement” in the SQL Reference, Volume 2
¢ “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

DB2 federated systems

Federated systems

A DB2® federated system is a special type of distributed database management
system (DBMS). A federated system consists of a DB2 instance that operates
as a federated server, a database that acts as the federated database, one or
more data sources, and clients (users and applications) that access the
database and data sources. With a federated system you can send distributed
requests to multiple data sources within a single SQL statement. For example,
you can join data that is located in a DB2 Universal Database " table, an
Oracle table, and a Sybase view in a single SQL statement.

Chapter 1. Concepts 39



DB2 federated systems

Figure 9. The components of a federated system and the supported data sources

40

DB2 for UNIX DB2 clients (end user and application) DB2 Life Sciemces
and Windows Data Connect
N
| DB2 for z/0S .
| &0s/390 ——» X - Blast
N’
Y
DB2 for iServer — 4—@ Documentum
N’
— DB2 federated server
DB2 Server for DB2 Microsoft
VM & VSE ——¥ federated % Excel
database
| . table
| Informix ————» global « structured
catalog files
Y
OLEDB————p < XML
N’
DB2 Relational Connect
Oracle Sybase Microsoft SQL ODBC

Server

The power of a DB2 federated system is in its ability to:

e Join data from local tables and remote data sources, as if all the data is

local.

* Take advantage of the data source processing strengths, by sending
distributed requests to the data sources for processing.

* Compensate for SQL limitations at the data source by processing parts of a
distributed request at the federated server.

The DB2 server in a federated system is referred to as the federated server. Any
number of DB2 instances can be configured to function as federated servers.
You can use existing DB2 instances as your federated server, or you can create

new ones specifically for the federated system.

The DB2 federated instance that manages the federated system is called a
server because responds to requests from end users and client applications.
The federated server often sends parts of the requests it receives to the data
sources for processing. A pushdown operation is an operation that is processed

SQL Reference, Volume 1



DB2 federated systems

remotely. The federated instance is referred to as the federated server, even
though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager
instance to which application processes connect and submit requests.
However, two main features distinguish it from other application servers:

* A federated server is configured to receive requests that might be partially
or entirely intended for data sources. The federated server distributes these
requests to the data sources.

« Like other application servers, a federated server uses DRDA®
communication protocols (such as SNA and TCP/IP) to communicate with
DB2 family instances. However, unlike other application servers, a
federated server uses other protocols to communicate with non-DB2 family
instances.

Related concepts:

* ['Data sources” on page 41|
* ['The federated database” on page 43|
[“The SQL Compiler and the query optimizer” on page 44|

+ [“Compensation” on page 45|

* “Pushdown analysis” in the Federated Systems Guide

Data sources

Typically, a federated system data source is a relational DBMS instance (such as
Oracle or Sybase) and one or more databases that are supported by the
instance. However, there are other types of data sources (such as life sciences
data sources and search algorithms) that you can include in your federated
system:

« Spreadsheets, such as Microsoft® Excel.
* Search algorithms, such as BLAST.

* Table-structured files. These type of files have a regular structure that
consists of a series of records. Each record contains the same number of
fields that are separated by an arbitrary delimiter. Two sequential delimiters
represent null values.

* Documentum document management software that includes a repository to
store document content, attributes, relationships, versions, renditions,
formats, workflow, and security.

* XML tagged files.

In DB2® Universal Database for UNIX® and Windows, the supported data
sources are:

Chapter 1. Concepts 41



DB2 federated systems

Table 1. Supported data source versions and access methods.

Data source

Supported data
source versions

Access method

Notes

DB2 Universal 6.1,71,72,81 DRDA® Directly integrated
Database™ for UNIX in DB2 Version 8
and Windows®

DB2 Universal 5 with PTF PQ07537 DRDA Directly integrated
Database for z/OS™ (or later) in DB2 Version 8
and OS/390%

DB2 Universal 4.2 (or later) DRDA Directly integrated
Database for in DB2 Version 8
iSeries™"

DB2 Server for VM 3.3 (or later) DRDA Directly integrated

and VSE

in DB2 Version 8

Informix™ 7,8,9 Informix Client SDK Directly integrated
in DB2 Version 8
ODBC ODBC 3.0 driver. Requires DB2
Relational Connect
OLE DB OLE DB 2.0 (or Directly integrated
later) in DB2 Version 8
Oracle 7.x, 8.x, 9.x SQL*Net or Net8 Requires DB2

client software

Relational Connect

Microsoft SQL

6.5, 7.0, 2000

On Windows the

Requires DB2

Server Microsoft SQL Relational Connect
Server Client ODBC
3.0 (or higher)
driver. On UNIX the
Data Direct
Technologies
(formerly MERANT)
Connect ODBC 3.6
driver.
Sybase 10.0, 11.0, 11.1, 11.5, Sybase Open Client Requires DB2
11.9, 12.0 Relational Connect
BLAST 2.1.2 BLAST daemon Requires DB2 Life
(supplied with the Sciences Data
wrapper) Connect
Documentum Documentum Documentum Client Requires DB2 Life

server: EDMS 98
(also referred to as
version 3) and 4i.

API/Library

Sciences Data
Connect

SQL Reference, Volume 1



DB2 federated systems

Table 1. Supported data source versions and access methods. (continued)

Data source Supported data Access method Notes
source versions

Microsoft Excel 97, 2000 none Requires DB2 Life
Sciences Data
Connect

table-structured files none Requires DB2 Life
Sciences Data
Connect

XML 1.0 specification none Requires DB2 Life
Sciences Data
Connect

Data sources are semi-autonomous. For example, the federated server can
send queries to Oracle data sources at the same time that Oracle applications
can access these data sources. A DB2 federated system does not monopolize
or restrict access to the other data sources, beyond integrity and locking
constraints.

The federated database

To end users and client applications, data sources appear as a single collective
database in DB2. Users and applications interface with the federated database
managed by the federated server. The federated database contains catalog
entries that identify data sources and their characteristics. The federated
server consults the information stored in the federated database system
catalog and the data source wrapper to determine the best plan for processing
SQL statements.

The federated database system catalog contains information about the objects
in the federated database and information about objects at the data sources.
The catalog in a federated database is called the global catalog because it
contains information about the entire federated system. DB2® query optimizer
uses the information in the global catalog and the data source wrapper to
plan the best way to process SQL statements. The information stored in the
global catalog includes remote and local information, such as column names,
column data types, column default values and index information.

Remote catalog information is the information or name used by the data
source. Local catalog information is the information or name used by the
federated database. For example, suppose a remote table includes a column
with the name of EMPNO. The global catalog would store the remote column
name as EMPNO. Unless you designate a different name, the local column
name will be stored as EMPNO. You can change the local column name to
Employee_Number. Users submitting queries which include this column will

Chapter 1. Concepts 43



DB2 federated systems

44

use Employee_Number in their queries instead of EMPNO. You use column
options to change the local name of data source column.

For relational data sources, the information stored in the global catalog
includes both remote and local information. For non-relational data sources,
the information stored in the global catalog varies from data source to data
source.

To see the data source table information that is stored in the global catalog,
query the federated SYSCAT.TABLES, SYSCAT.TABOPTIONS,
SYSCAT.COLUMNS, and SYSCAT.COLOPTIONS catalog views.

The federated system processes SQL statements as if the data sources were
ordinary relational tables or views within the federated database. This enables
the federated system to join relational data with data in non-relational
formats. This is true even when the data sources use different SQL dialects, or
do not support SQL at all.

The global catalog also includes other information about the data sources. For
example, it includes information the federated server uses to connect to the
data source and map the federated user authorizations to the data source user
authorizations.

Related concepts:

+ ["Federated systems” on page 39|

+ ["The SQL Compiler and the query optimizer” on page 44|

* “Tuning query processing” in the Federated Systems Guide

Related reference:

* “Views in the global catalog table containing federated information” in the
Federated Systems Guide

The SQL Compiler and the query optimizer

To obtain data from data sources, users and applications submit queries in
DB2® SQL to the federated database. When a query is submitted, the DB2
SQL Compiler consults information in the global catalog and the data source
wrapper to help it process the query. This includes information about
connecting to the data source, server attributes, mappings, index information,
and processing statistics.

As part of the SQL Compiler process, the query optimizer analyzes a query. The
Compiler develops alternative strategies, called access plans, for processing the
query. Access plans might call for the query to be:

* Processed by the data sources.

SQL Reference, Volume 1



DB2 federated systems

* Processed by the federated server.
* Processed partly by the data sources and partly by the federated server.

DB2 evaluates the access plans primarily on the basis of information about the
data source capabilities and the data. The wrapper and the global catalog
contain this information. DB2 decomposes the query into segments that are
called query fragments. Typically it is more efficient to pushdown a query
fragment to a data source, if the data source can process the fragment.
However, the query optimizer takes into account other factors such as:

¢ The amount of data that needs to be processed.

* The processing speed of the data source.

* The amount of data that the fragment will return.
¢ The communication bandwidth.

The query optimizer generates local and remote access plans for processing a
query fragment, based on resource cost. DB2 then chooses the plan it believes
will process the query with the least resource cost.

If any of the fragments are to be processed by data sources, DB2 submits
these fragments to the data sources. After the data sources process the
fragments, the results are retrieved and returned to DB2. If DB2 performed
any part of the processing, it combines its results with the results retrieved
from the data source. DB2 then returns all results to the client.

Related concepts:
* “Tuning query processing” in the Federated Systems Guide
¢ “Pushdown analysis” in the Federated Systems Guide

Related tasks:
* “Global optimization” in the Federated Systems Guide

Compensation

The DB2® federated server does not push down a query fragment if the data
source cannot process it, or if the federated server can process it faster than
the data source can process it. For example, suppose that the SQL dialect of a
data source does not support a CUBE grouping in the GROUP BY clause. A
query that contains a CUBE grouping and references a table in that data
source is submitted to the federated server. DB2 does not pushdown the
CUBE grouping to the data source, but processes the CUBE itself. The ability
by DB2 to process SQL that is not supported by a data source is called
compensation.

Chapter 1. Concepts 45



DB2 federated systems

The federated server compensates for lack of functionality at the data source
in two ways:

* It can ask the data source to use one or more operations that are equivalent
to the DB2 function stated in the query. Suppose a data source does not
support the cotangent (COT(x)) function, but supports the tangent (TAN(x))
function. DB2 can ask the data source to perform the calculation
(1/TAN(x)), which is equivalent to the cotangent (COT(x)) function.

* It can return the set of data to the federated server, and perform the
function locally.

Each type of RDBMS supports a subset of the international SQL standard. In
addition, some types of RDBMSs support SQL constructs that exceed this
standard. An SQL dialect, is the totality of SQL that a type of RDBMS
supports. If an SQL construct is found in the DB2 SQL dialect, but not in a
data source dialect, the federated server can implement this construct on
behalf of the data source.

The following examples show the ability of DB2 to compensate for differences
in SQL dialects:

* DB2 SQL includes the clause, common-table-expression. In this clause, a
name can be specified by which all FROM clauses in a fullselect can
reference a result set. The federated server will process a
common-table-expression for a data source, even though the SQL dialect
used by the data source does not include common-table-expression.

* When connecting to a data source that does not support multiple open
cursors within an application, the federated server can simulate this
function. The federated server does this by establishing separate,
simultaneous connections to the data source. Similarly, the federated server
can simulate CURSOR WITH HOLD capability for a data source that does
not provide that function.

With compensation, the federated server can support the full DB2 SQL dialect
for queries against data sources. Even data sources with weak SQL support or
no SQL support. You must use the DB2 SQL dialect with a federated system,
except in a pass-through session.

Related concepts:

* ["The SQL Compiler and the query optimizer” on page 4
p

* ['Pass-through sessions” on page 46|

* ['Function mappings and function templates” on page 56|

Pass-through sessions

You can submit SQL statements directly to data sources by using a special
mode called pass-through. You submit SQL statements in the SQL dialect used

46 SQL Reference, Volume 1



DB2 federated systems

by the data source. Use a pass-through session when you want to perform an
operation that is not possible with the DB2® SQL/APL. For example, use a
pass-through session to create a procedure, create an index, or perform
queries in the native dialect of the data source.

Note: Currently, the data sources that support pass-through, support
pass-through using SQL. In the future, it is possible that data sources will
support pass-though using a data source language other than SQL.

Similarly, you can use a pass-through session to perform actions that are not
supported by SQL, such as certain administrative tasks. However, you cannot
use a pass-through session to perform all administrative tasks. For example,
you can create or drop tables at the data source, but you cannot start or stop
the remote database.

You can use both static and dynamic SQL in a pass-through session.

The federated server provides the following SQL statements to manage
pass-through sessions:

SET PASSTHRU
Opens a pass-through session. When you issue another SET
PASSTHRU statement to start a new pass-through session, the current
pass-through session is terminated.

SET PASSTHRU RESET
Terminates the current pass-through session.

GRANT (Server Privileges)
Grants a user, group, list of authorization IDs, or PUBLIC the
authority to initiate pass-through sessions to a specific data source.

REVOKE (Server Privileges)
Revokes the authority to initiate pass-through sessions.

The following restrictions apply to pass-through sessions:

* You must use the SQL dialect or language commands of the data source —
you cannot use the DB2 SQL dialect. As a result, you do not query a
nickname, but the data source objects directly.

¢ When performing UPDATE or DELETE operations in a pass-through
session, you cannot use the WHERE CURRENT OF CURSOR condition.

Related concepts:

* “How client applications interact with data sources” in the Federated Systems
Guide

* “Using pass-through to query data sources directly” in the Federated Systems
Guide

Chapter 1. Concepts 47



DB2 federated systems

48

Related tasks:

* “Using pass-through with Oracle data sources” in the Federated Systems
Guide

* “Working with nicknames” in the Federated Systems Guide

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated server interacts with data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data
from it iteratively. Typically, the DB2® federated instance owner uses the
CREATE WRAPPER statement to register a wrapper in the federated system.

You create one wrapper for each type of data source that you want to access.
For example, suppose that you want to access three DB2 for z/OS™" database
tables, one DB2 for iSeries” table, two Informix" tables, and one Informix
view. You need to create only two wrappers: one for the DB2 data source
objects and one for the Informix data source objects. Once these wrappers are
registered in the federated database, you can use these wrappers to access
other objects from those data sources. For example, you can use the DRDA®
wrapper with all DB2 family data source objects—DB2 for UNIX® and
Windows, DB2 for z/0OS and OS/390, DB2 for iSeries, and DB2 Server for VM
and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

There are wrappers for each supported data source. Some wrappers have
default wrapper names. When you use the default name to create the
wrapper, the federated server automatically picks up the data source library
associated with the wrapper.

Table 2. Default wrapper names for each data source.

Data source Default wrapper name(s)
DB2 Universal Database™ for UNIX and ~ DRDA

Windows®

DB2 Universal Database for z/OS and DRDA

0S/390®

DB2 Universal Database for iSeries DRDA

DB2 Server for VM and VSE DRDA

Informix INFORMIX

Oracle SQLNet or Net8

SQL Reference, Volume 1



DB2 federated systems

Table 2. Default wrapper names for each data source. (continued)

Data source Default wrapper name(s)
Microsoft® SQL Server DJXMSSQL3, MSSQLODBC3
ODBC none

OLE DB OLEDB

Sybase CTLIB, DBLIB

BLAST none

Documentum none

Microsoft Excel none

Table-structured files none

XML none

A wrapper performs many tasks. Some of these tasks are:

It connects to the data source. The wrapper uses the standard connection
API of the data source.

It submits queries to the data source.
For data sources that do not support SQL, one of two actions will occur:
— For data sources that support SQL, the query is submitted in SQL.

— For data sources that do not support SQL, the query is translated into
the native query language of the source or into a series of source API
calls.

It receives results sets from the data source. The wrapper uses the data
source standard APIs for receiving results set.

It responds to federated server queries about the default data type
mappings for a data source. The wrapper contains the default type
mappings that are used when nicknames are created for a data source
object. Data type mappings you create override the default data type
mappings. User-defined data type mappings are stored in the global
catalog.

It responds to federated server queries about the default function mappings
for a data source. The wrapper contains information the federated server
needs to determine if DB2 functions are mapped to functions of the data
source, and how the functions are mapped. This information is used by the
SQL Compiler to determine if the data source is able to perform the query
operations. Function mappings you create override the default function
type mappings. User-defined function mappings are stored in the global
catalog.

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper. Currently there is only one wrapper option, DB2_FENCED. The

Chapter 1. Concepts 49



DB2 federated systems

50

Server

DB2_FENCED wrapper option indicates if the wrapper is fenced or trusted by
DB2. A fenced wrapper operates under some restrictions.

Related concepts:
* “Create the wrapper” in the Federated Systems Guide
* “Fast track to configuring your data sources” in the Federated Systems Guide

Related reference:

* ["Wrapper options for federated systems” on page 774

definitions and server options

After wrappers are created for the data sources, the federated instance owner
defines the data sources to the federated database. The instance owner
supplies a name to identify the data source, and other information that
pertains to the data source. If the data source is an RDBMS, this information
includes:

* The type and version of the RDBMS.
* The database name for the data source on the RDBMS.
* Metadata that is specific to the RDBMS

For example, a DB2® family data source can have multiple databases. The
definition must specify which database the federated server can connect to. In
contrast, an Oracle data source has one database, and the federated server can
connect to the database without knowing its name. The database name is not
included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the
federated server are collectively called a server definition. Data sources answer
requests for data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and
modify a server definition.

Some of the information within a server definition is stored as server options.
When you create server definitions, it is important to understand the options
that you can specify about the server. Some server options configure the
wrapper and some affect the way DB2 uses the wrapper. Server options are
specified as parameters in the CREATE SERVER and ALTER SERVER
statements.

Server options are set to values that persist over successive connections to the
data source. These values are stored in the global catalog. For example, the
name for the data source on the RDBMS is set in the NODE server option.

SQL Reference, Volume 1



DB2 federated systems

Some data sources have multiple databases on each instance. For these data
source, the name of the database which the federated server connects to is set
in the DBNAME server option.

To set a server option value temporarily, use the SET SERVER OPTION
statement, This statement overrides the value for the duration of a single
connection to the federated database. The overriding value does not get stored
in the global catalog.

Related concepts:
* “Supply the server definition” in the Federated Systems Guide

Related reference:

* ['Server options for federated systems” on page 764

User mappings and user options

When a federated server needs to pushdown a request to a data source, the
server must first establish a connection to the data source. The server does
this by using a valid user ID and password to that data source. By default, the
federated server attempts to access the data source with the user ID and
password that are used to connect to DB2. If the user ID and password are
the same between the federated server and the data source, the connection is
established. If the user ID and password to access the federated server differs
from the user ID and password to access a data source, you must define an
association between the two authorizations. Once you define the association,
distributed requests can be sent to the data source. This association is called a
user mapping.

You define and modify user mappings with the CREATE USER MAPPING
and ALTER USER MAPPING statements. These statements include
parameters, called user options, which values related to authorization are
assigned to. For example, suppose that a user has the same ID, but different
passwords, for the federated database and a data source. For the user to
access the data source, it is necessary to map the passwords to one another.
You use the CREATE USER MAPPING statement and the user option
REMOTE_PASSWORD to map the passwords. Use the ALTER USER
MAPPING statement to modify an existing user mapping.

Related concepts:

¢ “Create the user mappings and test the connection to the data source” in
the Federated Systems Guide

Related reference:
* “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Chapter 1. Concepts 51



DB2 federated systems

52

* “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Nicknames and data source objects

After you create the server definitions and user mappings, the federated
instance owner creates the nicknames. A nickname is an identifier that is used
to reference the object located at the data sources that you want to access. The
objects that nicknames identify are referred to as data source objects.

The following table shows the data source objects you can reference when you
create a nickname.

Table 3. Data sources and the objects that you can create a nickname for

Data source Objects you can reference

DB2® for UNIX® and Windows® nicknames, summary tables, tables, views

DB2 for z/OS™ and OS/390® tables, views

DB2 for iSeries tables, views

DB2 Server for VM and VSE tables, views

Informix"" tables, views, synonyms

Microsoft® SQL Server tables, views

ODBC tables, views

Oracle tables, views

Sybase tables, views

BLAST FASTA files indexed for BLAST search
algorithms

document management software objects and registered tables in a
Documentum Docbase

Microsoft Excel xls files (only the first sheet in the
workbook is accessed)

table-structured files .txt files (text files that meet a very specific
format)

XML-tagged files sets of items in an XML document

Nicknames are not alternative names for data source objects in the same way
that aliases are alternative names. They are pointers by which the federated
server references these objects. Nicknames are typically defined with the
CREATE NICKNAME statement.

When an end user or a client application submits a distributed request to the
federated server, the request does not need to specify the data sources.
Instead, it references the data source objects by their nicknames. The

SQL Reference, Volume 1



DB2 federated systems

nicknames are mapped to specific objects at the data source. The mappings
eliminate the need to qualify the nicknames by data source names. The
location of the data source objects is transparent to the end user or the client
application.

Suppose if you define the nickname DEPT to represent an Informix database
table called NFX1.PERSON.DEPT. The statement SELECT * FROM DEPT is
allowed from the federated server. However, the statement SELECT * FROM
NFX1.PERSON.DEPT is not allowed from the federated server (except in a
pass-through session).

When you create a nickname for a data source object, metadata about the
object is added to the global catalog. The query optimizer uses this metadata,
and the information in the wrapper, to facilitate access to the data source
object. For example, if the nickname is for a table that has an index, the global
catalog contains information about the index. The wrapper contains the
mappings between the DB2 data types and the data source data types.

Currently, you cannot execute DB2 utility operations (LOAD, REORG,
REORGCHK, IMPORT, RUNSTATS, and so on) on nicknames.

Related concepts:

* “Create nicknames for each data source object” in the Federated Systems
Guide

Related reference:
* “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Column options

You can supply the global catalog with additional metadata information about
the nicknamed object. This metadata describes values in certain columns of
the data source object. You assign this metadata to parameters that are called
column options. The column options tell the wrapper to handle the data in a
column differently than it normally would handle it. Column options are used
to provide other information to the wrapper as well. For example for XML
data sources, a column option is used to tell the wrapper the XPath
expression to use when the wrapper parses the column out of the XML
document. The SQL Complier and query optimizer use the metadata to
develop better plans for accessing the data.

DB2® treats the object that a nickname references as if it is a table. As a result,
you can set column options for any data source object that you create a
nickname for. Some column options are designed for specific types of data
sources and can only be applied to those data sources.

Chapter 1. Concepts 53



DB2 federated systems

54

Suppose that a data source has a collating sequence that differs from the
federated database collating sequence. The federated server typically would
not sort any columns containing character data at the data source. It would
return the data to the federated database and perform the sort locally.
However, suppose that the column is a character data type (CHAR and
VARCHAR) and contains only numeric characters ('0’,'1’,...,/9’). You can
indicate this by assigning a value of 'Y’ to the NUMERIC_STRING column
option. This gives the DB2 query optimizer the option of performing the sort
at the data source. If the sort is performed remotely, you can avoid the
overhead of porting the data to the federated server and performing the sort
locally.

You can define column options in the CREATE NICKNAME and ALTER
NICKNAME statements.

Related tasks:
* “Working with nicknames” in the Federated Systems Guide

Related reference:

+ [“Column options for federated systems” on page 762|

Data type mappings

The data types at the data source must map to corresponding DB2® data
types so that the federated server can retrieve data from data sources. For
most data sources, the default type mappings are in the wrappers. The default
type mappings for DB2 data sources are in the DRDA® wrapper. The default
type mappings for Informix’" are in the INFORMIX wrapper, and so forth.

For some non-relational data sources, you must specify data type information
in the CREATE NICKNAME statement.

The corresponding DB2 for UNIX® and Windows® data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object.

For example:

* The Oracle type FLOAT maps by default to the DB2 type DOUBLE.

* The Oracle type DATE maps to the DB2 type DB2 TIMESTAMP.

e The DB2 for z/OS™ type DATE maps by default to the DB2 type DATE.

When values from a data source column are returned to the federated
database, the values conform fully to the DB2 data type that the data source
column is mapped to. If this is a default mapping, the values also conform

SQL Reference, Volume 1



DB2 federated systems

fully to the data source type in the mapping. For example, suppose an Oracle
table with a FLOAT column is defined to the federated database. The default
mapping of Oracle FLOAT to DB2 DOUBLE automatically applies to that
column. Consequently, the values that are returned from the column will
conform fully to both FLOAT and DOUBLE.

For some wrappers, you can change the format or length of values that are
returned. You do this by changing the DB2 data type that the values must
conform to. For example, the Oracle data type DATE is used as a time stamp;
the Oracle DATE data type contains century, year, month, day, hour, minute,
and second. By default, the Oracle DATE data type maps to the DB2
TIMESTAMP data type. Suppose that several Oracle table columns have a
data type of DATE. You want queries of these columns to return only the
hour, minute, and second. You can override the default data type mapping so
that the Oracle DATE data type maps to the DB2 TIME data type. When
Oracle DATE columns are queried, only the time portion of the time stamp
values is returned to DB2.

Use the CREATE TYPE MAPPING statement to create:
* A data type mapping that overrides a default data type mapping

* A data type mapping for which there currently is no mapping. For
example, when a new built-in type is available at the data source, or when
there is a user-defined type at the data source that you want to map to.

In the CREATE TYPE MAPPING statement, you can specify if the mapping
applies each time that you access that data source, or if the mapping applies
to a specific server.

Use the ALTER TYPE MAPPING statement to change a type mapping that
you originally created with the CREATE TYPE MAPPING statement. The
ALTER TYPE MAPPING statement cannot be used to change the default type
mappings.

To modify a data type mapping for a specific column of a specific data source
object, use the column option parameters in the ALTER NICKNAME
statement. This statement enables you to specify data type mappings for
individual tables, views, or other data source objects.

If you change a type mapping, nicknames created before the type mapping
change do not reflect the new mapping.

Unsupported data types:
DB2 federated servers do not support:

* LONG VARCHAR

Chapter 1. Concepts 55



DB2 federated systems

56

* LONG VARGRAPHIC

* DATALINK

* User-defined data types (UDTs) created at the data source

You cannot create a user-defined mapping for these data types. However, you
create a nickname for view at the data source that is identical to the table that

contains the user-defined data types. The view must ‘cast’ the user-defined
type column to the built-in, or system, type.

A nickname can be created for a remote table that contains LONG VARCHAR
columns. However, the results will be mapped to a local DB2 data type that is
not LONG VARCHAR.

Related concepts:
* “Modifying wrappers” in the Federated Systems Guide

Related tasks:
* “Modifying default data type mappings” in the Federated Systems Guide

Related reference:

* “ALTER NICKNAME statement” in the SQL Reference, Volume 2

* “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2
* ['Default forward data type mappings” on page 775

Function mappings and function templates

For the federated server to recognize a data source function, the function must
be mapped against an existing DB2® function. DB2 supplies default mappings
between existing built-in data source functions and built-in DB2 functions. For
most data sources, the default function mappings are in the wrappers. The
default function mappings from DB2 for UNIX® and Windows® functions to
DB2 for z/OS™ functions are in the DRDA® wrapper. The default function
mappings from DB2 for UNIX and Windows functions to Sybase functions are
in the CTLIB and DBLIB wrappers, and so forth.

To use a data source function that the federated server does not recognize,
you must create a function mapping. The mapping you create is between the
data source function and a counterpart function at the federated database.
Function mappings are typically used when a new built-in function and a
new user-defined function becomes available at the data source. Function
mappings are also used when a DB2 counterpart function does not exist, you
must create one on the DB2 federated server that meets the following
requirements:

* If the data source function has input parameters:

SQL Reference, Volume 1



DB2 federated systems

— The DB2 counterpart function must have the same number of input
parameters that the data source function has.

— The data types of the input parameters for the DB2 counterpart function
must be compatible with the corresponding data types of the input
parameters for data source function.

¢ If the data source function has no input parameters:

— The DB2 counterpart function cannot have any input parameters.

Note: When you create a function mapping, it is possible that the return
values from a function evaluated at the data source will be different than the
return values from a compatible function evaluated at the DB2 federated
database. DB2 will use the function mapping, but it might result in an SQL
syntax error or unexpected results.

The DB2 counterpart function can be either a complete function or a function
template.

A function template is a DB2 function that you create to invoke a function on a
data source. The federated server recognizes a data source function when
there is a mapping between the data source function and a counterpart
function at the federated database. You can create a function template to act as
the counterpart when no counterpart exists.

However, unlike a regular function, a function template has no executable
code. After you create a function template, you must then create the function
mapping between the template and the data source function. You creat a
function template with the CREATE FUNCTION statement, using the AS
TEMPLATE parameter. You create a function mapping by using the CREATE
FUNCTION MAPPING statement. When the federated server receives queries
which specify the function template, the federated server will invoke the data
source function.

Related concepts:

* ["Function mappings options” on page 57|

Related reference:

* ["Function mapping options for federated systems” on page 763

Function mappings options

The CREATE FUNCTION MAPPING statement includes parameters called
function mapping options. You can assign values that pertain to the mapping, or
to the data source function within the mapping. For example, you can include
estimated statistics on the overhead that will be consumed when the data

Chapter 1. Concepts 57



DB2 federated systems

58

source function is invoked. The query optimizer uses these estimates to decide
if the function should be invoked by the data source or by the DB2® federated
database.

Related reference:

¢ ['Function mapping options for federated systems” on page 763

Index specifications

When you create a nickname for a data source table, information about any
indexes that the data source table has is added to the global catalog. The
query optimizer uses this information to expedite the processing of
distributed requests. The catalog information about a data source index is a
set of metadata, and is called an index specification. A federated server does not
create an index specification when you create a nickname for:

e A table that has no indexes.

* A view, which typically does not have any index information stored in the
remote catalog.

* A data source object that does not have a remote catalog from which the
federated server can obtain the index information.

Note: You cannot create an index specification for an Informix " view.

Suppose that a nickname is created for a table that has no index, but the table
acquires an index later. Suppose that a table acquires a new index, in addition
to the ones it had when the nickname was created. Because index information
is supplied to the global catalog at the time the nickname is created, the
federated server is unaware of the new indexes. Similarly, when a nickname is
created for a view, the federated server is unaware of the underlying table
(and its indexes) from which the view was generated. In these circumstances,
you can supply the necessary index information to the global catalog. You can
create an index specification for tables that have no indexes. The index
specification tells the query optimizer which column or columns in the table
to search on to find data quickly.

In a federated system, you use the CREATE INDEX statement against a
nickname to supply index specification information to the global catalog. If a
table acquires a new index, the CREATE INDEX statement that you create will
reference the nickname for the table and contain information about the index
of the data source table. If a nickname is created for a view, the CREATE
INDEX statement that you create will reference the nickname for the view and
contain information about the index of the underlying table for the view.

Related concepts:

* ['The SQL Compiler and the query optimizer” on page 44|

SQL Reference, Volume 1



DB2 federated systems

¢ “Overview of the tasks to set up a federated system” in the Federated
Systems Guide

¢ “Modifying wrappers” in the Federated Systems Guide

Related reference:
¢ “CREATE INDEX statement” in the SQL Reference, Volume 2

Chapter 1. Concepts 59



DB2 federated systems

60 SQL Reference, Volume 1



Chapter 2. Language elements

This chapter describes the language elements that are common to many SQL
statements:

. ’Characters"l

* ["Tokens” on page 63|

* [‘Identifiers” on page 65|

* ['Data types” on page 92|

« ["Constants” on page 143

* [‘Special registers” on page 146

* [Functions” on page 16%
* ["Methods” on page 17§
* [“Expressions” on page 187]

* [“Predicates” on page 225|

Characters

The basic symbols of keywords and operators in the SQL language are
single-byte characters that are part of all IBM character sets. Characters of the
language are classified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through
z) letters plus the three characters ($, #, and @), which are included for
compatibility with host database products (for example, in code page 850, $ is
at X'24', # is at X'23', and @ is at X'40"). Letters also include the alphabetics
from the extended character sets. Extended character sets contain additional
alphabetic characters; for example, those with diacritical marks (~ is an
example of a diacritical mark). The available characters depend on the code
page in use.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

blank - minus sign
" double quotation . period
mark
% percent / slash
& ampersand : colon

© Copyright IBM Corp. 1993 - 2002 61



Characters

62

apostrophe or single ;
quotation mark

( left parenthesis <
) right parenthesis =
* asterisk >
+ plus sign ?
, comma _
| vertical bar A

! exclamation mark

semicolon

less than
equals

greater than
question mark
underline or
underscore
caret

All multi-byte characters are treated as letters, except for the double-byte

blank, which is a special character.

SQL Reference, Volume 1



Tokens

Tokens

Tokens are the basic syntactical units of SQL. A token is a sequence of one or
more characters. A token cannot contain blank characters, unless it is a string
constant or a delimited identifier, which may contain blanks.

Tokens are classified as ordinary or delimiter:
* An ordinary token is a numeric constant, an ordinary identifier, a host
identifier, or a keyword.
Examples
1 .1 +2 SELECT E 3
* A delimiter token is a string constant, a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams. A
question mark is also a delimiter token when it serves as a parameter
marker.
Examples
, 'string’ "fld1i" =

Spaces: A space is a sequence of one or more blank characters. Tokens other
than string constants and delimited identifiers must not include a space. Any
token may be followed by a space. Every ordinary token must be followed by
a space or a delimiter token if allowed by the syntax.

Comments: Static SQL statements may include host language comments or
SQL comments. Either type of comment may be specified wherever a space
may be specified, except within a delimiter token or between the keywords
EXEC and SQL. SQL comments are introduced by two consecutive hyphens
() and ended by the end of the line.

Case sensitivity: Any token may include lowercase letters, but a lowercase
letter in an ordinary token is folded to uppercase, except for host variables in
the C language, which has case-sensitive identifiers. Delimiter tokens are
never folded to uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = 'Smith';

is equivalent, after folding, to:
SELECT * FROM EMPLOYEE WHERE LASTNAME = 'Smith';

Multi-byte alphabetic letters are not folded to uppercase. Single-byte
characters (a to z) are folded to uppercase.

Related reference:
* “How SQL statements are invoked” in the SQL Reference, Volume 2

Chapter 2. Language elements 63



Tokens

» “PREPARE statement” in the SQL Reference, Volume 2

64 SQL Reference, Volume 1



Identifiers

Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL
statement is either an SQL identifier or a host identifier.

* SQL identifiers
There are two types of SQL identifiers: ordinary and delimited.

— An ordinary identifier is a letter followed by zero or more characters, each
of which is an uppercase letter, a digit, or the underscore character. An
ordinary identifier should not be identical to a reserved word.

Examples
WKLYSAL WKLY_SAL

— A delimited identifier is a sequence of one or more characters enclosed by
double quotation marks. Two consecutive quotation marks are used to
represent one quotation mark within the delimited identifier. In this way
an identifier can include lowercase letters.

Examples
"WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversion of identifiers created on a double-byte code page, but
used by an application or database on a multi-byte code page, may require
special consideration: After conversion, such identifiers may exceed the
length limit for an identifier.

* Host identifiers

A host identifier is a name declared in the host program. The rules for
forming a host identifier are the rules of the host language. A host identifier
should not be greater than 255 characters in length and should not begin
with SQL or DB2 (in uppercase or lowercase characters).

Naming conventions and implicit object name qualifications

The rules for forming the name of an object depend on the object type.
Database object names may be made up of a single identifier, or they may be
schema-qualified objects made up of two identifiers. Schema-qualified object
names may be specified without the schema name; in such cases, the schema
name is implicit.

In dynamic SQL statements, a schema-qualified object name implicitly uses
the CURRENT SCHEMA special register value as the qualifier for unqualified
object name references. By default it is set to the current authorization ID. If
the dynamic SQL statement is contained in a package that exhibits bind,
define, or invoke behaviour, the CURRENT SCHEMA special register is not
used for qualification. In a bind behaviour package, the package default
qualifier is used as the value for implicit qualification of unqualified object
references. In a define behaviour package, the authorization ID of the routine

Chapter 2. Language elements 65



Naming conventions and implicit object name qualifications

66

definer is used as the value for implicit qualification of unqualified object
references within that routine. In an invoke behaviour package, the statement
authorization ID in effect when the routine is invoked is used as the value for
implicit qualification of unqualified object references within dynamic SQL
statements within that routine. For more information, see

[characteristics at run time” on page 73|

In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified database object names. By default, this
value is set to the package authorization ID.

The following object names, when used in the context of an SQL procedure,
are permitted to use only the characters allowed in an ordinary identifier,
even if the names are delimited:

e condition-name

e label

* parameter-name

* procedure-name

e SQL-variable-name

¢ statement-name

The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name A schema-qualified name that designates an
alias.

attribute-name An identifier that designates an attribute of a
structured data type.

authorization-name An identifier that designates a user or a
group:

* Valid characters are A through Z, a through
z, 0 through 9, #, @, $, and _.

¢ The name must not begin with the
characters 'SYS', 'IBM’, or 'SQL".

¢ The name must not be: ADMINS, GUESTS,
LOCAL, PUBLIC, or USERS.

e A delimited authorization ID must not
contain lowercase letters.

bufferpool-name An identifier that designates a bufferpool.

column-name A qualified or unqualified name that
designates a column of a table or view. The

SQL Reference, Volume 1



Naming conventions and implicit object name qualifications

condition-name

constraint-name

correlation-name

cursor-name

data-source-name

descriptor-name

distinct-type-name

event-monitor-name

function-mapping-name

function-name

group-name

host-variable

qualifier is a table name, a view name, a
nickname, or a correlation name.

An identifier that designates a condition in an
SQL procedure.

An identifier that designates a referential
constraint, primary key constraint, unique
constraint, or a table check constraint.

An identifier that designates a result table.

An identifier that designates an SQL cursor.
For host compatibility, a hyphen character
may be used in the name.

An identifier that designates a data source.
This identifier is the first part of a three-part
remote object name.

A colon followed by a host identifier that
designates an SQL descriptor area (SQLDA).
For the description of a host identifier, see
[“References to host variables” on page 83|
Note that a descriptor name never includes an
indicator variable.

A qualified or unqualified name that
designates a distinct type. An unqualified
distinct type name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

An identifier that designates an event monitor.

An identifier that designates a function
mapping.

A qualified or unqualified name that
designates a function. An unqualified function
name in an SQL statement is implicitly
qualified by the database manager, depending
on context.

An unqualified identifier that designates a
transform group defined for a structured type.

A sequence of tokens that designates a host
variable. A host variable includes at least one

host identifier, explained in |”References ta

[host variables” on page 83

Chapter 2. Language elements 67



index-name

label

method-name

nickname

db-partition-group-name

package-name

parameter-name

procedure-name

remote-authorization-name

remote-function-name

remote-object-name

remote-schema-name

SQL Reference, Volume 1

Naming conventions and implicit object name qualifications

A schema-qualified name that designates an
index or an index specification.

An identifier that designates a label in an SQL
procedure.

An identifier that designates a method. The
schema context for a method is determined by
the schema of the subject type (or a supertype
of the subject type) of the method.

A schema-qualified name that designates a
federated server reference to a table or a view.

An identifier that designates a database
partition group.

A schema-qualified name that designates a
package. If a package has a version ID that is
not the empty string, the package name also
includes the version ID at the end of the
name, in the form: schema-id.package-
id.version-id.

An identifier that designates a parameter that
can be referenced in a procedure, user-defined
function, method, or index extension.

A qualified or unqualified name that
designates a procedure. An unqualified
procedure name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

An identifier that designates a data source
user. The rules for authorization names vary
from data source to data source.

A name that designates a function registered
to a data source database.

A three-part name that designates a data
source table or view, and that identifies the
data source in which the table or view resides.
The parts of this name are data-source-name,
remote-schema-name, and remote-table-name.

A name that designates the schema to which a
data source table or view belongs. This name
is the second part of a three-part remote object
name.



Naming conventions and implicit object name qualifications

remote-table-name

remote-type-name

savepoint-name

schema-name

server-name

specific-name

SQL-variable-name

A name that designates a table or view at a
data source. This name is the third part of a
three-part remote object name.

A data type supported by a data source
database. Do not use the long form for built-in
types (use CHAR instead of CHARACTER, for
example).

An identifier that designates a savepoint.

An identifier that provides a logical grouping

for SQL objects. A schema name used as a

qualifier for the name of an object may be

implicitly determined:

* from the value of the CURRENT SCHEMA
special register

e from the value of the QUALIFIER
precompile/bind option

* on the basis of a resolution algorithm that
uses the CURRENT PATH special register

* on the basis of the schema name for another
object in the same SQL statement.

To avoid complications, it is recommended
that the name SESSION not be used as a
schema, except as the schema for declared
global temporary tables (which must use the
schema name SESSION).

An identifier that designates an application
server. In a federated system, the server name
also designates the local name of a data
source.

A qualified or unqualified name that
designates a specific name. An unqualified
specific name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

The name of a local variable in an SQL
procedure statement. SQL variable names can
be used in other SQL statements where a host
variable name is allowed. The name can be
qualified by the label of the compound
statement that declared the SQL variable.

Chapter 2. Language elements 69



Naming conventions and implicit object name qualifications

70

statement-name An identifier that designates a prepared SQL
statement.
supertype-name A qualified or unqualified name that

designates the supertype of a type. An
unqualified supertype name in an SQL
statement is implicitly qualified by the
database manager, depending on context.

table-name A schema-qualified name that designates a
table.

tablespace-name An identifier that designates a table space.

trigger-name A schema-qualified name that designates a
trigger.

type-mapping-name An identifier that designates a data type
mapping.

type-name A qualified or unqualified name that

designates a type. An unqualified type name
in an SQL statement is implicitly qualified by
the database manager, depending on context.

typed-table-name A schema-qualified name that designates a
typed table.

typed-view-name A schema-qualified name that designates a
typed view.

view-name A schema-qualified name that designates a
view.

wrapper-name An identifier that designates a wrapper.

Aliases

A table alias can be thought of as an alternative name for a table or a view. A
table or view, therefore, can be referred to in an SQL statement by its name or
by a table alias.

An alias can be used wherever a table or a view name can be used. An alias
can be created even if the object does not exist (although it must exist by the
time a statement referring to it is compiled). It can refer to another alias if no
circular or repetitive references are made along the chain of aliases. An alias
can only refer to a table, view, or alias within the same database. An alias
name cannot be used where a new table or view name is expected, such as in
the CREATE TABLE or CREATE VIEW statements; for example, if the alias
name PERSONNEL has been created, subsequent statements such as CREATE
TABLE PERSONNEL... will return an error.

SQL Reference, Volume 1



Aliases

The option of referring to a table or a view by an alias is not explicitly shown
in the syntax diagrams, or mentioned in the descriptions of SQL statements.

A new unqualified alias cannot have the same fully-qualified name as an
existing table, view, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which must be defined by the time that the SQL
statement is compiled, is replaced at statement compilation time by the
qualified base table or view name. For example, if PBIRD.SALES is an alias
for DSPN014.DIST4_SALES_148, then at compilation time:

SELECT = FROM PBIRD.SALES

effectively becomes
SELECT * FROM DSPNO14.DIST4_SALES_148

In a federated system, the aforementioned uses and restrictions apply, not
only to table aliases, but also to aliases for nicknames. Thus, a nickname’s
alias can be used instead of the nickname in an SQL statement; an alias can be
created for a nickname that does not yet exist, provided that the nickname is
created before statements that reference the alias are compiled; an alias for a
nickname can refer to another alias for that nickname; and so on.

For syntax toleration of applications running under other relational database
management systems, SYNONYM can be used in place of ALIAS in the
CREATE ALIAS and DROP ALIAS statements.

Authorization IDs and authorization names

An authorization ID is a character string that is obtained by the database
manager when a connection is established between the database manager and
either an application process or a program preparation process. It designates a
set of privileges. It may also designate a user or a group of users, but this
property is not controlled by the database manager.

Authorization IDs are used by the database manager to provide:
* Authorization checking of SQL statements

* A default value for the QUALIFIER precompile/bind option and the
CURRENT SCHEMA special register. The authorization ID is also included
in the default CURRENT PATH special register and the FUNCPATH
precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID

that applies to a static SQL statement is the authorization ID that is used
during program binding. The authorization ID that applies to a dynamic SQL

Chapter 2. Language elements 71



Authorization IDs and authorization names

72

statement is based on the DYNAMICRULES option supplied at bind time, and
on the current runtime environment for the package issuing the dynamic SQL
statement:

* In a package that has bind behavior, the authorization ID used is the
authorization ID of the package owner.

* In a package that has define behavior, the authorization ID used is the
authorization ID of the corresponding routine’s definer.

* In a package that has run behavior, the authorization ID used is the current
authorization ID of the user executing the package.

* In a package that has invoke behavior, the authorization ID used is the
authorization ID currently in effect when the routine is invoked. This is
called the runtime authorization ID.

For more information, see [“Dynamic SQL characteristics at run time” on|

An authorization name specified in an SQL statement should not be confused
with the authorization ID of the statement. An authorization name is an
identifier that is used within various SQL statements. An authorization name
is used in the CREATE SCHEMA statement to designate the owner of the
schema. An authorization name is used in the GRANT and REVOKE
statements to designate a target of the grant or revoke operation. Granting
privileges to X means that X (or a member of the group X) will subsequently
be the authorization ID of statements that require those privileges.

Examples:

* Assume that SMITH is the user ID and the authorization ID that the
database manager obtained when a connection was established with the
application process. The following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Therefore, in a dynamic
SQL statement, the default value of the CURRENT SCHEMA special
register is SMITH, and in static SQL, the default value of the QUALIFIER
precompile/bind option is SMITH. The authority to execute the statement is
checked against SMITH, and SMITH is the table-name implicit qualifier
based on qualification rules described in ["Naming conventions and implicit|
fobject name qualifications” on page 65|

KEENE is an authorization name specified in the statement. KEENE is
given the SELECT privilege on SMITH.TDEPT.

* Assume that SMITH has administrative authority and is the authorization
ID of the following dynamic SQL statements, with no SET SCHEMA
statement issued during the session:

DROP TABLE TDEPT

SQL Reference, Volume 1



Authorization IDs and authorization names

Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE. TDEPT table. Note that KEENE.TDEPT and
SMITH.TDEPT are different tables.

CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization name specified in the statement that creates a
schema called PAYROLL. KEENE is the owner of the schema PAYROLL and
is given CREATEIN, ALTERIN, and DROPIN privileges, with the ability to
grant them to others.

Dynamic SQL characteristics at run time
The BIND option DYNAMICRULES determines the authorization ID that is

used for checking authorization when dynamic SQL statements are processed.
In addition, the option also controls other dynamic SQL attributes, such as the
implicit qualifier that is used for unqualified object references, and whether
certain SQL statements can be invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is
called the dynamic SQL statement behavior. The four possible behaviors are
run, bind, define, and invoke. As the following table shows, the combination
of the value of the DYNAMICRULES BIND option and the runtime
environment determines which of the behaviors is used. DYNAMICRULES
RUN, which implies run behavior, is the default.

Table 4. How DYNAMICRULES and the runtime environment determine dynamic SQL
statement behavior

DYNAMICRULES value Behavior of dynamic SQL statements
Standalone program Routine environment
environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Run behavior

DB2 uses the authorization ID of the user (the

ID that initially connected to DB2) executing

the package as the value to be used for

Chapter 2. Language elements

73



Dynamic SQL characteristics at run time

Bind behavior

Define behavior

Invoke behavior

authorization checking of dynamic SQL
statements and for the initial value used for
implicit qualification of unqualified object
references within dynamic SQL statements.

At run time, DB2 uses all the rules that apply
to static SQL for authorization and
qualification. It takes the authorization ID of
the package owner as the value to be used for
authorization checking of dynamic SQL
statements, and the package default qualifier
for implicit qualification of unqualified object
references within dynamic SQL statements.

Define behavior applies only if the dynamic
SQL statement is in a package that is run
within a routine context, and the package was
bound with DYNAMICRULES DEFINEBIND
or DYNAMICRULES DEFINERUN. DB2 uses
the authorization ID of the routine definer
(not the routine’s package binder) as the value
to be used for authorization checking of
dynamic SQL statements, and for implicit
qualification of unqualified object references
within dynamic SQL statements within that
routine.

Invoke behavior applies only if the dynamic
SQL statement is in a package that is run
within a routine context, and the package was
bound with DYNAMICRULES INVOKEBIND
or DYNAMICRULES INVOKERUN. DB2 uses
the statement authorization ID in effect when
the routine is invoked as the value to be used
for authorization checking of dynamic SQL,
and for implicit qualification of unqualified
object references within dynamic SQL
statements within that routine. This is
summarized by the following table.

Invoking Environment

ID Used

any static SQL

implicit or explicit value of the OWNER of the
package the SQL invoking the routine came
from

used in definition of view or trigger

definer of the view or trigger

74  SQL Reference, Volume 1




Dynamic SQL characteristics at run time

Invoking Environment ID Used

dynamic SQL from a bind behavior package implicit or explicit value of the OWNER of the
package the SQL invoking the routine came
from

dynamic SQL from a run behavior package ID used to make the initial connection to DB2

dynamic SQL from a define behavior package | definer of the routine that uses the package
that the SQL invoking the routine came from

dynamic SQL from an invoke behavior package | the current authorization ID invoking the
routine

Restricted statements when run behavior does not apply

When bind, define, or invoke behavior is in effect, you cannot use the
following dynamic SQL statements: GRANT, REVOKE, ALTER, CREATE,
DROP, COMMENT, RENAME, SET INTEGRITY, SET EVENT MONITOR
STATE; or queries that reference a nickname.

Considerations regarding the DYNAMICRULES option

The CURRENT SCHEMA special register cannot be used to qualify
unqualified object references within dynamic SQL statements executed from
bind, define or invoke behavior packages. This is true even after you issue the
SET CURRENT SCHEMA statement to change the CURRENT SCHEMA
special register; the register value is changed but not used.

In the event that multiple packages are referenced during a single connection,
all dynamic SQL statements prepared by those packages will exhibit the
behavior specified by the DYNAMICRULES option for that specific package
and the environment in which they are used.

It is important to keep in mind that when a package exhibits bind behavior,
the binder of the package should not have any authorities granted that the
user of the package should not receive, because a dynamic statement will be
using the authorization ID of the package owner. Similarly, when a package
exhibits define behavior, the definer of the routine should not have any
authorities granted that the user of the package should not receive.

Authorization IDs and statement preparation
If the VALIDATE BIND option is specified at bind time, the privileges

required to manipulate tables and views must also exist at bind time. If these
privileges or the referenced objects do not exist, and the SQLERROR
NOPACKAGE option is in effect, the bind operation will be unsuccessful. If
the SQLERROR CONTINUE option is specified, the bind operation will be
successful, and any statements in error will be flagged. Any attempt to
execute such a statement will result in an error.

Chapter 2. Language elements 75



Authorization IDs and statement preparation

76

If a package is bound with the VALIDATE RUN option, all normal bind
processing is completed, but the privileges required to use the tables and
views that are referenced in the application need not exist yet. If a required
privilege does not exist at bind time, an incremental bind operation is
performed whenever the statement is first executed in an application, and all
privileges required for the statement must exist. If a required privilege does
not exist, execution of the statement is unsuccessful.

Authorization checking at run time is performed using the authorization ID of
the package owner.

Column names

The meaning of a column name depends on its context. A column name can be
used to:

¢ Declare the name of a column, as in a CREATE TABLE statement.
* Identify a column, as in a CREATE INDEX statement.
* Specify values of the column, as in the following contexts:

— In a column function, a column name specifies all values of the column
in the group or intermediate result table to which the function is applied.
For example, MAX(SALARY) applies the function MAX to all values of
the column SALARY in a group.

— In a GROUP BY or ORDER BY clause, a column name specifies all
values in the intermediate result table to which the clause is applied. For
example, ORDER BY DEPT orders an intermediate result table by the
values of the column DEPT.

— In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied.
For example, when the search condition CODE = 20 is applied to some
row, the value specified by the column name CODE is the value of the
column CODE in that row.

* Temporarily rename a column, as in the correlation-clause of a table-reference
in a FROM clause.

Qualified column names
A qualifier for a column name may be a table, view, nickname, alias, or

correlation name.

Whether a column name may be qualified depends on its context:

* Depending on the form of the COMMENT ON statement, a single column
name may need to be qualified. Multiple column names must be
unqualified.

* Where the column name specifies values of the column, it may be qualified
at the user’s option.

SQL Reference, Volume 1



Qualified column names

* In the assignment-clause of an UPDATE statement, it may be qualified at
the user’s option.

¢ In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described
under [“Column name qualifiers to avoid ambiguity” on page 79 and [“Column|
iname qualifiers in correlated references” on page 81

Correlation names
A correlation name can be defined in the FROM clause of a query and in the

first clause of an UPDATE or DELETE statement. For example, the clause
FROM X.MYTABLE Z establishes Z as a correlation name for X MYTABLE.

FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to
qualify a reference to a column of that instance of X MYTABLE in that
SELECT statement.

A correlation name is associated with a table, view, nickname, alias, nested
table expression or table function only within the context in which it is
defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to
establish a correlated reference. It can also be used merely as a shorter name
for a table, view, nickname, or alias. In the case of a nested table expression or
table function, a correlation name is required to identify the result table. In the
example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name,
any qualified reference to a column of that instance of the table, view,
nickname, or alias must use the correlation name, rather than the table, view,
nickname, or alias name. For example, the reference to EMPLOYEE.PROJECT
in the following example is incorrect, because a correlation name has been
specified for EMPLOYEE:

Example

FROM EMPLOYEE E
WHERE EMPLOYEE.PROJECT='ABC' * incorrect~

The qualified reference to PROJECT should instead use the correlation name,
"E", as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT='ABC'

Chapter 2. Language elements 77



Correlation names

78

Names specified in a FROM clause are either exposed or non-exposed. A table,
view, nickname, or alias name is said to be exposed in the FROM clause if a
correlation name is not specified. A correlation name is always an exposed
name. For example, in the following FROM clause, a correlation name is
specified for EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an
exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may
be the same as any other table name, view name or nickname exposed in that
FROM clause or any correlation name in the FROM clause. This may result in
ambiguous column name references which returns an error (SQLSTATE
42702).

The first two FROM clauses shown below are correct, because each one
contains no more than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:
FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the second instance of EMPLOYEE in the FROM clause. A qualified
reference to the first instance of EMPLOYEE must use the correlation
name “E1” (E1.PROJECT).

2. Given the FROM clause:

FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the first instance of EMPLOYEE in the FROM clause. A qualified reference
to the second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).
3. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same. This is allowed, but references to specific
column names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:

SELECT =*
FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *
WHERE EMPLOYEE.PROJECT = 'ABC'

SQL Reference, Volume 1



Correlation names

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names.
Instead, references to PROJECT must be qualified with either correlation
name (E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA
special register value in dynamic SQL or the QUALIFIER precompile/bind
option in static SQL, then the columns cannot be referenced since any such
reference would be ambiguous.

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the
result table. As with a correlation name, these listed column names become
the exposed names of the columns that must be used for references to the
columns throughout the query. If a column name list is specified, then the
column names of the underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM, LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name
DEPTNO is a non-exposed column name.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an

expression, or a search condition, a column name refers to values of a column
in some table, view, nickname, nested table expression or table function. The
tables, views, nicknames, nested table expressions and table functions that
might contain the column are called the object tables of the context. Two or
more object tables might contain columns with the same name; one reason for
qualifying a column name is to designate the table from which the column
comes. Qualifiers for column names are also useful in SQL procedures to
distinguish column names from SQL variable names used in SQL statements.

A nested table expression or table function will consider table-references that
precede it in the FROM clause as object tables. The table-references that follow

are not considered as object tables.

Table designators: A qualifier that designates a specific object table is called
a table designator. The clause that identifies the object tables also establishes the

Chapter 2. Language elements 79



Table designators

80

table designators for them. For example, the object tables of an expression in a
SELECT clause are named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

* A name that follows a table, view, nickname, alias, nested table expression
or table function is both a correlation name and a table designator. Thus,
CORZ is a table designator. CORZ is used to qualify the first column name
in the select list.

* An exposed table, view name, nickname or alias is a table designator. Thus,
OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify
the second column name in the select list.

Each table designator should be unique within a particular FROM clause to
avoid the possibility of ambiguous references to columns.

Avoiding undefined or ambiguous references: When a column name refers
to values of a column, exactly one object table must include a column with
that name. The following situations are considered errors:

* No object table contains a column with the specified name. The reference is
undefined.

e The column name is qualified by a table designator, but the table
designated does not include a column with the specified name. Again the
reference is undefined.

* The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

* The column name is qualified by a table designator, but the table
designated is not unique in the FROM clause and both occurrences of the
designated table include the column. The reference is ambiguous.

* The column name is in a nested table expression which is not preceded by
the TABLE keyword or in a table function or nested table expression that is
the right operand of a right outer join or a full outer join and the column
name does not refer to a column of a table-reference within the nested table
expression’s fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely
defined table designator. If the column is contained in several object tables
with different names, the table names can be used as designators. Ambiguous
references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the
column name list following the correlation name.

SQL Reference, Volume 1



Avoiding undefined or ambiguous references

When qualifying a column with the exposed table name form of a table
designator, either the qualified or unqualified form of the exposed table name
may be used. However, the qualifier used and the table used must be the
same after fully qualifying the table name, view name or nickname and the
table designator.

1. If the authorization ID of the statement is CORPDATA:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE,
but the qualifier for WORKDEPT represents a different table,
CORPDATA .EMPLOYEE.

Column name qualifiers in correlated references
A fullselect is a form of a query that may be used as a component of various

SQL statements. A fullselect used within a search condition of any statement
is called a subquery. A fullselect used to retrieve a single value as an
expression within a statement is called a scalar fullselect or scalar subquery. A
fullselect used in the FROM clause of a query is called a nested table expression.
Subqueries in search conditions, scalar subqueries and nested table
expressions are referred to as subqueries through the remainder of this topic.

A subquery may include subqueries of its own, and these may, in turn,
include subqueries. Thus an SQL statement may contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said
to be at a higher level than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A
subquery can reference not only the columns of the tables identified at its
own level in the hierarchy, but also the columns of the tables identified
previously in the hierarchy, back to the highest level of the hierarchy. A
reference to a column of a table identified at a higher level is called a
correlated reference.

For compatibility with existing standards for SQL, both qualified and
unqualified column names are allowed as correlated references. However, it is
good practice to qualify all column references used in subqueries; otherwise,
identical column names may lead to unintended results. For example, if a
table in a hierarchy is altered to contain the same column name as the
correlated reference and the statement is prepared again, the reference will
apply to the altered table.

Chapter 2. Language elements 81



Column name qualifiers in correlated references

82

When a column name in a subquery is qualified, each level of the hierarchy is
searched, starting at the same subquery as the qualified column name appears
and continuing to the higher levels of the hierarchy until a table designator
that matches the qualifier is found. Once found, it is verified that the table
contains the given column. If the table is found at a higher level than the level
containing column name, then it is a correlated reference to the level where
the table designator was found. A nested table expression must be preceded
with the optional TABLE keyword in order to search the hierarchy above the
fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at
each level of the hierarchy are searched, starting at the same subquery where
the column name appears and continuing to higher levels of the hierarchy,
until a match for the column name is found. If the column is found in a table
at a higher level than the level containing column name, then it is a correlated
reference to the level where the table containing the column was found. If the
column name is found in more than one table at a particular level, the
reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator
that contains column C. A column name, T.C (where T represents either an
implicit or an explicit qualifier), is a correlated reference if, and only if, these
conditions are met:

* T.Cis used in an expression of a subquery.
* T does not designate a table used in the from clause of the subquery.

* T designates a table used at a higher level of the hierarchy that contains the
subquery.

Since the same table, view or nickname can be identified at many levels,
unique correlation names are recommended as table designators. If T is used
to designate a table at more than one level (T is the table name itself or is a
duplicate correlation name), T.C refers to the level where T is used that most
directly contains the subquery that includes T.C. If a correlation to a higher
level is needed, a unique correlation name must be used.

The correlated reference T.C identifies a value of C in a row or group of T to
which two search conditions are being applied: condition 1 in the subquery,
and condition 2 at some higher level. If condition 2 is used in a WHERE
clause, the subquery is evaluated for each row to which condition 2 is
applied. If condition 2 is used in a HAVING clause, the subquery is evaluated
for each group to which condition 2 is applied.

For example, in the following statement, the correlated reference
X.WORKDEPT (in the last line) refers to the value of WORKDEPT in table
EMPLOYEE at the level of the first FROM clause. (That clause establishes X as

SQL Reference, Volume 1



Column name qualifiers in correlated references

a correlation name for EMPLOYEE.) The statement lists employees who make
less than the average salary for their department.
SELECT EMPNO, LASTNAME, WORKDEPT
FROM EMPLOYEE X
WHERE SALARY < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes
rows for departments that have no employees.
DELETE FROM DEPARTMENT THIS
WHERE NOT EXISTS(SELECT *

FROM EMPLOYEE
WHERE WORKDEPT = THIS.DEPTNO)

References to host variables
A host variable is either:

* A variable in a host language such as a C variable, a C++ variable, a
COBOL data item, a FORTRAN variable, or a Java variable

or:

* A host language construct that was generated by an SQL precompiler from
a variable declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly
defined by statements in the host language or are indirectly defined using
SQL extensions.

A host variable in an SQL statement must identify a host variable described in
the program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL
DECLARE section in all host languages except REXX. No variables may be
declared outside an SQL DECLARE section with names identical to variables
declared inside an SQL DECLARE section. An SQL DECLARE section begins
with BEGIN DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a
reference to a host variable. A host-variable in the VALUES INTO clause or
the INTO clause of a FETCH or a SELECT INTO statement, identifies a host
variable to which a value from a column of a row or an expression is
assigned. In all other contexts a host-variable specifies a value to be passed to
the database manager from the application program.

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host

variables. A parameter marker is a question mark (?) representing a position

Chapter 2. Language elements 83



Host variables in dynamic SQL

84

in a dynamic SQL statement where the application will provide a value; that
is, where a host variable would be found if the statement string were a static
SQL statement. The following example shows a static SQL statement using
host variables:

INSERT INTO DEPARTMENT
VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:
INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

The meta-variable host-variable in syntax diagrams can generally be expanded
to:

»>—:host-identifier »<

[INDICATOR] J
rhost-identifier

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier must have a data type of small
integer.

The first host-identifier designates the main variable. Depending on the
operation, it either provides a value to the database manager or is provided a
value from the database manager. An input host variable provides a value in
the runtime application code page. An output host variable is provided a
value that, if necessary, is converted to the runtime application code page
when the data is copied to the output application variable. A given host
variable can serve as both an input and an output variable in the same
program.

The second host-identifier designates its indicator variable. The purposes of the
indicator variable are to:

* Specify the null value. A negative value of the indicator variable specifies
the null value. A value of -2 indicates a numeric conversion or arithmetic
expression error occurred in deriving the result

* Record the original length of a truncated string (if the source of the value is
not a large object type)

* Record the seconds portion of a time if the time is truncated on assignment
to a host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if
HV?2 is negative, the value specified is the null value. If HV2 is not negative
the value specified is the value of HV1.

SQL Reference, Volume 1



Host variables in dynamic SQL

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH
or SELECT INTO statement, and if the value returned is null, HV1 is not
changed, and HV2 is set to a negative value. If the database is configured
with DFT_SQLMATHWARN yes (or was during binding of a static SQL
statement), HV2 could be -2. If HV2 is -2, a value for HV1 could not be
returned because of an error converting to the numeric type of HV1, or an
error evaluating an arithmetic expression that is used to determine the value
for HV1. When accessing a database with a client version earlier than DB2
Universal Database Version 5, HV2 will be -1 for arithmetic exceptions. If the
value returned is not null, that value is assigned to HV1 and HV2 is set to
zero (unless the assignment to HV1 requires string truncation of a non-LOB
string; in which case HV2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of a time, HV2 is set to the
number of seconds.

If the second host identifier is omitted, the host-variable does not have an
indicator variable. The value specified by the host-variable reference :HV1 is
always the value of HV1, and null values cannot be assigned to the variable.
Thus, this form should not be used in an INTO clause unless the
corresponding column cannot contain null values. If this form is used and the
column contains nulls, the database manager will generate an error at run
time.

An SQL statement that references host variables must be within the scope of
the declaration of those host variables. For host variables referenced in the
SELECT statement of a cursor, that rule applies to the OPEN statement rather
than to the DECLARE CURSOR statement.

Example: Using the PROJECT table, set the host variable PNAME
(VARCHAR(26)) to the project name (PROJNAME), the host variable STAFF
(dec(5,2)) to the mean staffing level (PRSTAFF), and the host variable
MAJPROJ (char(6)) to the major project (MAJPROY]) for project (PROJNO)
‘IF1000’. Columns PRSTAFF and MAJPROJ may contain null values, so
provide indicator variables STAFF_IND (smallint) and MAJPROJ_IND
(smallint).

SELECT PROJNAME, PRSTAFF, MAJPROJ

INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

FROM PROJECT
WHERE PROJNO = 'IF1000'

MBCS Considerations: Whether multi-byte characters can be used in a host
variable name depends on the host language.

References to BLOB, CLOB, and DBCLOB host variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see

|“References to locator variables” on page 86), and LOB file reference variables
(see |”References to BLOB, CLOB, and DBCLOB file reference variables” on|
page 87

Chapter 2. Language elements 85



References to BLOB, CLOB, and DBCLOB host variables

86

can be defined in all host languages. Where LOBs are allowed, the
term host-variable in a syntax diagram can refer to a regular host variable, a
locator variable, or a file reference variable. Since these are not native data
types, SQL extensions are used and the precompilers generate the host
language constructs necessary to represent each variable. In the case of REXX,
LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire
large object value. If this is true and if there is no performance benefit to be
gained by deferred transfer of data from the server, a locator is not needed.
However, since host language or space restrictions will often dictate against
storing an entire large object in temporary storage at one time and/or because
of performance benefit, a large object may be referenced via a locator and
portions of that object may be selected into or updated from host variables
that contain only a portion of the large object at one time.

As with all other host variables, a large object locator variable may have an
associated indicator variable. Indicator variables for large object locator host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the locator host variable is unchanged. This means a locator can never
point to a null value.

References to locator variables
A locator variable is a host variable that contains the locator representing a LOB

value on the application server.

A locator variable in an SQL statement must identify a locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference
to a locator variable. The meta-variable locator-variable can be expanded to
include a host-identifier the same as that for host-variable.

When the indicator variable associated with a locator is null, the value of the
referenced LOB is null.

If a locator-variable that does not currently represent any value is referenced,
an error is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by
that transaction are released.

SQL Reference, Volume 1



References to BLOB, CLOB, and DBCLOB file reference variables

References to BLOB, CLOB, and DBCLOB file reference variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file

input and output for LOBs, and can be defined in all host languages. Since
these are not native data types, SQL extensions are used and the precompilers
generate the host language constructs necessary to represent each variable. In
the case of REXX, LOBs are mapped to strings.

A file reference variable represents (rather than contains) the file, just as a
LOB locator represents, rather than contains, the LOB bytes. Database queries,
updates and inserts may use file reference variables to store or to retrieve
single column values.

A file reference variable has the following properties:

Data Type BLOB, CLOB, or DBCLOB. This property is
specified when the variable is declared.

Direction This must be specified by the application
program at run time (as part of the File
Options value). The direction is one of:

* Input (used as a source of data on an
EXECUTE statement, an OPEN statement,
an UPDATE statement, an INSERT
statement, or a DELETE statement).

* Output (used as the target of data on a
FETCH statement or a SELECT INTO
statement).

File name This must be specified by the application
program at run time. It is one of:

* The complete path name of the file (which
is advised).

* A relative file name. If a relative file name
is provided, it is appended to the current
path of the client process.

Within an application, a file should only be
referenced in one file reference variable.

File Name Length This must be specified by the application
program at run time. It is the length of the file
name (in bytes).

File Options An application must assign one of a number
of options to a file reference variable before it
makes use of that variable. Options are set by
an INTEGER value in a field in the file

Chapter 2. Language elements 87



References to BLOB, CLOB, and DBCLOB file reference variables

88

SQL Reference, Volume 1

reference variable structure. One of the
following values must be specified for each
file reference variable:

* Input (from client to server)

SQL_FILE READ
This is a regular file that
can be opened, read and
closed. (The option is
SQL-FILE-READ in COBOL,
sql_file_read in FORTRAN,
and READ in REXX.)

¢ Output (from server to client)

SQL_FILE_CREATE
Create a new file. If the file
already exists, an error is
returned. (The option is
SQL-FILE-CREATE in
COBOL, sql_file_create in
FORTRAN, and CREATE in
REXX.)

SQL_FILE_OVERWRITE (Overwrite)
If an existing file with the
specified name exists, it is
overwritten; otherwise a
new file is created. (The
option is
SQL-FILE-OVERWRITE in
COBOL, sql_file_overwrite
in FORTRAN, and
OVERWRITE in REXX.)

SQOL_FILE_APPEND
If an existing file with the
specified name exists, the
output is appended to it;
otherwise a new file is
created. (The option is
SQL-FILE-APPEND in
COBOL, sql_file_append in
FORTRAN, and APPEND in
REXX.)

Data Length
This is unused on input. On output,
the implementation sets the data



References to BLOB, CLOB, and DBCLOB file reference variables

length to the length of the new data
written to the file. The length is in
bytes.

As with all other host variables, a file reference variable may have an
associated indicator variable.

Example of an output file reference variable (in C): Given a declare section
coded as:

EXEC SQL BEGIN DECLARE SECTION
SQL TYPE IS CLOB_FILE hv_text file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

EXEC SQL BEGIN DECLARE SECTION
/% SQL TYPE IS CLOB_FILE hv_text file; */
struct {
unsigned long name_length; // File Name Length
unsigned long data_length; // Data Length
unsigned Tong file_options; // File Options
char name[255]; // File Name
} hv_text_file;
char hv_patent title[64];
EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the
database into a new file referenced by :hv_text_file.
strcpy (hv_text_file.name, "/u/gainer/papers/sigmod.94");

hv_text file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text_file from papers
WHERE TITLE = 'The Relational Theory behind Juggling';

Example of an input file reference variable (in C): Given the same declare
section as above, the following code can be used to insert the data from a
regular file referenced by :hv_text_file into a CLOB column.
strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");
hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
hv_text file.file_options = SQL_FILE READ:
strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO patents( title, text )
VALUES (:hv_patent_title, :hv_text_file);

References to structured type host variables
Structured type variables can be defined in all host languages except

FORTRAN, REXX, and Java. Since these are not native data types, SQL

Chapter 2. Language elements 89



References to structured type host variables

extensions are used and the precompilers generate the host language
constructs necessary to represent each variable.

As with all other host variables, a structured type variable may have an
associated indicator variable. Indicator variables for structured type host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the structured type host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data
type. The built-in data type associated with the structured type must be
assignable:

* from the result of the FROM SQL transform function for the structured type
as defined by the specified TRANSFORM GROUP option of the precompile
command; and

* to the parameter of the TO SQL transform function for the structured type
as defined by the specified TRANSFORM GROUP option of the precompile
command.

If using a parameter marker instead of a host variable, the appropriate
parameter type characteristics must be specified in the SQLDA. This requires
a "doubled” set of SQLVAR structures in the SQLDA, and the
SQLDATATYPE_NAME field of the secondary SQLVAR must be filled with
the schema and type name of the structured type. If the schema is omitted in
the SQLDA structure, an error results (SQLSTATE 07002).

Example: Define the host variables hv_poly and hv_point (of type POLYGON,
using built-in type BLOB(1048576)) in a C program.
EXEC SQL BEGIN DECLARE SECTION;
static SQL
TYPE IS POLYGON AS BLOB(1M)
hv_poly, hv_point;
EXEC SQL END DECLARE SECTION;

Related concepts:

* ["Queries” on page 16|

Related reference:

* “CREATE ALIAS statement” in the SQL Reference, Volume 2

“PREPARE statement” in the SQL Reference, Volume 2

“SET SCHEMA statement” in the SQL Reference, Volume 2

* [Appendix A, “SQL limits” on page 607|

* |Appendix C, “SQLDA (SQL descriptor area)” on page 621

+ |Appendix G, “Reserved schema names and reserved words” on page 823

90 SQL Reference, Volume 1



Example

« [Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)|
considerations” on page 883

* ["Large objects (LOBs)” on page 99|

Chapter 2. Language elements 91



Data types

Data types
Data types

The smallest unit of data that can be manipulated in SQL is called a value.
Values are interpreted according to the data type of their source. Sources
include:

* Constants

e Columns

» Host variables
* Functions

* Expressions

* Special registers.

DB2 supports a number of built-in data types. It also provides support for
user-defined data types. [Figure 10 on page 93 shows the supported built-in
data types.

92  SQL Reference, Volume 1



Data types

built-in
data
types
external : : signed
et datetime string e
DATALINK ‘
time timestamp' date exact approximate
TIME TIMESTAMP DATE ‘
‘ ‘ varying flgg}inr}g
; length
character| | graphic binary
BLOB
single double
fixed varying fixed varying precision| |precision
length length length length REAL DOUBLE
CHAR W‘ﬁ GRAPHIC ﬁ‘ﬁ
VARCHAR CLOB VARGRAPHIC DBCLOB

[

binary :
integer decimal
| |
\ \ \
16 bit 32 bit 64 bit packed

SMALLINT INTEGER BIGINT DECIMAL

Figure 10. The DB2 Built-in Data Types

All data types include the null value. The null value is a special value that is
distinct from all non-null values and thereby denotes the absence of a
(non-null) value. Although all data types include the null value, columns
defined as NOT NULL cannot contain null values.

Related reference:

* [“User-defined types” on page 108|

Chapter 2. Language elements 93



Numbers

Numbers

All numbers have a sign and a precision. The sign is considered positive if the
value of a number is zero. The precision is the number of bits or digits
excluding the sign.

Small integer (SMALLINT)
A small integer is a two-byte integer with a precision of 5 digits. The range of

small integers is -32 768 to 32 767.

Large integer (INTEGER)
A large integer is a four-byte integer with a precision of 10 digits. The range of

large integers is —2 147 483 648 to +2 147 483 647.

Big integer (BIGINT)
A big integer is an eight-byte integer with a precision of 19 digits. The range of
big integers is —9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Single-precision floating-point (REAL)

A single-precision floating-point number is a 32-bit approximation of a real
number. The number can be zero or can range from -3.402E+38 to -1.175E-37,
or from 1.175E-37 to 3.402E+38.

Double-precision floating-point (DOUBLE or FLOAT)
A double-precision floating-point number is a 64-bit approximation of a real

number. The number can be zero or can range from -1.79769E+308 to
-2.225E-307, or from 2.225E-307 to 1.79769E+308.

Decimal (DECIMAL or NUMERIC)
A decimal value is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part
of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits.

All values in a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is —n to +n, where
the absolute value of 7 is the largest number that can be represented with the
applicable precision and scale. The maximum range is -10**31+1 to 10**31-1.

Related reference:
* |Appendix C, “SQLDA (SQL descriptor area)” on page 621

94  SQL Reference, Volume 1



Character strings
Character strings

A character string is a sequence of bytes. The length of the string is the number
of bytes in the sequence. If the length is zero, the value is called the empty
string. This value should not be confused with the null value.

Fixed-length character string (CHAR)
All values in a fixed-length string column have the same length, which is

determined by the length attribute of the column. The length attribute must
be between 1 and 254, inclusive.

Varying-length character strings
There are three types of varying-length character string:

¢ A VARCHAR value can be up to 32 672 bytes long.
* A LONG VARCHAR value can be up to 32 700 bytes long.

* A CLOB (character large object) value can be up to 2 gigabytes
(2 147 483 647 bytes) long. A CLOB is used to store large SBCS or mixed
(SBCS and MBCS) character-based data (such as documents written with a
single character set) and, therefore, has an SBCS or mixed code page
associated with it.

Special restrictions apply to expressions resulting in a LONG VARCHAR or
CLOB data type, and to structured type columns; such expressions and
columns are not permitted in:

¢ A SELECT list preceded by the DISTINCT clause

* A GROUP BY clause

* An ORDER BY clause

* A column function with the DISTINCT clause

* A subselect of a set operator other than UNION ALL

* A basic, quantified, BETWEEN, or IN predicate

* A column function

* VARGRAPHIC, TRANSLATE, and datetime scalar functions

* The pattern operand in a LIKE predicate, or the search string operand in a
POSSTR function

* The string representation of a datetime value.

In addition to the restrictions listed above, expressions resulting in LONG
VARCHAR or CLOB data types or structured type columns are not permitted
in:

* A basic, quantified, BETWEEN, or IN predicate
e A column function
* VARGRAPHIC, TRANSLATE, and datetime scalar functions

Chapter 2. Language elements 95



Varying-length character strings

96

* The pattern operand in a LIKE predicate or the search string operand in the
POSSTR function

* The string representation of a datetime value.

The functions in the SYSFUN schema taking a VARCHAR as an argument
will not accept VARCHARSs greater than 4 000 bytes long as an argument.
However, many of these functions also have an alternative signature accepting
a CLOB(1M). For these functions, the user may explicitly cast the greater than
4 000 VARCHAR strings into CLOBs and then recast the result back into
VARCHARs of desired length.

NUL-terminated character strings found in C are handled differently,
depending on the standards level of the precompile option.

Each character string is further defined as one of:

Bit data Data that is not associated with a code page.

Single-byte character set (SBCS) data
Data in which every character is represented by a single byte.

Mixed data  Data that may contain a mixture of characters from a
single-byte character set and a multi-byte character set
(MBCS).

SBCS data is supported only in an SBCS database. Mixed data is only
supported in an MBCS database.

SQL Reference, Volume 1



Graphic strings
Graphic strings

A graphic string is a sequence of bytes that represents double-byte character
data. The length of the string is the number of double-byte characters in the
sequence. If the length is zero, the value is called the empty string. This value
should not be confused with the null value.

Graphic strings are not checked to ensure that their values contain only
double-byte character code points. (The exception to this rule is an application
precompiled with the WCHARTYPE CONVERT option. In this case,
validation does occur.) Rather, the database manager assumes that double-byte
character data is contained in graphic data fields. The database manager does
check that a graphic string value is an even number of bytes long.

NUL-terminated graphic strings found in C are handled differently,
depending on the standards level of the precompile option. This data type
cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

Fixed-length graphic strings (GRAPHIC)

All values in a fixed-length graphic string column have the same length,
which is determined by the length attribute of the column. The length
attribute must be between 1 and 127, inclusive.

Varying-length graphic strings
There are three types of varying-length graphic string:

* A VARGRAPHIC value can be up to 16 336 double-byte characters long.

¢ A LONG VARGRAPHIC value can be up to 16 350 double-byte characters
long.

¢ A DBCLOB (double-byte character large object) value can be up to
1073 741 823 double-byte characters long. A DBCLOB is used to store large
DBCS character-based data (such as documents written with a single
character set) and, therefore, has a DBCS code page associated with it.

Special restrictions apply to an expression that results in a varying-length
graphic string whose maximum length is greater than 127 bytes. These
restrictions are the same as those specified in [“Varying-length character|
Istrings” on page 95

Chapter 2. Language elements 97



Binary strings

98

Binary strings

A binary string is a sequence of bytes. Unlike character strings, which usually
contain text data, binary strings are used to hold non-traditional data such as
pictures, voice, or mixed media. Character strings of the FOR BIT DATA
subtype may be used for similar purposes, but the two data types are not
compatible. The BLOB scalar function can be used to cast a FOR BIT DATA
character string to a binary string. Binary strings are not associated with a
code page. They have the same restrictions as character strings (for details, see
[“Varying-length character strings” on page 95).

Binary large object (BLOB)

A binary large object is a varying-length binary string that can be up to 2
gigabytes (2 147 483 647 bytes) long. BLOBs can hold structured data for
exploitation by user-defined types and user-defined functions. Like FOR BIT
DATA character strings, BLOB strings are not associated with a code page.

SQL Reference, Volume 1



Large objects (LOBSs)
Large objects (LOBS)

The term large object and the generic acronym LOB refer to the BLOB, CLOB,
or DBCLOB data type. LOB values are subject to restrictions that apply to
LONG VARCHAR values, as described in [“Varying-length character strings”]

These restrictions apply even if the length attribute of the LOB
string is 254 bytes or less.

LOB values can be very large, and the transfer of these values from the
database server to client application program host variables can be time
consuming. Because application programs typically process LOB values one
piece at a time, rather than as a whole, applications can reference a LOB value
by using a large object locator.

A large object locator, or LOB locator, is a host variable whose value represents
a single LOB value on the database server.

An application program can select a LOB value into a LOB locator. Then,
using the LOB locator, the application program can request database
operations on the LOB value (such as applying the scalar functions SUBSTR,
CONCAT, VALUE, or LENGTH; performing an assignment; searching the
LOB with LIKE or POSSTR; or applying user-defined functions against the
LOB) by supplying the locator value as input. The resulting output (data
assigned to a client host variable) would typically be a small subset of the
input LOB value.

LOB locators can represent more than just base values; they can also represent
the value associated with a LOB expression. For example, a LOB locator might
represent the value associated with:

SUBSTR( <lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length> )

When a null value is selected into a normal host variable, the indicator
variable is set to -1, signifying that the value is null. In the case of LOB
locators, however, the meaning of indicator variables is slightly different.
Because a locator host variable can itself never be null, a negative indicator
variable value indicates that the LOB value represented by the LOB locator is
null. The null information is kept local to the client by virtue of the indicator
variable value — the server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row
or a location in the database. Once a value is selected into a locator, there is
no operation that one can perform on the original row or table that will affect
the value which is referenced by the locator. The value associated with a
locator is valid until the transaction ends, or until the locator is explicitly
freed, whichever comes first. Locators do not force extra copies of the data to
provide this function. Instead, the locator mechanism stores a description of

Chapter 2. Language elements 99



Large objects (LOBSs)

100

the base LOB value. The materialization of the LOB value (or expression, as
shown above) is deferred until it is actually assigned to some location —
either a user buffer in the form of a host variable, or another record in the
database.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
It is not a database type; it is never stored in the database and, as a result,
cannot participate in views or check constraints. However, because a LOB
locator is a client representation of a LOB type, there are SQLTYPEs for LOB
locators so that they can be described within an SQLDA structure used by
FETCH, OPEN, or EXECUTE statements.

SQL Reference, Volume 1



Datetime values
Datetime values

The datetime data types include DATE, TIME, and TIMESTAMP. Although
datetime values can be used in certain arithmetic and string operations, and
are compatible with certain strings, they are neither strings nor numbers.

Date
A date is a three-part value (year, month, and day). The range of the year part

is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which
is the appropriate length for a character string representation of the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24. The range of
the other parts is 0 to 59. If the hour is 24, the minute and second
specifications are zero.

The internal representation of a time is a string of 3 bytes. Each byte consists
of 2 packed decimal digits. The first byte represents the hour, the second byte
the minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and

microsecond) designating a date and time as defined above, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes. Each byte
consists of 2 packed decimal digits. The first 4 bytes represent the date, the
next 3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,
which is the appropriate length for the character string representation of the
value.

String representations of datetime values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in

an internal form that is transparent to the user. Date, time, and timestamp

Chapter 2. Language elements 101



String representations of datetime values

values can, however, also be represented by strings. This is useful because
there are no constants or variables whose data types are DATE, TIME, or
TIMESTAMP. Before it can be retrieved, a datetime value must be assigned to
a string variable. The CHAR function or the GRAPHIC function (for Unicode
databases only) can be used to change a datetime value to a string
representation. The string representation is normally the default format of
datetime values associated with the territory code of the application, unless
overridden by specification of the DATETIME option when the program is
precompiled or bound to the database.

No matter what its length, a large object string, a LONG VARCHAR value, or
a LONG VARGRAPHIC value cannot be used to represent a datetime value
(SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation
with an internal datetime value, the string representation is converted to the
internal form of the date, time, or timestamp value before the operation is
performed.

Date, time and timestamp strings must contain only characters and digits.

Date strings: A string representation of a date is a string that starts with a
digit and has a length of at least 8 characters. Trailing blanks may be
included; leading zeros may be omitted from the month and day portions.

Valid string formats for dates are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 5. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example
International Standards ISO yyyy-mm-dd 1991-10-27
Organization
IBM USA standard USA mm/dd/yyyy |[10/27/1991
IBM European standard EUR dd.mm.yyyy 27.10.1991
Japanese Industrial Standard JIS yyyy-mm-dd 1991-10-27
Christian Era
Site-defined LOC Depends on the |—

territory code of

the application

Time strings: A string representation of a time is a string that starts with a
digit and has a length of at least 4 characters. Trailing blanks may be
included; a leading zero may be omitted from the hour part of the time, and

102 SQL Reference, Volume 1



Time strings

seconds may be omitted entirely. If seconds are omitted, an implicit
specification of 0 seconds is assumed. Thus, 13:30 is equivalent to 13:30:00.

Valid string formats for times are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 6. Formats for String Representations of Times

Format Name Abbreviation Time Format Example
International Standards 1SO hh.mm.ss 13.30.05
Organiza’cion2
IBM USA standard USA hh:mm AM or |1:30 PM
PM
IBM European standard EUR hh.mm.ss 13.30.05
Japanese Industrial Standard JIS hh:mm:ss 13:30:05
Christian Era
Site-defined LOC Depends on the |—
territory code of
the application

Notes:

1. InISO, EUR, and JIS format, .ss (or :ss) is optional.

2. The International Standards Organization changed the time format so that
it is identical with the Japanese Industrial Standard Christian Era format.
Therefore, use the JIS format if an application requires the current
International Standards Organization format.

3. In the USA time string format, the minutes specification may be omitted,

indicating an implicit specification of 00 minutes. Thus 1 PM is equivalent
to 1:00 PM.

4. In the USA time format, the hour must not be greater than 12 and cannot
be 0 except for the special case of 00:00 AM. There is a single space before
the AM and PM. Using the JIS format of the 24-hour clock, the
correspondence between the USA format and the 24-hour clock is as
follows:

12:01 AM through 12:59 AM corresponds to 00:01:00 through 00:59:00.
01:00 AM through 11:59 AM corresponds to 01:00:00 through 11:59:00.

12:00 PM (noon) through 11:59 PM corresponds to 12:00:00 through
23:59:00.

12:00 AM (midnight) corresponds to 24:00:00 and 00:00 AM (midnight)
corresponds to 00:00:00.

Timestamp strings: A string representation of a timestamp is a string that
starts with a digit and has a length of at least 16 characters. The complete

Chapter 2. Language elements 103



Timestamp strings

string representation of a timestamp has the form yyyy-mm-dd-
hh.mm.ss.nnnnnn. Trailing blanks may be included. Leading zeros may be
omitted from the month, day, and hour part of the timestamp, and
microseconds may be truncated or entirely omitted. If any trailing zero digits
are omitted in the microseconds portion, an implicit specification of 0 is
assumed for the missing digits. Thus, 1991-3-2-8.30.00 is equivalent to
1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp,

but as an input value only. The ODBC string representation of a timestamp
has the form yyyy-mm-dd hh:mm:ss.nnnnnn.

104 SQL Reference, Volume 1



DATALINK values
DATALINK values

A DATALINK value is an encapsulated value that contains a logical reference
from the database to a file stored outside of the database. The attributes of
this encapsulated value are as follows:

link type
The currently supported type of link is 'URL' (Uniform Resource Locator).

data location
The location of a file linked with a reference within DB2, in the form of a
URL. The allowed scheme names for this URL are:

 HTTP
* FILE
« UNC
* DFS

The other parts of the URL are:

 the file server name for the HTTP, FILE, and UNC schemes
* the cell name for the DFS scheme

* the full file path name within the file server or cell

comment
Up to 200 bytes of descriptive information, including the data location
attribute. This is intended for application-specific uses, such as further or
alternative identification of the location of the data.

Leading and trailing blank characters are trimmed while parsing data location
attributes as URLs. Also, the scheme names (‘http', 'file', 'unc’, 'dfs') and host
are case-insensitive and are always stored in the database in uppercase. When
a DATALINK value is fetched from a database, an access token is embedded
within the URL attribute, if the DATALINK column is defined with READ
PERMISSION DB or WRITE PERMISSION ADMIN. The token is generated
dynamically, and is not a permanent part of the DATALINK value stored in
the database.

It is possible for a DATALINK value to have only a comment attribute and an
empty data location attribute. Such a value may even be stored in a column
but, of course, no file will be linked to such a column. The total length of the
comment and the data location attribute of a DATALINK value is currently
limited to 200 bytes.

It is important to distinguish between DATALINK references to files and LOB

file reference variables. The similarity is that they both contain a
representation of a file. However:

Chapter 2. Language elements 105



DATALINK values

« DATALINKS are retained in the database, and both the links and the data
in the linked files can be considered to be a natural extension of data in the
database.

* File reference variables exist temporarily on the client and they can be
considered to be an alternative to a host program buffer.

Use built-in scalar functions to build a DATALINK value (DLVALUE,
DLNEWCOPY, DLPREVIOUSCOPY, and DLREPLACECONTENT) and to
extract the encapsulated values from a DATALINK value (DLCOMMENT,
DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY,
DLURLSCHEME, DLURLSERVER, DLURLCOMPLETEONLY,
DLURLCOMPLETEWRITE, and DLURLPATHWRITE).

Related reference:

* [“Identifiers” on page 65
* [Appendix Q, “Backus-Naur form (BNF) specifications for DATALINKSs” on|

page 891|

106 SQL Reference, Volume 1



XML values
XML values

The XML data type is an internal representation of XML, and can only be
used as input to functions that accept this data type as input. XML is a
transient data type that cannot be stored in the database, or returned to an
application.

Valid values for the XML data type include:
* An element

* A forest of elements

* The textual content of an element

¢ An empty XML value

Currently, the only supported operation is to serialize (by using the

XML2CLOB function) the XML value into a string that is stored as a CLOB
value.

Chapter 2. Language elements 107



User-defined types
User-defined types

There are three types of user-defined data type:
* Distinct type

 Structured type

* Reference type

Each of these types is described in the following sections.

Distinct types
A distinct type is a user-defined data type that shares its internal representation

with an existing type (its “source” type), but is considered to be a separate
and incompatible type for most operations. For example, one might want to
define a picture type, a text type, and an audio type, all of which have quite
different semantics, but which use the built-in data type BLOB for their
internal representation.

The following example illustrates the creation of a distinct type named
AUDIO:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB,
it is considered to be a separate type; this allows the creation of functions
written specifically for AUDIO, and assures that these functions will not be
applied to values of any other data type (pictures, text, and so on).

Distinct types have qualified identifiers. If the schema name is not used to
qualify the distinct type name when used in other than the CREATE
DISTINCT TYPE, DROP DISTINCT TYPE, or COMMENT ON DISTINCT
TYPE statements, the SQL path is searched in sequence for the first schema
with a distinct type that matches.

Distinct types support strong typing by ensuring that only those functions
and operators explicitly defined on a distinct type can be applied to its
instances. For this reason, a distinct type does not automatically acquire the
functions and operators of its source type, because these may not be
meaningful. (For example, the LENGTH function of the AUDIO type might
return the length of its object in seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, LOB
types, or DATALINK are subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly
specified to apply to the distinct type. This can be done by creating
user-defined functions that are sourced on functions defined on the source
type of the distinct type. The comparison operators are automatically

108 SQL Reference, Volume 1



Distinct types

generated for user-defined distinct types, except those using LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or DATALINK as
the source type. In addition, functions are generated to support casting from
the source type to the distinct type, and from the distinct type to the source

type.

Structured types
A structured type is a user-defined data type that has a structure that is defined

in the database. It contains a sequence of named attributes, each of which has
a data type. A structured type also includes a set of method specifications.

A structured type may be used as the type of a table, view, or column. When
used as a type for a table or view, that table or view is known as a typed table
or typed view, respectively. For typed tables and typed views, the names and
data types of the attributes of the structured type become the names and data
types of the columns of this typed table or typed view. Rows of the typed
table or typed view can be thought of as a representation of instances of the
structured type. When used as a data type for a column, the column contains
values of that structured type (or values of any of that type’s subtypes, as
defined below). Methods are used to retrieve or manipulate attributes of a
structured column object.

Terminology: A supertype is a structured type for which other structured types,
called subtypes, have been defined. A subtype inherits all the attributes and
methods of its supertype and may have additional attributes and methods
defined. The set of structured types that are related to a common supertype is
called a type hierarchy and the type that does not have any supertype is called
the root type of the type hierarchy.

The term subtype applies to a user-defined structured type and all
user-defined structured types that are below it in the type hierarchy.
Therefore, a subtype of a structured type T is T and all structured types below
T in the hierarchy. A proper subtype of a structured type T is a structured type
below T in the type hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy.
For this reason, it is necessary to develop a shorthand way of referring to the
specific type of recursive definitions that are allowed. The following
definitions are used:

* Directly uses: A type A is said to directly use another type B, if and only if
one of the following is true:

1. type A has an attribute of type B
2. type B is a subtype of A, or a supertype of A

* Indirectly uses: A type A is said to indirectly use a type B, if one of the
following is true:

Chapter 2. Language elements 109



Structured types

110

1. type A directly uses type B
2. type A directly uses some type C, and type C indirectly uses type B

A type may not be defined so that one of its attribute types directly or
indirectly uses itself. If it is necessary to have such a configuration, consider
using a reference as the attribute. For example, with structured type attributes,
there cannot be an instance of "employee” with an attribute of "manager”
when "manager” is of type "employee”. There can, however, be an attribute of
"manager” with a type of REF(employee).

A type cannot be dropped if certain other objects use the type, either directly
or indirectly. For example, a type cannot be dropped if a table or view column
makes direct or indirect use of the type.

Reference types
A reference type is a companion type to a structured type. Similar to a distinct

type, a reference type is a scalar type that shares a common representation
with one of the built-in data types. This same representation is shared for all
types in the type hierarchy. The reference type representation is defined when
the root type of a type hierarchy is created. When using a reference type, a
structured type is specified as a parameter of the type. This parameter is
called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view.
When a reference type is used, it may have a scope defined. The scope
identifies a table (called the target table) or view (called the target view) that
contains the target row of a reference value. The target table or view must
have the same type as the target type of the reference type. An instance of a
scoped reference type uniquely identifies a row in a typed table or typed
view, called the target row.

Related reference:

* “DROP statement” in the SQL Reference, Volume 2
+ ["CURRENT PATH” on page 159

* [‘Character strings” on page 95

* [‘Assignments and comparisons” on page 117

SQL Reference, Volume 1



Promotion of data types
Promotion of data types

Data types can be classified into groups of related data types. Within such
groups, a precedence order exists where one data type is considered to
precede another data type. This precedence is used to allow the promotion of
one data type to a data type later in the precedence ordering. For example,
the data type CHAR can be promoted to VARCHAR; INTEGER can be
promoted to DOUBLE-PRECISION; but CLOB is NOT promotable to
VARCHAR.

Promotion of data types is used when:

* Performing function resolution

* Casting user-defined types

* Assigning user-defined types to built-in data types

shows the precedence list (in order) for each data type and can be
used to determine the data types to which a given data type can be promoted.
The table shows that the best choice is always the same data type instead of
choosing to promote to another data type.

Table 7. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)
CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB
VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG LONG VARCHAR, CLOB

VARCHAR

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB
VARGRAPHIC  VARGRAPHIC, LONG VARGRAPHIC, DBCLOB
LONG LONG VARGRAPHIC, DBCLOB

VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double
INTEGER INTEGER, BIGINT, decimal, real, double

BIGINT BIGINT, decimal, real, double

decimal decimal, real, double

real real, double

double double

DATE DATE

Chapter 2. Language elements 111



Promotion of data types

Table 7. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)
TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

udt udt (same name) or a supertype of udt

REF(T) REFE(S) (provided that S is a supertype of T)

Notes:

1. The lowercase types above are defined as follows:
* decimal = DECIMAL(p,s) or NUMERIC(p,s)
* real = REAL or FLOAT(n), where n is not greater than 24

* double = DOUBLE, DOUBLE-PRECISION, FLOAT or FLOAT(n), where n is
greater than 24

* udt = a user-defined type

Shorter and longer form synonyms of the listed data types are considered to be the
same as the listed form.

2. For a Unicode database, the following are considered to be equivalent data types:
* CHAR and GRAPHIC
* VARCHAR and VARGRAPHIC
* LONG VARCHAR and LONG VARGRAPHIC
* CLOB and DBCLOB

Related reference:

* [Functions” on page 168|

+ ['Casting between data types” on page 113)|

+ [“Assignments and comparisons” on page 117]

112 SQL Reference, Volume 1



Casting between data types
Casting between data types

There are many occasions where a value with a given data type needs to be
cast to a different data type or to the same data type with a different length,
precision or scale. Data type promotion is one example where the promotion
of one data type to another data type requires that the value be cast to the
new data type. A data type that can be cast to another data type is castable
from the source data type to the target data type.

Casting between data types can be done explicitly using the CAST
specification but may also occur implicitly during assignments involving
user-defined types. Also, when creating sourced user-defined functions, the
data types of the parameters of the source function must be castable to the
data types of the function that is being created.

The first column represents the data type of the cast operand (source
data type), and the data types across the top represent the target data type of
the CAST specification.

The supported casts between built-in data types are shown in|Table 8 o

In a Unicode database, if a truncation occurs when a character or graphic
string is cast to another data type, a warning returns if any nonblank
characters are truncated. This truncation behavior is unlike the assignment of
character or graphic strings to a target when an error occurs if any nonblank
characters are truncated.

The following casts involving distinct types are supported:

* Cast from distinct type DT to its source data type S

* Cast from the source data type S of distinct type DT to distinct type DT
* Cast from distinct type DT to the same distinct type DT

* Cast from a data type A to distinct type DT where A is promotable to the
source data type S of distinct type DT

* Cast from an INTEGER to distinct type DT with a source data type
SMALLINT

* Cast from a DOUBLE to distinct type DT with a source data type REAL
* Cast from a VARCHAR to distinct type DT with a source data type CHAR

* Cast from a VARGRAPHIC to distinct type DT with a source data type
GRAPHIC

e For a Unicode database, cast from a VARCHAR or a VARGRAPHIC to
distinct type DT with a source data type CHAR or GRAPHIC.

It is not possible to specify FOR BIT DATA when performing a cast to a
character type.

Chapter 2. Language elements 113



Casting between data types

114

It is not possible to cast a structured type value to something else. A
structured type ST should not need to be cast to one of its supertypes,
because all methods on the supertypes of ST are applicable to ST. If the
desired operation is only applicable to a subtype of ST, use the
subtype-treatment expression to treat ST as one of its subtypes.

When a user-defined data type involved in a cast is not qualified by a schema
name, the SQL path is used to find the first schema that includes the
user-defined data type by that name.

The following casts involving reference types are supported:
e cast from reference type RT to its representation data type S

* cast from the representation data type S of reference type RT to reference
type RT

* cast from reference type RT with target type T to a reference type RS with
target type S where S is a supertype of T.

* cast from a data type A to reference type RT, where A is promotable to the
representation data type S of reference type RT.

When the target type of a reference data type involved in a cast is not
qualified by a schema name, the SQL path is used to find the first schema that
includes the user-defined data type by that name.

SQL Reference, Volume 1



Table 8. Supported Casts between Built-in Data Types

Casting between data types

Target Data Type »

Source Data Type

HZ~Ep 2o

I

TmQmH Z

HZ=0 =™

H»Z~0NmY

R

E
A
L

mewCcOU

=P I0

TP ITORP><

RPIONORP>»P<QOZOCC

WO N

A=T=»>»R0O

N—=IRPFPRORP>

ORPp<OzOor

WO NwWUT

mo- T

m -

mZprpHomZ~H

WO w

SMALLINT

INTEGER

BIGINT

DECIMAL

REAL

DOUBLE

<= =] ===

<= =] ===

CHAR

Yl

Yl

VARCHAR

<= === =] =

<lI===]=]=]|=]|=

<=l =|=]=]|=]|=

<= === =|=]|=

Y'l

Yl

LONG VARCHAR

Yl

CLOB

< === == =] =] ==

Y'l

GRAPHIC

=<

VARGRAPHIC

=<

LONG
VARGRAPHIC

=< | =] =

=< | =] =

<l =]=]|=]|=

DBCLOB

<

=<

<

DATE

TIME

Yl

Yl

TIMESTAMP

< | =] =

< | =] =

Yl

Yl

< | =

BLOB

Notes

* See the description preceding the table for information on supported casts involving user-defined

types and reference types.
* Only a DATALINK type can be cast to a DATALINK type.

* It is not possible to cast a structured type value to anything else.

! Cast is only supported for Unicode databases.

Chapter 2. Language elements

115



Casting between data types

Related reference:

* ["Expressions” on page 187|

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2
[CURRENT PATH” on page 159|

* ['Promotion of data types” on page 111|

* ["Assignments and comparisons” on page 117|

116 SQL Reference, Volume 1



Assignments and comparisons

Assignments and comparisons

The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH,
SELECT INTO, VALUES INTO and SET transition-variable statements.
Arguments of functions are also assigned when invoking a function.
Comparison operations are performed during the execution of statements that
include predicates and other language elements such as MAX, MIN,
DISTINCT, GROUP BY, and ORDER BY.

One basic rule for both operations is that the data type of the operands
involved must be compatible. The compatibility rule also applies to set
operations.

Another basic rule for assignment operations is that a null value cannot be
assigned to a column that cannot contain null values, nor to a host variable
that does not have an associated indicator variable.

Assignments and comparisons involving both character and graphic data are
only supported when one of the strings is a literal.

Following is a compatibility matrix showing the data type compatibilities for
assignment and comparison operations.

Table 9. Data Type Compatibility for Assignments and Comparisons

Operands Binary Decimal Floating Character GraphicDate Time Time- Binary UDT

Integer Number Point String String stamp String
Binary Yes Yes Yes No No No No No No 2
Integer
Decimal ~ Yes Yes Yes No No No No No No 2
Number
Floating  Yes Yes Yes No No No No No No 2
Point
Character No No No Yes Yes ¢7 ! ! ! No?® Z
String
Graphic  No No No Yes ¢7 Yes ! ! ! No 2
String
Date No No No ! ! Yes No No No 2
Time No No No ! ! No Yes No No 2
Timestamp No No No ! ! No No Yes No 2
Binary No No No No ? No No No No Yes 2
String
UDT 2 2 2 2 2 2 2 2 2 Yes

Chapter 2. Language elements 117



Assignments and comparisons

Table 9. Data Type Compatibility for Assignments and Comparisons (continued)

Operands Binary Decimal Floating Character GraphicDate Time Time- Binary UDT
Integer Number Point String String stamp String

! The compatibility of datetime values and strings is limited to assignment and comparison:

* Datetime values can be assigned to string columns and to string variables.

* A valid string representation of a date can be assigned to a date column or compared with a date.

¢ A valid string representation of a time can be assigned to a time column or compared with a time.

A valid string representation of a timestamp can be assigned to a timestamp column or compared
with a timestamp.

(Graphic string support is only available for Unicode databases.)

? A user-defined distinct type value is only comparable to a value defined with the same user-defined
distinct type. In general, assignments are supported between a distinct type value and its source data
type. A user-defined structured type is not comparable and can only be assigned to an operand of the
same structured type or one of its supertypes. For additional information see [“User-defined type
lassignments” on page 127}

3 Note that this means that character strings defined with the FOR BIT DATA attribute are also not
compatible with binary strings.

* A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK value
can only be assigned to a column if the column is defined with NO LINK CONTROL, or the file exists
and is not already under file link control.

5 For information on assignment and comparison of reference types, see [“Reference type assignments’]
[on page 127] and [“Reference type comparisons” on page 133|

¢ Only supported for Unicode databases.

7 Bit data and graphic strings are not compatible.

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or

integer number is never truncated. If the scale of the target number is less
than the scale of the assigned number the excess digits in the fractional part
of a decimal number are truncated.

Decimal or integer to floating-point: Floating-point numbers are
approximations of real numbers. Hence, when a decimal or integer number is
assigned to a floating-point column or variable, the result may not be identical
to the original number.

Floating-point or decimal to integer: When a floating-point or decimal

number is assigned to an integer column or variable, the fractional part of the
number is lost.

118 SQL Reference, Volume 1



Decimal to decimal

Decimal to decimal: When a decimal number is assigned to a decimal
column or variable, the number is converted, if necessary, to the precision and
the scale of the target. The necessary number of leading zeros is appended or
eliminated, and, in the fractional part of the number, the necessary number of
trailing zeros is appended, or the necessary number of trailing digits is
eliminated.

Integer to decimal: When an integer is assigned to a decimal column or
variable, the number is converted first to a temporary decimal number and
then, if necessary, to the precision and scale of the target. The precision and
scale of the temporary decimal number is 5,0 for a small integer, or 11,0 for a
large integer, or 19,0 for a big integer.

Floating-point to decimal: When a floating-point number is converted to
decimal, the number is first converted to a temporary decimal number of
precision 31, and then, if necessary, truncated to the precision and scale of the
target. In this conversion, the number is rounded (using floating-point
arithmetic) to a precision of 31 decimal digits. As a result, a number less than
0.5*10" is reduced to 0. The scale is given the largest possible value that
allows the whole part of the number to be represented without loss of
significance.

String assignments
There are two types of assignments:

* storage assignment is when a value is assigned to a column or parameter of a
routine

e retrieval assignment is when a value is assigned to a host variable.
The rules for string assignment differ based on the assignment type.

Storage assignment: The basic rule is that the length of the string assigned
to a column or routine parameter must not be greater than the length attribute
of the column or the routine parameter. If the length of the string is greater
than the length attribute of the column or the routine parameter, the following
actions may occur:

¢ The string is assigned with trailing blanks truncated (from all string types
except long strings) to fit the length attribute of the target column or
routine parameter

* An error is returned (SQLSTATE 22001) when:
— Non-blank characters would be truncated from other than a long string

— Any character (or byte) would be truncated from a long string.
If a string is assigned to a fixed-length column and the length of the string is

less than the length attribute of the target, the string is padded to the right
with the necessary number of single-byte, double-byte, or UCS-2 blanks. The

Chapter 2. Language elements 119



Storage assignment

120

pad character is always a blank, even for columns defined with the FOR BIT
DATA attribute. (UCS-2 defines several SPACE characters with different
properties. For a Unicode database, the database manager always uses the
ASCII SPACE at position x’0020" as UCS-2 blank. For an EUC database, the
IDEOGRAPHIC SPACE at position x"3000” is used for padding GRAPHIC
strings.)

Retrieval assignment: The length of a string assigned to a host variable may
be longer than the length attribute of the host variable. When a string is
assigned to a host variable and the length of the string is longer than the
length attribute of the variable, the string is truncated on the right by the
necessary number of characters (or bytes). When this occurs, a warning is
returned (SQLSTATE 01004) and the value "W’ is assigned to the SQLWARN1
field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value
is not a LOB, the indicator variable is set to the original length of the string.

If a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the
right with the necessary number of single-byte, double-byte, or UCS-2 blanks.
The pad character is always a blank, even for strings defined with the FOR
BIT DATA attribute. (UCS-2 defines several SPACE characters with different
properties. For a Unicode database, the database manager always uses the
ASCII SPACE at position x’0020" as UCS-2 blank. For an EUC database, the
IDEOGRAPHIC SPACE at position x"3000” is used for padding GRAPHIC
strings.)

Retrieval assignment of C NUL-terminated host variables is handled based on
options specified with the PREP or BIND command.

Conversion rules for string assignments: A character string or graphic string
assigned to a column or host variable is first converted, if necessary, to the
code page of the target. Character conversion is necessary only if all of the
following are true:

* The code pages are different.

* The string is neither null nor empty.

* Neither string has a code page value of 0 (FOR BIT DATA).

For Unicode databases, character strings can be assigned to a graphic column,
and graphic strings can be assigned to a character column.

MBCS considerations for character string assignments: There are several
considerations when assigning character strings that could contain both single

SQL Reference, Volume 1



MBCS considerations for character string assignments

and multi-byte characters. These considerations apply to all character strings,
including those defined as FOR BIT DATA.

* Blank padding is always done using the single-byte blank character (X'20').

* Blank truncation is always done based on the single-byte blank character
(X'20"). The double-byte blank character is treated like any other character
with respect to truncation.

 Assignment of a character string to a host variable may result in
fragmentation of MBCS characters if the target host variable is not large
enough to contain the entire source string. If an MBCS character is
fragmented, each byte of the MBCS character fragment in the target is set to
a single-byte blank character (X'20'), no further bytes are moved from the
source, and SQLWARNTI is set to "W’ to indicate truncation. Note that the
same MBCS character fragment handling applies even when the character
string is defined as FOR BIT DATA.

DBCS considerations for graphic string assignments: Graphic string
assignments are processed in a manner analogous to that for character strings.
For non-Unicode databases, graphic string data types are compatible only
with other graphic string data types, and never with numeric, character string,
or datetime data types. For Unicode databases, graphic string data types are
compatible with character string data types.

If a graphic string value is assigned to a graphic string column, the length of
the value must not be greater than the length of the column.

If a graphic string value (the ‘source” string) is assigned to a fixed length
graphic string data type (the "target’, which can be a column or host variable),
and the length of the source string is less than that of the target, the target
will contain a copy of the source string which has been padded on the right
with the necessary number of double-byte blank characters to create a value
whose length equals that of the target.

If a graphic string value is assigned to a graphic string host variable and the
length of the source string is greater than the length of the host variable, the
host variable will contain a copy of the source string which has been
truncated on the right by the necessary number of double-byte characters to
create a value whose length equals that of the host variable. (Note that for this
scenario, truncation need not be concerned with bisection of a double-byte
character; if bisection were to occur, either the source value or target host
variable would be an ill-defined graphic string data type.) The warning flag
SQLWARN]1 in the SQLCA will be set to “"W’. The indicator variable, if
specified, will contain the original length (in double-byte characters) of the
source string. In the case of DBCLOB, however, the indicator variable does not
contain the original length.

Chapter 2. Language elements 121



DBCS considerations for graphic string assignments

122

Retrieval assignment of C NUL-terminated host variables (declared using
wchar_t) is handled based on options specified with the PREP or BIND
command.

Datetime assignments
The basic rule for datetime assignments is that a DATE, TIME, or

TIMESTAMP value can only be assigned to a column with a matching data
type (whether DATE, TIME, or TIMESTAMP) or to a fixed- or varying-length
string variable or string column. The assignment must not be to a LONG
VARCHAR, CLOB, LONG VARGRAPHIC, DBCLOB, or BLOB variable or
column.

When a datetime value is assigned to a string variable or string column,
conversion to a string representation is automatic. Leading zeros are not
omitted from any part of the date, time, or timestamp. The required length of
the target will vary, depending on the format of the string representation. If
the length of the target is greater than required, and the target is a
fixed-length string, it is padded on the right with blanks. If the length of the
target is less than required, the result depends on the type of datetime value
involved, and on the type of target.

When the target is a host variable, the following rules apply:

* For a DATE: If the variable length is less than 10 characters, an error
occurs.

* For a TIME: If the USA format is used, the length of the variable must not
be less than 8 characters; in other formats the length must not be less than 5
characters.

If ISO or JIS formats are used, and if the length of the host variable is less
than 8 characters, the seconds part of the time is omitted from the result
and assigned to the indicator variable, if provided. The SQLWARNI field of
the SQLCA is set to indicate the omission.

¢ For a TIMESTAMP: If the host variable is less than 19 characters, an error
occurs. If the length is less than 26 characters, but greater than or equal to
19 characters, trailing digits of the microseconds part of the value are
omitted. The SQLWARN]1 field of the SQLCA is set to indicate the omission.

DATALINK assignments
The assignment of a value to a DATALINK column results in the

establishment of a link to a file unless the linkage attributes of the value are
empty or the column is defined with NO LINK CONTROL. In cases where a
linked value already exists in the column, that file is unlinked. Assigning a
null value where a linked value already exists also unlinks the file associated
with the old value.

SQL Reference, Volume 1



DATALINK assignments

If the application provides the same data location as already exists in the
column, the link is retained. There are several reasons that this might be done:

The comment is being changed.

If the table is placed in Datalink Reconcile Not Possible (DRNP) state, the
links in the table can be reinstated by providing linkage attributes identical
to the ones in the column.

If the column is defined with WRITE PERMISSION ADMIN and the file
content is changed, a new version of the link can be established by
providing a DATALINK value constructed by using the DLURLNEWCOPY
function with the same data location.

If the column is defined with WRITE PERMISSION ADMIN and the file
content is changed, but the change needs to be backed out, the existing
version of the link can be reinstated by providing a DATALINK value
constructed by using the DLURLPREVIOUSCOPY function with the same
data location.

The content of the referenced file is being replaced by another file specified
in the DLURLREPLACECONTENT scalar function.

A DATALINK value may be assigned to a column in any of the following
ways:

The DLVALUE scalar function can be used to create a new DATALINK
value and assign it to a column. Unless the value contains only a comment
or the URL is exactly the same, the act of assignment will link the file.

A DATALINK value can be constructed in a CLI parameter using the CLI
function SQLBuildDataLink. This value can then be assigned to a column.
Unless the value contains only a comment or the URL is exactly the same,
the act of assignment will link the file.

The DLURLNEWCOPY scalar function can be used to construct a
DATALINK value and assign it to a column. The data location referenced
by the constructed DATALINK value must be the same as the one that
already exists in the column. The act of assignment by using an UPDATE
statement will re-establish the link to the file. A file backup will be taken if
the column is defined with RECOVERY YES. This type of assignment is
used to notify the database that the file has been updated. The database is
thus made aware of the new file and will re-establish a new link to the file.

The DLURLPREVIOUSCOPY scalar function can be used to construct a
DATALINK value and assign it to a column. The data location referenced
by the constructed DATALINK value must be the same as the one that
already exists in the column. The act of assignment by using an UPDATE
statement will reinstate the link. It will also restore the file to the previous
version from the archive if the column is defined with RECOVERY YES.
This type of assignment is used to back out any change to the file that was
made since the previous committed version.

Chapter 2. Language elements 123



DATALINK assignments

124

¢ The DLURLREPLACECONTENT scalar function can be used to create a

new DATALINK value and assign it to a column. The act of assignment
will not only link the file, but also replace the content with another file
specified in the DLURLREPLACECONTENT scalar function.

When assigning a value to a DATALINK column, the following error
conditions return SQLSTATE 428D1:

* Data Location (URL) format is invalid (reason code 21).

* File server is not registered with this database (reason code 22).
* Invalid link type specified (reason code 23).

* Invalid length of comment or URL (reason code 27).

Note that the size of a URL parameter or function result is the same on
both input or output, and the size is bound by the length of the
DATALINK column. However, in some cases the URL value is returned
with an access token attached. In situations where this is possible, the
output location must have sufficient storage space for the access token and
the length of the DATALINK column. Hence, the actual length of both the
comment and the URL (in its fully expanded form) provided on input
should be restricted to accommodate the output storage space. If the
restricted length is exceeded, this error is raised.

Input data location does not contain a valid write token (reason code 32).

The assignment requires a valid write token to be embedded in the data
location. This requirement only applies when the column is defined with
WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE, and the
DATALINK value is constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function. On the other hand, a user has the
option to provide a write token for a DATALINK column defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE.
However, if the token is not valid, the same error is raised.

This error can also occur when constructing a DATALINK value using the
DLURLNEWCOPY or DLURLPREVIOUSCOPY scalar function with value
"1” specified in the second argument, but the value does not contain a valid
write token.

The DATALINK value constructed by the DLURLPREVIOUSCOPY scalar
function can be assigned only to a DATALINK column defined with WRITE
PERMISSION ADMIN and RECOVERY YES (reason code 33).

The DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function does not match the value that
already exists in the column (reason code 34).

The DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function cannot be used in an INSERT
statement to assign a new value (reason code 35).

SQL Reference, Volume 1



DATALINK assignments

The DATALINK value with scheme DFS cannot be assigned to a
DATALINK column defined with WRITE PERMISSION ADMIN (reason
code 38).

The DATALINK value constructed by the DLURLNEWCOPY scalar
function cannot be assigned to a DATALINK column defined with WRITE
PERMISSION BLOCKED (reason code 39).

The same DATALINK value constructed by the DLURLNEWCOPY or
DLURLPREVIOUSCOPY scalar function cannot be assigned multiple times
within the same transaction (reason code 41).

The DATALINK value constructed by the DLURLREPLACECONTENT
scalar function can be assigned to a DATALINK column defined with NO
LINK CONTROL, only if the second argument is an empty string or a null
value (reason code 42).

The unlink operation of the replacement file specified in the
DLREPLACECONTENT scalar function has not committed (reason code
43).

The replacement file specified in the DLREPLACECONTENT scalar
function is being used in another replacement process (reason code 44).
The DATALINK-referenced file is being used as the replacement file in
another operation (reason code 45).

The format of the replacement file specified in the DLREPLACECONTENT
scalar function is not valid (reason code 46).

The replacement file value specified in the DLREPLACECONTENT scalar
function cannot be a directory or a symbolic link (reason code 47).

The replacement file specified in the DLREPLACECONTENT scalar
function is being linked to a database (reason code 48).

The replacement file specified in the DLREPLACECONTENT scalar
function cannot be found by a Data Links File Manager (reason code 49).
The DATALINK value constructed by the DLURLNEWCOPY scalar
function with a write token contained in the data location value can be
assigned only to a DATALINK column with WRITE PERMISSION ADMIN
(reason code 50).

When the assignment is also creating a link, the following errors can occur:

File server not currently available (SQLSTATE 57050).

File does not exist (SQLSTATE 428D1, reason code 24).

File already linked to another column (SQLSTATE 428D1, reason code 25).
Note that this error will be raised even if the link is to a different database.
Referenced file cannot be accessed for linking (reason code 26).

The write token embedded in the data location does not match the write
token used to open the file (SQLSTATE 428D1, reason code 36).

Chapter 2. Language elements 125



DATALINK assignments

126

* DATALINK value referenced file is in the update-in-progress state
(SQLSTATE 428D1, reason code 37).

* The previous archive copy of the DATALINK value referenced file is not
available (SQLSTATE 428D1, reason code 40).

In addition, when the assignment removes an existing link, the following
eITors can occur:

* File server not currently available (SQLSTATE 57050).

* File with referential integrity control is not in a correct state according to
the Data Links File Manager (SQLSTATE 58004).

* DATALINK value referenced file is in the update-in-progress state
(SQLSTATE 428D1, reason code 37).

If, when retrieving a DATALINK value for write access (by using the
DLURLCOMPLETEWRITE or DLURLPATHWRITE scalar function), the
DATALINK column is defined with WRITE PERMISSION ADMIN, the
directory access privilege is checked at the file server (DataLink File
Manager). The user who issues the query must have the authority to write to
the files under the given directory before a write token is generated and
embedded in the return DATALINK value. If the user does not have write
authority, no write token will be generated, and the SELECT statement will
fail (SQLSTATE 42511, reason code 1).

Portions of a DATALINK value can be assigned to host variables following
the application of scalar functions such as DLLINKTYPE or DLURLPATH.

Note that usually no attempt is made to access the file server at retrieval time.
It is therefore possible that subsequent attempts to access the file server
through file system commands might fail. It may be necessary to access the
file server to determine the prefix name associated with a path. This can be
changed at the file server when the mount point of a file system is moved.
First access of a file on a server will cause the required values to be retrieved
from the file server and cached at the database server for the subsequent
retrieval of DATALINK values for that file server. An error is returned if the
file server cannot be accessed (SQLSTATE 57050).

If using the scalar functions DLURLCOMPLETEWRITE or
DLURLPATHWRITE to retrieve a DATALINK value, it may be necessary to
access the file server to determine the directory access privilege on a path for

a user. An error is returned if the file server cannot be accessed (SQLSTATE
57050).

When retrieving a DATALINK value, the registry of file servers at the
database server is checked to confirm that the file server is still registered
with the database server (SQLSTATE 55022). In addition, a warning may be

SQL Reference, Volume 1



DATALINK assignments

returned when retrieving a DATALINK value because the table is in reconcile
pending or reconcile not possible state (SQLSTATE 01627).

User-defined type assignments
With user-defined types, different rules are applied for assignments to host

variables than are used for all other assignments.

Distinct Types: Assignment to host variables is done based on the source type
of the distinct type. That is, it follows the rule:

* A value of a distinct type on the right hand side of an assignment is
assignable to a host variable on the left hand side if and only if the source
type of this distinct type is assignable to this host variable.

If the target of the assignment is a column based on a distinct type, the source
data type must be castable to the target data type.

Structured Types: Assignment to and from host variables is based on the
declared type of the host variable; that is, it follows the rule:

A value of a structured type on the right hand side of an assignment is
assignable to a host variable on the left hand side if and only if the
declared type of the host variable is the structured type or a supertype of
the structured type.

If the target of the assignment is a column of a structured type, the source
data type must be the target data type or a subtype of the target data type.

Reference type assignments
A reference type with a target type of T can be assigned to a reference type

column that is also a reference type with target type of S where S is a
supertype of T. If an assignment is made to a scoped reference column or
variable, no check is performed to ensure that the actual value being assigned
exists in the target table or view defined by the scope.

Assignment to host variables is done based on the representation type of the
reference type. That is, it follows the rule:

* A value of a reference type on the right hand side of an assignment is
assignable to a host variable on the left hand side if and only if the
representation type of this reference type is assignable to this host variable.

If the target of the assignment is a column, and the right hand side of the
assignment is a host variable, the host variable must be explicitly cast to the
reference type of the target column.

Numeric comparisons
Numbers are compared algebraically; that is, with regard to sign. For

example, -2 is less than +1.

Chapter 2. Language elements 127



Numeric comparisons

128

If one number is an integer and the other is decimal, the comparison is made
with a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended
with trailing zeros so that its fractional part has the same number of digits as
the other number.

If one number is floating-point and the other is integer or decimal, the
comparison is made with a temporary copy of the other number, which has
been converted to double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String comparisons
Character strings are compared according to the collating sequence specified

when the database was created, except those with a FOR BIT DATA attribute
which are always compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is
made using a logical copy of the shorter string which is padded on the right
with single-byte blanks sufficient to extend its length to that of the longer
string. This logical extension is done for all character strings including those
tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are
compared according to the collating sequence specified when the database
was created. For example, the default collating sequence supplied by the
database manager may give lowercase and uppercase versions of the same
character the same weight. The database manager performs a two-pass
comparison to ensure that only identical strings are considered equal to each
other. In the first pass, strings are compared according to the database
collating sequence. If the weights of the characters in the strings are equal, a
second "tie-breaker” pass is performed to compare the strings on the basis of
their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. If either operand is null, the result is unknown.

Long strings and LOB strings are not supported in any comparison operations
that use the basic comparison operators (=, <>, <, >, <=, and >=). They are
supported in comparisons using the LIKE predicate and the POSSTR function.

SQL Reference, Volume 1



String comparisons

Portions of long strings and LOB strings of up to 4 000 bytes can be compared
using the SUBSTR and VARCHAR scalar functions. For example, given the
columns:

MY_SHORT CLOB  CLOB(300)
MY_LONG_VAR  LONG VARCHAR

then the following is valid:
WHERE VARCHAR(MY_SHORT CLOB) > VARCHAR(SUBSTR(MY_ LONG_VAR,1,300))

Examples:

For these examples, "A’, 'A’,’a’, and ’&’, have the code point values X471,
X'C1’, X’61’, and X’E1” respectively.

Consider a collating sequence where the characters "A’, "A’,’a’,’a’ have
weights 136, 139, 135, and 138. Then the characters sort in the order of their
weights as follows:

2 <N <8 <K

Now consider four DBCS characters D1, D2, D3, and D4 with code points
0xC141, 0xC161, 0xE141, and 0xE161, respectively. If these DBCS characters are
in CHAR columns, they sort as a sequence of bytes according to the collation
weights of those bytes. First bytes have weights of 138 and 139, therefore D3
and D4 come before D2 and D1; second bytes have weights of 135 and 136.
Hence, the order is as follows:

D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or
if these DBCS characters were stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points as follows:

A< ’g < ‘A’ <3

The DBCS characters sort as sequence of bytes, in the order of code points as
follows:

D1 < D2 < D3 < D4

Now consider a collating sequence where the characters "A’, 'A’,’a’, '4’ have
(non-unique) weights 74, 75, 74, and 75. Considering collation weights alone
(first pass), ‘a’ is equal to “A’, and 4" is equal to "A’. The code points of the
characters are used to break the tie (second pass) as follows:

o< <R <w

DBCS characters in CHAR columns sort a sequence of bytes, according to
their weights (first pass) and then according to their code points to break the

Chapter 2. Language elements 129



String comparisons

130

tie (second pass). First bytes have equal weights, so the code points (0xC1 and
0xE1) break the tie. Therefore, characters D1 and D2 sort before characters D3
and D4. Then the second bytes are compared in similar way, and the final
result is as follows:

D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute,
or if the DBCS characters are stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points:

DI < D2 < D3 < D4

For this particular example, the result happens to be the same as when
collation weights were used, but obviously this is not always the case.

Conversion rules for comparison: When two strings are compared, one of
the strings is first converted, if necessary, to the encoding scheme and code
page of the other string.

Ordering of results: Results that require sorting are ordered based on the
string comparison rules discussed in [‘String comparisons” on page 128 The
comparison is performed at the database server. On returning results to the
client application, code page conversion may be performed. This subsequent
code page conversion does not affect the order of the server-determined result
set.

MBCS considerations for string comparisons: Mixed SBCS/MBCS character
strings are compared according to the collating sequence specified when the
database was created. For databases created with default (SYSTEM) collation
sequence, all single-byte ASCII characters are sorted in correct order, but
double-byte characters are not necessarily in code point sequence. For
databases created with IDENTITY sequence, all double-byte characters are
correctly sorted in their code point order, but single-byte ASCII characters are
sorted in their code point order as well. For databases created with
COMPATIBILITY sequence, a compromise order is used that sorts properly for
most double-byte characters, and is almost correct for ASCIIL. This was the
default collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in
unusual results for multi-byte characters that occur in mixed strings, because
each byte is considered independently.

Example:

For this example, "A’, 'B’, ‘a’, and 'b” double-byte characters have the code
point values X'8260', X'8261', X'8281', and X'8282', respectively.

SQL Reference, Volume 1



MBCS considerations for string comparisons

Consider a collating sequence where the code points X'8260', X'8261', X'8281",
and X'8282' have weights 96, 65, 193, and 194. Then:

IBI < IAI < Ial < lbl

and
'AB' < 'AA' < 'Aa' < 'Ab' < 'aB' < 'aA' < 'aa' < 'ab’

Graphic string comparisons are processed in a manner analogous to that for
character strings.

Graphic string comparisons are valid between all graphic string data types
except LONG VARGRAPHIC. LONG VARGRAPHIC and DBCLOB data types
are not allowed in a comparison operation.

For graphic strings, the collating sequence of the database is not used. Instead,
graphic strings are always compared based on the numeric (binary) values of
their corresponding bytes.

Using the previous example, if the literals were graphic strings, then:
1 A 1 < 1 B 1 < 1 a 1 < 1 b 1

and
'AA' < 'AB' < 'Aa’ < 'Ab' < 'aA' < 'aB' < 'aa’' < 'ab'

When comparing graphic strings of unequal lengths, the comparison is made
using a logical copy of the shorter string which is padded on the right with
double-byte blank characters sufficient to extend its length to that of the
longer string.

Two graphic values are equal if they are both empty or if all corresponding
graphics are equal. If either operand is null, the result is unknown. If two
values are not equal, their relation is determined by a simple binary string
comparison.

As indicated in this section, comparing strings on a byte by byte basis can
produce unusual results; that is, a result that differs from what would be
expected in a character by character comparison. The examples shown here
assume the same MBCS code page, however, the situation can be further
complicated when using different multi-byte code pages with the same
national language. For example, consider the case of comparing a string from
a Japanese DBCS code page and a Japanese EUC code page.

Datetime comparisons
A DATE, TIME, or TIMESTAMP value may be compared either with another

value of the same data type or with a string representation of that data type.

Chapter 2. Language elements 131



Datetime comparisons

132

All comparisons are chronological, which means the farther a point in time is
from January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero
seconds is implied.

Comparisons involving TIMESTAMP values are chronological without regard
to representations that might be considered equivalent.

Example:
TIMESTAMP('1990-02-23-00.00.00") > '1990-02-22-24.00.00'

User-defined type comparisons
Values with a user-defined distinct type can only be compared with values of

exactly the same user-defined distinct type. The user-defined distinct type
must have been defined using the WITH COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:
CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER

( NAME VARCHAR(20) ,
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,

HIGH_SCHOOL_LEVEL  YOUTH)

The following comparison is valid:

SELECT » FROM CAMP_DBZ2_ROSTER
WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a
function or CAST specification to cast between the distinct type and the
source type. The following comparisons are all valid:

SELECT » FROM CAMP_DBZ_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST( AGE AS INTEGER) > ATTENDEE_NUMBER

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SQL Reference, Volume 1



User-defined type comparisons

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Values with a user-defined structured type cannot be compared with any
other value (the NULL predicate and the TYPE predicate can be used).

Reference type comparisons

Reference type values can be compared only if their target types have a
common supertype. The appropriate comparison function will only be found
if the schema name of the common supertype is included in the function path.
The comparison is performed using the representation type of the reference
types. The scope of the reference is not considered in the comparison.

Related reference:

* ["Identifiers” on page 65

* ['LIKE predicate” on page 238|
e ['POSSTR” on page 427,
+ [‘“Datetime values” on page 101|

* [‘Casting between data types” on page 113|

[‘Rules for result data types” on page 134|

[‘Rules for string conversions” on page 139|

Chapter 2. Language elements 133



Rules for result data types

134

Rules for result data types

The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:

* Corresponding columns in fullselects of set operations (UNION,
INTERSECT and EXCEPT)

* Result expressions of a CASE expression

* Arguments of the scalar function COALESCE (or VALUE)

* Expression values of the in list of an IN predicate

* Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on long strings for the
various operations.

The rules involving various data types follow. In some cases, a table is used to
show the possible result data types.

These tables identify the data type of the result, including the applicable
length or precision and scale. The result type is determined by considering the
operands. If there is more than one pair of operands, start by considering the
first pair. This gives a result type which is considered with the next operand
to determine the next result type, and so on. The last intermediate result type
and the last operand determine the result type for the operation. Processing of
operations is done from left to right so that the intermediate result types are
important when operations are repeated. For example, consider a situation
involving:

CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4
characters. The final result type is VARCHAR(4). Values in the result from the
first UNION operation will always have a length of 4.

Character strings
Character strings are compatible with other character strings. Character strings

include data types CHAR, VARCHAR, LONG VARCHAR, and CLOB.

If one operand is... And the other operand The data type of the result is...
is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or VARCHAR(z) where z = max(x,y)
VARCHAR(y)

SQL Reference, Volume 1



Character strings

If one operand is... And the other operand

1S...

The data type of the result is...

LONG VARCHAR CHAR(y),

VARCHAR(y), or
LONG VARCHAR

LONG VARCHAR

CLOB(x) CHAR(y), CLOB(z) where z = max(x,y)
VARCHAR(y), or
CLOB(y)

CLOB(x) LONG VARCHAR CLOB(z) where z = max(x,32700)

The code page of the result character string will be derived based on the rules

for string conversions.

Graphic strings

Graphic strings are compatible with other graphic strings. Graphic strings
include data types GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and

DBCLOB.

If one operand is... And the other operand The data type of the result is...
is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR VARGRAPHIC(z) where z =
VARGRAPHIC(y) max(x,y)

LONG VARGRAPHIC ~ GRAPHIC(y),
VARGRAPHIC(y), or
LONG VARGRAPHIC

LONG VARGRAPHIC

DBCLOB(x) GRAPHIC(y),
VARGRAPHIC(y), or

DBCLOB(y)

DBCLOB(z) where z = max (x,y)

DBCLOB(x) LONG VARGRAPHIC

DBCLOB(z) where z = max
(x,16350)

The code page of the result graphic string will be derived based on the rules

for string conversions.

Character and graphic strings in a Unicode database
In a Unicode database, character strings and graphic strings are compatible.

If one operand is... And the other operand The data type of the result is...

1S...

GRAPHIC(x) CHAR(y) or
GRAPHIC(y)

GRAPHIC(z) where z = max(x,y)

Chapter 2. Language elements 135



Character and graphic strings in a Unicode database

If one operand is... And the other operand The data type of the result is...
is...

VARGRAPHIC(x) CHAR(y) or VARGRAPHIC(z) where z =
VARCHAR(y) max(x,y)

VARCHAR(x) GRAPHIC(y) or VARGRAPHIC(z) where z =
VARGRAPHIC max(X,y)

LONG VARGRAPHIC  CHAR(y) or LONG VARGRAPHIC
VARCHAR(y) or LONG
VARCHAR

LONG VARCHAR GRAPHIC(y) or LONG VARGRAPHIC
VARGRAPHIC(y)

DBCLOB(x) CHAR(y) or DBCLOB(z) where z = max(x,y)
VARCHAR(y) or
CLOB(y)

DBCLOB(x) LONG VARCHAR DBCLOB(z) where z =

max(x,16350)

CLOB(x) GRAPHIC(y) or DBCLOB(z) where z = max(x,y)
VARGRAPHIC(y)

CLOB(x) LONG VARGRAPHIC  DBCLOB(z) where z =

max(x,16350)

Binary large object (BLOB)

A BLOB is compatible only with another BLOB and the result is a BLOB. The
BLOB scalar function can be used to cast from other types if they should be
treated as BLOB types. The length of the result BLOB is the largest length of
all the data types.

Numeric
Numeric types are compatible with other numeric types. Numeric types

include SMALLINT, INTEGER, BIGINT, DECIMAL, REAL and DOUBLE.

If one operand is... And the other operand The data type of the result is...
is...

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

BIGINT BIGINT BIGINT

BIGINT INTEGER BIGINT

BIGINT SMALLINT BIGINT

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where

p = x+max(w-x,5)"

136  SQL Reference, Volume 1



Numeric

If one operand is... And the other operand The data type of the result is...
is...
DECIMAL(W,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)"
DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = x+max(w-x,19)"
DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)'s
= max(x,z)
REAL REAL REAL
REAL DECIMAL, BIGINT, DOUBLE
INTEGER, or
SMALLINT
DOUBLE any numeric DOUBLE

1 Precision cannot exceed 31.

DATE
A date is compatible with another date, or any CHAR or VARCHAR

expression that contains a valid string representation of a date. The data type
of the result is DATE.

TIME
A time is compatible with another time, or any CHAR or VARCHAR

expression that contains a valid string representation of a time. The data type
of the result is TIME.

TIMESTAMP
A timestamp is compatible with another timestamp, or any CHAR or

VARCHAR expression that contains a valid string representation of a
timestamp. The data type of the result is TIMESTAMP.

DATALINK
A datalink is compatible with another datalink. The data type of the result is

DATALINK. The length of the result DATALINK is the largest length of all
the data types.

User-defined types

Distinct types: A user-defined distinct type is compatible only with the same
user-defined distinct type. The data type of the result is the user-defined
distinct type.

Reference types: A reference type is compatible with another reference type
provided that their target types have a common supertype. The data type of

Chapter 2. Language elements 137



Reference types

138

the result is a reference type having the common supertype as the target type.
If all operands have the identical scope table, the result has that scope table.
Otherwise the result is unscoped.

Structured types: A structured type is compatible with another structured
type provided that they have a common supertype. The static data type of the
resulting structured type column is the structured type that is the least
common supertype of either column.

For example, consider the following structured type hierarchy,

A

/\
B C

7\
D E

/\
F G

Structured types of the static type E and F are compatible with the resulting
static type of B, which is the least common super type of E and F.

Nullable attribute of result
With the exception of INTERSECT and EXCEPT, the result allows nulls unless

both operands do not allow nulls.

* For INTERSECT, if either operand does not allow nulls the result does not
allow nulls (the intersection would never be null).

* For EXCEPT, if the first operand does not allow nulls the result does not
allow nulls (the result can only be values from the first operand).

Related reference:
+ I'BLOB” on page 301

+ ['Rules for string conversions” on page 139

SQL Reference, Volume 1



Rules for string conversions
Rules for string conversions

The code page used to perform an operation is determined by rules which are
applied to the operands in that operation. This section explains those rules.

These rules apply to:

¢ Corresponding string columns in fullselects with set operations (UNION,
INTERSECT and EXCEPT)

* Operands of concatenation

* Operands of predicates (with the exception of LIKE)

* Result expressions of a CASE expression

¢ Arguments of the scalar function COALESCE (and VALUE)

* Expression values of the in list of an IN predicate

* Corresponding expressions of a multiple row VALUES clause.

In each case, the code page of the result is determined at bind time, and the
execution of the operation may involve conversion of strings to the code page
identified by that code page. A character that has no valid conversion is
mapped to the substitution character for the character set and SQLWARNT10 is
set to ‘"W’ in the SQLCA.

The code page of the result is determined by the code pages of the operands.
The code pages of the first two operands determine an intermediate result
code page, this code page and the code page of the next operand determine a
new intermediate result code page (if applicable), and so on. The last
intermediate result code page and the code page of the last operand
determine the code page of the result string or column. For each pair of code
pages, the result is determined by the sequential application of the following
rules:

* If the code pages are equal, the result is that code page.

* If either code page is BIT DATA (code page 0), the result code page is BIT
DATA.

* In a Unicode database, if one code page denotes data in an encoding
scheme that is different from the other code page, the result is UCS-2 over
UTE-8 (that is, the graphic data type over the character data type). (In a
non-Unicode database, conversion between different encoding schemes is
not supported.)

* For operands that are host variables (whose code page is not BIT DATA),
the result code page is the database code page. Input data from such host
variables is converted from the application code page to the database code
page before being used.

Conversions to the code page of the result are performed, if necessary, for:

Chapter 2. Language elements 139



Rules for string conversions

140

* An operand of the concatenation operator

* The selected argument of the COALESCE (or VALUE) scalar function
* The selected result expression of the CASE expression

* The expressions of the in list of the IN predicate

* The corresponding expressions of a multiple row VALUES clause

* The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:
* The code pages are different

* Neither string is BIT DATA

¢ The string is neither null nor empty

Examples

Example 1: Given the following in a database created with code page 850:

Expression Type Code Page
COL_1 column 850
HV_2 host variable 437

When evaluating the predicate:
COL_1 CONCAT :HV 2

the result code page of the two operands is 850, because the host variable data
will be converted to the database code page before being used.

Example 2: Using information from the previous example when evaluating the
predicate:

COALESCE(COL_1, :HV_2:NULLIND,)

the result code page is 850; therefore, the result code page for the COALESCE
scalar function will be code page 850.

SQL Reference, Volume 1



Partition-compatible data types
Partition-compatible data types

Partition compatibility is defined between the base data types of corresponding
columns of partitioning keys. Partition-compatible data types have the
property that two variables, one of each type, with the same value, are
mapped to the same partitioning map index by the same partitioning
function.

able 10|shows the compatibility of data types in partitions.

Partition compatibility has the following characteristics:

* Internal formats are used for DATE, TIME, and TIMESTAMP. They are not
compatible with each other, and none are compatible with CHAR.

* Partition compatibility is not affected by columns with NOT NULL or FOR
BIT DATA definitions.

¢ NULL values of compatible data types are treated identically. Different
results might be produced for NULL values of non-compatible data types.

* Base data type of the UDT is used to analyze partition compatibility.

* Decimals of the same value in the partitioning key are treated identically,
even if their scale and precision differ.

¢ Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or
VARGRAPHIC) are ignored by the system-provided hashing function.

* CHAR or VARCHAR of different lengths are compatible data types.
¢ REAL or DOUBLE values that are equal are treated identically even though
their precision differs.

Table 10. Partition Compatibilities

Operands Binary Decimal Floating Character Graphiddate Time Time- Distinct Structured

Integer Number Point String String stamp Type Type
Binary  Yes  No No No No No No No ‘! No
Integer
Decimal No Yes No No No No No No ! No
Number
Floating No No Yes No No No No No ! No
Point
Character No No No Yes? No No No No ! No
String®
Graphic No  No No No Yes No No No ‘' No
String®
Date No No No No No Yes  No No ! No
Time No No No No No No Yes  No ! No

Chapter 2. Language elements 141



Partition-compatible data types

Table 10. Partition Compatibilities (continued)

Operands Binary Decimal Floating Character Graphiddate Time Time- Distinct Structured

Integer Number Point String String stamp Type Type
TimestampNo  No No No No No No  Yes ‘' No
Distinct ! ! ! ! ! ! ! ! ! No
Type
Structured No No No No No No No No No No
Type®
Note:

B A user-defined distinct type (UDT) value is partition compatible with the source type of the
UDT or any other UDT with a partition compatible source type.

2 The FOR BIT DATA attribute does not affect the partition compatibility.

N Note that user-defined structured types and data types LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, and BLOB are not applicable for partition compatibility since
they are not supported in partitioning keys.

142 SQL Reference, Volume 1



Constants

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified
as string constants or numeric constants. Numeric constants are further
classified as integer, floating-point, or decimal.

All constants have the NOT NULL attribute.

A negative zero value in a numeric constant (-0) is the same value as a zero
without the sign (0).

User-defined types have strong typing. This means that a user-defined type is
only compatible with its own type. A constant, however, has a built-in type.
Therefore, an operation involving a user-defined type and a constant is only
possible if the user-defined type has been cast to the constant’s built-in type,
or if the constant has been cast to the user-defined type. For example, using
the table and distinct type in [“User-defined type comparisons” on page 132}
the following comparisons with the constant 14 are valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(14 AS YOUTH)

SELECT » FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > 14

Integer constants

An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of
an integer constant is large integer if its value is within the range of a large
integer. The data type of an integer constant is big integer if its value is
outside the range of large integer but within the range of a big integer. A
constant that is defined outside the range of big integer values is considered a
decimal constant.

Note that the smallest literal representation of a large integer constant is

-2 147 483 647, and not -2 147 483 648, which is the limit for integer values.
Similarly, the smallest literal representation of a big integer constant is

-9 223 372 036 854 775 807, and not -9 223 372 036 854 775 808, which is the limit
for big integer values.

Examples:
64 -15 +100 32767 720176 12345678901

Chapter 2. Language elements 143



Integer constants

144

In syntax diagrams, the term 'integer’ is used for a large integer constant that
must not include a sign.

Floating-point constants

A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may include a sign and a decimal point;
the second number may include a sign but not a decimal point. The data type
of a floating-point constant is double-precision. The value of the constant is
the product of the first number and the power of 10 specified by the second
number; it must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30.

Examples:
15E1 2.E5 2.2E-1 +5.E+2

Decimal constants

A decimal constant is a signed or unsigned number that consists of no more
than 31 digits and either includes a decimal point or is not within the range of
binary integers. It must be within the range of decimal numbers. The
precision is the total number of digits (including leading and trailing zeros);
the scale is the number of digits to the right of the decimal point (including
trailing zeros).

Examples:
25.5 1000. -15. +37589.3333333333

Character string constants

A character string constant specifies a varying-length character string, and
consists of a sequence of characters that starts and ends with an apostrophe
(). This form of string constant specifies the character string contained
between the string delimiters. The length of the character string must not be
greater than 32 672 bytes. Two consecutive string delimiters are used to
represent one string delimiter within the character string.

Examples:
'12/14/1985'
1 32 1
‘DON''T CHANGE'

The constant value is always converted to the database code page when it is
bound to the database. It is considered to be in the database code page.
Therefore, if used in an expression that combines a constant with a FOR BIT
DATA column, and whose result is FOR BIT DATA, the constant value will
not be converted from its database code page representation when used.

SQL Reference, Volume 1



Hexadecimal constants

Hexadecimal constants

A hexadecimal constant specifies a varying-length character string in the code
page of the application server.

The format of a hexadecimal constant is an X followed by a sequence of
characters that starts and ends with an apostrophe (‘). The characters between
the apostrophes must be an even number of hexadecimal digits. The number
of hexadecimal digits must not exceed 16 336, otherwise an error is raised
(SQLSTATE -54002). A hexadecimal digit represents 4 bits. It is specified as a
digit or any of the letters A through F (uppercase or lowercase), where A
represents the bit pattern '1010', B represents '1011', and so on. If a
hexadecimal constant is improperly formatted (for example, if it contains an
invalid hexadecimal digit or an odd number of hexadecimal digits), an error is
raised (SQLSTATE 42606).

Examples:
X'FFFF' representing the bit pattern '1111111111111111°

X'4672616E6B' representing the VARCHAR pattern of the ASCII string 'Frank'

Graphic string constants
A graphic string constant specifies a varying-length graphic string consisting of
a sequence of double-byte characters that starts and ends with a single-byte
apostrophe ('), and that is preceded by a single-byte G or N. The characters
between the apostrophes must represent an even number of bytes, and the
length of the graphic string must not exceed 16 336 bytes.

Examples:
G'double-byte character string'

N'double-byte character string'

The apostrophe must not appear as part of an MBCS character to be
considered a delimiter.

Related reference:

* [“Expressions” on page 187]

* [’Assignments and comparisons” on page 117|

Chapter 2. Language elements 145



Special registers

Special registers

Special registers

A special register is a storage area that is defined for an application process by
the database manager. It is used to store information that can be referenced in
SQL statements. Special registers are in the database code page.

The name of a special register can be specified with the underscore character;
for example, CURRENT_DATE.

Some special registers can be updated using the SET statement. The following
table shows which of the special registers can be updated.

Table 11. Updatable Special Registers

Special Register Updatable
CLIENT ACCTNG Yes
CLIENT APPLNAME Yes
CLIENT USERID Yes
CLIENT WRKSTNNAME Yes
CURRENT DATE No
CURRENT DBPARTITIONNUM No
CURRENT DEFAULT TRANSFORM GROUP Yes
CURRENT DEGREE Yes
CURRENT EXPLAIN MODE Yes
CURRENT EXPLAIN SNAPSHOT Yes
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION Yes
CURRENT PATH Yes
CURRENT QUERY OPTIMIZATION Yes
CURRENT REFRESH AGE Yes
CURRENT SCHEMA Yes
CURRENT SERVER No
CURRENT TIME No
CURRENT TIMESTAMP No
CURRENT TIMEZONE No
USER No

When a special register is referenced in a routine, the value of the special
register in the routine depends on whether the special register is updatable or

146 SQL Reference, Volume 1



Special registers

not. For non-updatable special registers, the value is set to the default value
for the special register. For updatable special registers, the initial value is
inherited from the invoker of the routine and can be changed with a
subsequent SET statement inside the routine.

Chapter 2. Language elements 147



CLIENT ACCTNG

148

CLIENT ACCTNG

The CLIENT ACCTNG special register contains the value of the accounting
string from the client information specified for this connection. The data type
of the register is VARCHAR(255). The default value of this register is an
empty string.

The value of the accounting string can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Get the current value of the accounting string for this connection.

VALUES (CLIENT ACCTNG)
INTO :ACCT_STRING

SQL Reference, Volume 1



CLIENT APPLNAME
CLIENT APPLNAME

The CLIENT APPLNAME special register contains the value of the application
name from the client information specified for this connection. The data type
of the register is VARCHAR(255). The default value of this register is an
empty string.

The value of the application name can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Select which departments are allowed to use the application being
used in this connection.
SELECT DEPT

FROM DEPT_APPL_MAP
WHERE APPL_NAME = CLIENT APPLNAME

Chapter 2. Language elements 149



CLIENT USERID

150

CLIENT USERID

The CLIENT USERID special register contains the value of the client user ID
from the client information specified for this connection. The data type of the
register is VARCHAR(255). The default value of this register is an empty
string.

The value of the client user ID can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Find out in which department the current client user ID works.

SELECT DEPT
FROM DEPT_USERID_MAP
WHERE USER_ID = CLIENT USERID

SQL Reference, Volume 1



CLIENT WRKSTNNAME
CLIENT WRKSTNNAME

The CLIENT WRKSTNNAME special register contains the value of the
workstation name from the client information specified for this connection.
The data type of the register is VARCHAR(255). The default value of this
register is an empty string.

The value of the workstation name can be changed by using the Set Client
Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code
page, and the special register value is stored in the database code page.
Depending on the data values used when setting the client information,
truncation of the data value stored in the special register may occur during
code page conversion.

Example: Get the workstation name being used for this connection.

VALUES (CLIENT WRKSTNNAME)
INTO :WS_NAME

Chapter 2. Language elements 151



CURRENT DATE

152

CURRENT DATE

The CURRENT DATE (or CURRENT_DATE) special register specifies a date
that is based on a reading of the time-of-day clock when the SQL statement is
executed at the application server. If this special register is used more than
once within a single SQL statement, or used with CURRENT TIME or
CURRENT TIMESTAMP within a single statement, all values are based on a
single clock reading.

When used in an SQL statement inside a routine, CURRENT DATE is not
inherited from the invoking statement.

In a federated system, CURRENT DATE can be used in a query intended for
data sources. When the query is processed, the date returned will be obtained
from the CURRENT DATE register at the federated server, not from the data
sources.

Example: Using the PROJECT table, set the project end date (PRENDATE) of
the MA2111 project (PROJNO) to the current date.
UPDATE PROJECT

SET PRENDATE
WHERE PROJNO

CURRENT DATE
'MA2111"

SQL Reference, Volume 1



CURRENT DBPARTITIONNUM
CURRENT DBPARTITIONNUM

The CURRENT DBPARTITIONNUM (or CURRENT_DBPARTITIONNUM)
special register specifies an INTEGER value that identifies the coordinator
node number for the statement. For statements issued from an application, the
coordinator is the partition to which the application connects. For statements
issued from a routine, the coordinator is the partition from which the routine
is invoked.

When used in an SQL statement inside a routine, CURRENT
DBPARTITIONNUM is never inherited from the invoking statement.

CURRENT DBPARTITIONNUM returns 0 if the database instance is not
defined to support partitioning. (In other words, if there is no db2nodes.cfg
file. For partitioned databases, the db2nodes.cfg file exists and contains
partition, or node, definitions.)

CURRENT DBPARTITIONNUM can be changed through the CONNECT
statement, but only under certain conditions.

For compatibility with versions earlier than Version 8, the keyword NODE can
be substituted for DBPARTITIONNUM.

Example: Set the host variable APPL_NODE (integer) to the number of the
partition to which the application is connected.

VALUES CURRENT DBPARTITIONNUM
INTO :APPL_NODE

Related reference:
¢ “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

Chapter 2. Language elements 153



CURRENT DEFAULT TRANSFORM GROUP

154

CURRENT DEFAULT TRANSFORM GROUP

The CURRENT DEFAULT TRANSFORM GROUP (or
CURRENT_DEFAULT_TRANSFORM_GROUP) special register specifies a
VARCHAR(18) value that identifies the name of the transform group used by
dynamic SQL statements for exchanging user-defined structured type values
with host programs. This special register does not specify the transform
groups used in static SQL statements, or in the exchange of parameters and
results with external functions or methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP
statement. If no value is set, the initial value of the special register is the
empty string (a VARCHAR with a length of zero).

In a dynamic SQL statement (that is, one which interacts with host variables),
the name of the transform group used for exchanging values is the same as
the value of this special register, unless this register contains the empty string.
If the register contains the empty string (no value was set by using the SET
CURRENT DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM
transform group is used for the transform. If the DB2_PROGRAM transform
group is not defined for the structured type subject, an error is raised at run
time (SQLSTATE 42741).

Examples:

Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL
functions defined in the MYSTRUCT1 transform are used to exchange
user-defined structured type variables with the host program.

SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

Retrieve the name of the default transform group assigned to this special
register.

VALUES (CURRENT DEFAULT TRANSFORM GROUP)

SQL Reference, Volume 1



CURRENT DEGREE
CURRENT DEGREE

The CURRENT DEGREE (or CURRENT_DEGREE) special register specifies
the degree of intra-partition parallelism for the execution of dynamic SQL
statements. (For static SQL, the DEGREE bind option provides the same
control.) The data type of the register is CHAR(5). Valid values are ANY or
the string representation of an integer between 1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an
SQL statement is dynamically prepared, the execution of that statement will
not use intra-partition parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1
and less than or equal to 32 767 when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition
parallelism with the specified degree.

If the value of CURRENT DEGREE is ANY when an SQL statement is
dynamically prepared, the execution of that statement can involve
intra-partition parallelism using a degree determined by the database
manager.

The actual runtime degree of parallelism will be the lower of:

* The value of the maximum query degree (max_querydegree) configuration
parameter

* The application runtime degree
¢ The SQL statement compilation degree.

If the intra_parallel database manager configuration parameter is set to NO,
the value of the CURRENT DEGREE special register will be ignored for the
purpose of optimization, and the statement will not use intra-partition
parallelism.

The value can be changed by invoking the SET CURRENT DEGREE
statement.

The initial value of CURRENT DEGREE is determined by the dft_degree
database configuration parameter.

Related reference:
* “SET CURRENT DEGREE statement” in the SQL Reference, Volume 2

Chapter 2. Language elements 155



CURRENT EXPLAIN MODE

156

CURRENT EXPLAIN MODE

The CURRENT EXPLAIN MODE (or CURRENT_EXPLAIN_MODE) special
register holds a VARCHAR(254) value which controls the behavior of the
Explain facility with respect to eligible dynamic SQL statements. This facility
generates and inserts Explain information into the Explain tables. This
information does not include the Explain snapshot. Possible values are YES,
NO, EXPLAIN, RECOMMEND INDEXES, and EVALUATE INDEXES. (For
static SQL, the EXPLAIN bind option provides the same control. In the case of
the PREP and BIND commands, the EXPLAIN option values are: YES, NO,
and ALL.)

YES  Enables the Explain facility and causes Explain information for a
dynamic SQL statement to be captured when the statement is
compiled.

EXPLAIN
Enables the facility, but dynamic statements are not executed.

NO  Disables the Explain facility.

RECOMMEND INDEXES
Recommends a set of indexes for each dynamic query. Populates the
ADVISE_INDEX table with the set of indexes.

EVALUATE INDEXES
Explains dynamic queries as though the recommended indexes
existed. The indexes are picked up from the ADVISE_INDEX table.

The initial value is NO. The value can be changed by invoking the SET
CURRENT EXPLAIN MODE statement.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values interact when the Explain facility is invoked. The
CURRENT EXPLAIN MODE special register also interacts with the EXPLAIN
bind option. RECOMMEND INDEXES and EVALUATE INDEXES can only be
set for the CURRENT EXPLAIN MODE register, and must be set using the
SET CURRENT EXPLAIN MODE statement.

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value
currently in the CURRENT EXPLAIN MODE special register.

VALUES CURRENT EXPLAIN MODE
INTO :EXPL_MODE

Related reference:

» “SET CURRENT EXPLAIN MODE statement” in the SQL Reference, Volume
2

. IAppendix K, “Explain register values” on page 857|

SQL Reference, Volume 1



CURRENT EXPLAIN SNAPSHOT
CURRENT EXPLAIN SNAPSHOT

The CURRENT EXPLAIN SNAPSHOT (or CURRENT_EXPLAIN_SNAPSHOT)
special register holds a CHAR(8) value that controls the behavior of the
Explain snapshot facility. This facility generates compressed information,
including access plan information, operator costs, and bind-time statistics.

Only the following statements consider the value of this register: DELETE,
INSERT, SELECT, SELECT INTO, UPDATE, VALUES, or VALUES INTO.
Possible values are YES, NO, and EXPLAIN. (For static SQL, the EXPLSNAP
bind option provides the same control. In the case of the PREP and BIND
commands, the EXPLSNAP option values are: YES, NO, and ALL.)

YES  Enables the Explain snapshot facility and takes a snapshot of the
internal representation of a dynamic SQL statement as the statement is
compiled.

EXPLAIN
Enables the facility, but dynamic statements are not executed.

NO  Disables the Explain snapshot facility.

The initial value is NO. The value can be changed by invoking the SET
CURRENT EXPLAIN SNAPSHOT statement.

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE
special register values interact when the Explain facility is invoked. The
CURRENT EXPLAIN SNAPSHOT special register also interacts with the
EXPLSNAP bind option.

Example: Set the host variable EXPL_SNAP (char(8)) to the value currently in
the CURRENT EXPLAIN SNAPSHOT special register.

VALUES CURRENT EXPLAIN SNAPSHOT
INTO :EXPL_SNAP

Related reference:

» “SET CURRENT EXPLAIN SNAPSHOT statement” in the SQL Reference,
Volume 2

+ [Appendix K, “Explain register values” on page 857

Chapter 2. Language elements 157



CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special
register specifies a VARCHAR(254) value that identifies the types of tables
that can be considered when optimizing the processing of dynamic SQL
queries. Materialized query tables are never considered by static embedded
SQL queries.

The initial value of CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION is SYSTEM. Its value can be changed by the SET CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION statement.

Related reference:

* “SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
statement” in the SQL Reference, Volume 2

158 SQL Reference, Volume 1



CURRENT PATH
CURRENT PATH

The CURRENT PATH (or CURRENT_PATH) special register specifies a
VARCHAR(254) value that identifies the SQL path to be used when resolving
function references and data type references in dynamically prepared SQL
statements. CURRENT FUNCTION PATH is a synonym for CURRENT PATH.
CURRENT PATH is also used to resolve stored procedure references in CALL
statements. The initial value is the default value specified below. For static
SQL, the FUNCPATH bind option provides an SQL path that is used for
function and data type resolution.

The CURRENT PATH special register contains a list of one or more schema
names that are enclosed by double quotation marks and separated by
commas. For example, an SQL path specifying that the database manager is to
look first in the FERMAT schema, then in the XGRAPHIC schema, and finally
in the SYSIBM schema, is returned in the CURRENT PATH special register as:

"FERMAT", "XGRAPHIC","SYSIBM"

The default value is “SYSIBM”,“SYSFUN",“SYSPROC”,X, where X is the
value of the USER special register, delimited by double quotation marks. The
value can be changed by invoking the SET CURRENT PATH statement. The
schema SYSIBM does not need to be specified. If it is not included in the SQL
path, it is implicitly assumed to be the first schema. SYSIBM does not take up
any of the 254 characters if it is implicitly assumed.

A data type that is not qualified with a schema name will be implicitly
qualified with the first schema in the SQL path that contains a data type with
the same unqualified name. There are exceptions to this rule, as outlined in
the descriptions of the following statements: CREATE DISTINCT TYPE,
CREATE FUNCTION, COMMENT, and DROP.

Example: Using the SYSCAT.VIEWS catalog view, find all views that were
created with the same setting as the current value of the CURRENT PATH
special register.

SELECT VIEWNAME, VIEWSCHEMA FROM SYSCAT.VIEWS
WHERE FUNC_PATH = CURRENT PATH

Related reference:

* ["Functions” on page 168
* “SET PATH statement” in the SQL Reference, Volume 2

Chapter 2. Language elements 159



CURRENT QUERY OPTIMIZATION

160

CURRENT QUERY OPTIMIZATION

The CURRENT QUERY OPTIMIZATION (or
CURRENT_QUERY_OPTIMIZATION) special register specifies an INTEGER
value that controls the class of query optimization performed by the database
manager when binding dynamic SQL statements. The QUERYOPT bind
option controls the class of query optimization for static SQL statements. The
possible values range from 0 to 9. For example, if the query optimization class
is set to 0 (minimal optimization), then the value in the special register is 0.
The default value is determined by the dft_queryopt database configuration
parameter. The value can be changed by invoking the SET CURRENT QUERY
OPTIMIZATION statement.

Example: Using the SYSCAT.PACKAGES catalog view, find all plans that were
bound with the same setting as the current value of the CURRENT QUERY
OPTIMIZATION special register.

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

Related reference:

» “SET CURRENT QUERY OPTIMIZATION statement” in the SQL Reference,
Volume 2

SQL Reference, Volume 1



CURRENT REFRESH AGE
CURRENT REFRESH AGE

The CURRENT REFRESH AGE special register specifies a timestamp duration
value with a data type of DECIMAL(20,6). It is the maximum duration since a
particular timestamped event occurred to a cached data object (for example, a
REFRESH TABLE statement processed on a system-maintained REFRESH
DEFERRED materialized query table), such that the cached data object can be
used to optimize the processing of a query. If CURRENT REFRESH AGE has a
value of 99 999 999 999 999 (ANY), and the query optimization class is 5 or
more, the types of tables specified in CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION are considered when optimizing the processing
of a dynamic SQL query.

The initial value of CURRENT REFRESH AGE is zero. The value can be
changed by invoking the SET CURRENT REFRESH AGE statement.

Related reference:
+ “SET CURRENT REFRESH AGE statement” in the SQL Reference, Volume 2

Chapter 2. Language elements 161



CURRENT SCHEMA
CURRENT SCHEMA

The CURRENT SCHEMA (or CURRENT_SCHEMA) special register specifies a
VARCHAR(128) value that identifies the schema name used to qualify
database object references, where applicable, in dynamically prepared SQL
statements. For compatibility with DB2 for OS/390, CURRENT SQLID (or
CURRENT_SQLID) is a synonym for CURRENT SCHEMA.

The initial value of CURRENT SCHEMA is the authorization ID of the current
session user. The value can be changed by invoking the SET SCHEMA

statement.

The QUALIFIER bind option controls the schema name used to qualify
database object references, where applicable, for static SQL statements.

Example: Set the schema for object qualification to 'D123'.
SET CURRENT SCHEMA = 'D123'

162 SQL Reference, Volume 1



CURRENT SERVER
CURRENT SERVER

The CURRENT SERVER (or CURRENT_SERVER) special register specifies a
VARCHAR(18) value that identifies the current application server. The register
contains the actual name of the application server, not an alias.

CURRENT SERVER can be changed through the CONNECT statement, but
only under certain conditions.

When used in an SQL statement inside a routine, CURRENT SERVER is not
inherited from the invoking statement.

Example: Set the host variable APPL_SERVE (VARCHAR(18)) to the name of
the application server to which the application is connected.

VALUES CURRENT SERVER INTO :APPL_SERVE

Related reference:
¢ “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

Chapter 2. Language elements 163



CURRENT TIME

164

CURRENT TIME

The CURRENT TIME (or CURRENT_TIME) special register specifies a time
that is based on a reading of the time-of-day clock when the SQL statement is
executed at the application server. If this special register is used more than
once within a single SQL statement, or used with CURRENT DATE or
CURRENT TIMESTAMP within a single statement, all values are based on a
single clock reading.

When used in an SQL statement inside a routine, CURRENT TIME is not
inherited from the invoking statement.

In a federated system, CURRENT TIME can be used in a query intended for
data sources. When the query is processed, the time returned will be obtained
from the CURRENT TIME register at the federated server, not from the data
sources.

Example: Using the CL_SCHED table, select all the classes (CLASS_CODE) that
start (STARTING) later today. Today’s classes have a value of 3 in the DAY
column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

SQL Reference, Volume 1



CURRENT TIMESTAMP
CURRENT TIMESTAMP

The CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) special register
specifies a timestamp that is based on a reading of the time-of-day clock when
the SQL statement is executed at the application server. If this special register
is used more than once within a single SQL statement, or used with
CURRENT DATE or CURRENT TIME within a single statement, all values are
based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT TIMESTAMP is
not inherited from the invoking statement.

In a federated system, CURRENT TIMESTAMP can be used in a query
intended for data sources. When the query is processed, the timestamp
returned will be obtained from the CURRENT TIMESTAMP register at the
federated server, not from the data sources.

Example: Insert a row into the IN_TRAY table. The value of the RECEIVED
column should be a timestamp that indicates when the row was inserted. The
values for the other three columns come from the host variables SRC (char(8)),
SUB (char(64)), and TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

Chapter 2. Language elements 165



CURRENT TIMEZONE

166

CURRENT TIMEZONE

The CURRENT TIMEZONE (or CURRENT_TIMEZONE) special register
specifies the difference between UTC (Coordinated Universal Time, formerly
known as GMT) and local time at the application server. The difference is
represented by a time duration (a decimal number in which the first two
digits are the number of hours, the next two digits are the number of minutes,
and the last two digits are the number of seconds). The number of hours is
between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from a local
time converts that local time to UTC. The time is calculated from the
operating system time at the moment the SQL statement is executed. (The
CURRENT TIMEZONE value is determined from C runtime functions.)

The CURRENT TIMEZONE special register can be used wherever an
expression of the DECIMAL(6,0) data type is used; for example, in time and
timestamp arithmetic.

When used in an SQL statement inside a routine, CURRENT TIMEZONE is
not inherited from the invoking statement.

Example: Insert a record into the IN_TRAY table, using a UTC timestamp for
the RECEIVED column.

INSERT INTO IN_TRAY VALUES (
CURRENT TIMESTAMP - CURRENT TIMEZONE,
:source,
:subject,
:notetext )

SQL Reference, Volume 1



USER
USER

The USER special register specifies the run-time authorization ID passed to
the database manager when an application starts on a database. The data type
of the register is VARCHAR(128).

When used in an SQL statement inside a routine, USER is not inherited from
the invoking statement.

Example: Select all notes from the IN_TRAY table that were placed there by the
user.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

Chapter 2. Language elements 167



Functions

Functions

168

A database function is a relationship between a set of input data values and a
set of result values. For example, the TIMESTAMP function can be passed
input data values of type DATE and TIME, and the result is a TIMESTAMP.
Functions can either be built-in or user-defined.

* Built-in functions are provided with the database manager. They return a
single result value and are identified as part of the SYSIBM schema. Such
functions include column functions (for example, AVG), operator functions
(for example, +), and casting functions (for example, DECIMAL).

* User-defined functions are functions that are registered to a database in
SYSCAT.ROUTINES (using the CREATE FUNCTION statement).
User-defined functions are never part of the SYSIBM schema. One set of

such functions is provided with the database manager in a schema called
SYSFUN.

User-defined functions extend the capabilities of the database system by
adding function definitions (provided by users or third party vendors) that
can be applied in the database engine itself. Extending database functions
lets the database exploit the same functions in the engine that an
application uses, providing more synergy between application and
database.

External, SQL, and sourced user-defined functions

A user-defined function can be an external function, an SQL function, or a
sourced function. An external function is defined to the database with a
reference to an object code library, and a function within that library that will
be executed when the function is invoked. External functions cannot be
column functions. An SQL function is defined to the database using only the
SQL RETURN statement. It can return either a scalar value, a row, or a table.
SQL functions cannot be column functions. A sourced function is defined to the
database with a reference to another built-in or user-defined function that is
already known to the database. Sourced functions can be scalar functions or
column functions. They are useful for supporting existing functions with
user-defined types.

Scalar, column, row, and table user-defined functions

Each user-defined function is also categorized as a scalar, column, or table
function. A scalar function is a function that returns a single-valued answer
each time it is called. For example, the built-in function SUBSTR() is a scalar
function. Scalar UDFs can be either external or sourced.

A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer. These are also sometimes called
aggregating functions in DB2. An example of a column function is the built-in
function AVG(). An external column UDF cannot be defined to DB2, but a

SQL Reference, Volume 1



Scalar, column, row, and table user-defined functions

column UDF, which is sourced upon one of the built-in column functions, can
be defined. This is useful for distinct types. For example, if there is a distinct
type SHOESIZE defined with base type INTEGER, a UDF AVG(SHOESIZE),
which is sourced on the built-in function AVG(INTEGER), could be defined,
and it would be a column function.

A row function is a function that returns one row of values. It may only be
used as a transform function, mapping attribute values of a structured type
into values in a row. A row function must be defined as an SQL function.

A table function is a function that returns a table to the SQL statement which
references it. It may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language processing
power to data that is not DB2 data, or to convert such data into a DB2 table.
It could, for example, take a file and convert it into a table, sample data from
the World Wide Web and tabularize it, or access a Lotus Notes database and
return information about mail messages, such as the date, sender, and the text
of the message. This information can be joined with other tables in the
database. A table function can be defined as an external function or as an SQL
function. (A table function cannot be a sourced function.)

Function signatures

A function is identified by its schema, a function name, the number of
parameters, and the data types of its parameters. This is called a function
signature, which must be unique within the database. There can be more than
one function with the same name in a schema, provided that the number of
parameters or the data types of the parameters are different. A function name
for which there are multiple function instances is called an overloaded function.
A function name can be overloaded within a schema, in which case there is
more than one function by that name in the schema. These functions must
have different parameter types. A function name can also be overloaded in an
SQL path, in which case there is more than one function by that name in the
path. These functions do not necessarily have different parameter types.

A function can be invoked by referring (in an allowable context) to its
qualified name (schema and function name), followed by the list of arguments
enclosed in parentheses. A function can also be invoked without the schema
name, resulting in a choice of possible functions in different schemas with the
same or acceptable parameters. In this case, the SQL path is used to assist in
function resolution. The SQL path is a list of schemas that are searched to
identify a function with the same name, number of parameters and acceptable
data types. For static SQL statements, the SQL path is specified using the
FUNCPATH bind option. For dynamic SQL statements, the SQL path is the
value of the CURRENT PATH special register.

Chapter 2. Language elements 169



Function signatures

170

Access to functions is controlled through the EXECUTE privilege. GRANT
and REVOKE statements are used to specify who can or cannot execute a
specific function or a set of functions. The EXECUTE privilege (or DBADM
authority) is needed to invoke a function. The definer of the function
automatically receives the EXECUTE privilege. The definer of an external
function or an SQL function having the WITH GRANT option on all
underlying objects also receives the WITH GRANT option with the EXECUTE
privilege on the function. The definer (or SYSADM or DBADM) must then
grant it to the user who wants to invoke the function from any SQL
statement, reference the function in any DDL statement (such as CREATE
VIEW, CREATE TRIGGER, or when defining a constraint), or create another
function sourced on this function. If the EXECUTE privilege is not granted to
a user, the function will not be considered by the function resolution
algorithm, even if it is a better match. Built-in functions (SYSIBM functions)
and SYSFUN functions have the EXECUTE privilege implicitly granted to
PUBLIC.

Function resolution

After function invocation, the database manager must decide which of the
possible functions with the same name is the “best fit”. This includes
resolving functions from the built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function
is invoked in SQL, it is passed a list of zero or more arguments. They are
positional in that the semantics of an argument are determined by its position
in the argument list. A parameter is a formal definition of an input to a
function. When a function is defined to the database, either internally (a
built-in function) or by a user (a user-defined function), its parameters (zero
or more) are specified, and the order of their definitions defines their
positions and their semantics. Therefore, every parameter is a particular
positional input to a function. On invocation, an argument corresponds to a
particular parameter by virtue of its position in the list of arguments.

The database manager uses the name of the function given in the invocation,
EXECUTE privilege on the function, the number and data types of the
arguments, all the functions with the same name in the SQL path, and the
data types of their corresponding parameters as the basis for deciding
whether or not to select a function. The following are the possible outcomes of
the decision process:

* A particular function is deemed to be the best fit. For example, given the
functions named RISK in the schema TEST with signatures defined as:

TEST.RISK(INTEGER)
TEST.RISK(DOUBLE)

an SQL path including the TEST schema and the following function
reference (where DB is a DOUBLE column):

SQL Reference, Volume 1



Function resolution
SELECT ... RISK(DB) ...
then, the second RISK will be chosen.

The following function reference (where SI is a SMALLINT column):
SELECT ... RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to
INTEGER and is a better match than DOUBLE which is further down the
precedence list.

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter that is closest in the
structured type hierarchy to the static type of the function argument.

* No function is deemed to be an acceptable fit. For example, given the same
two functions in the previous case and the following function reference
(where C is a CHAR(5) column):

SELECT ... RISK(C) ...

the argument is inconsistent with the parameter of both RISK functions.

* A particular function is selected based on the SQL path and the number
and data types of the arguments passed on invocation. For example, given
functions named RANDOM with signatures defined as:

TEST.RANDOM(INTEGER)
PROD.RANDOM(INTEGER)

and an SQL path of:
"TEST","PROD"

the following function reference:
SELECT ... RANDOM(432) ...

will choose TEST.RANDOM, because both RANDOM functions are equally
good matches (exact matches in this particular case), and both schemas are
in the path, but TEST precedes PROD in the SQL path.

Determining the best fit
A comparison of the data types of the arguments with the defined data types

of the parameters of the functions under consideration forms the basis for the
decision of which function in a group of like-named functions is the “best fit”.
Note that the data types of the results of the functions, or the type of function
(column, scalar, or table) under consideration do not enter into this
determination.

Chapter 2. Language elements 171



Determining the best fit

172

Function resolution is performed using the following steps:

1. First, find all functions from the catalog (SYSCAT.ROUTINES), and built-in
functions, such that all of the following are true:

* For invocations where the schema name was specified (a qualified
reference), the schema name and the function name match the
invocation name.

* For invocations where the schema name was not specified (an
unqualified reference), the function name matches the invocation name
and has a schema name that matches one of the schemas in the SQL
path.

* The invoker has the EXECUTE privilege on the function.
* The number of defined parameters matches the invocation.

* Each invocation argument matches the function’s corresponding defined
parameter in data type, or is “promotable” to it.

2. Next, consider each argument of the function invocation, from left to right.
For each argument, eliminate all functions that are not the best match for
that argument. The best match for a given argument is the first data type
appearing in the precedence list corresponding to the argument data type
for which there exists a function with a parameter of that data type.
Lengths, precisions, scales and the FOR BIT DATA attribute are not
considered in this comparison. For example, a DECIMAL(9,1) argument is
considered an exact match for a DECIMAL(6,5) parameter, and a
VARCHAR(19) argument is an exact match for a VARCHAR(6) parameter.

The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Note that only the static type (declared type) of the
structured-type argument is considered, not the dynamic type (most
specific type).

3. If more than one candidate function remains after Step 2, all remaining
candidate functions must have identical signatures but be in different
schemas. Choose the function whose schema is earliest in the user’s SQL
path.

4. If there are no candidate functions remaining after step 2, an error is
returned (SQLSTATE 42884).

Function path considerations for built-in functions
Built-in functions reside in a special schema called SYSIBM. Additional

functions are available in the SYSFUN and SYSPROC schemas, but are not
considered built-in functions since they are developed as user-defined
functions and have no special processing considerations. Users cannot define
additional functions in the SYSIBM, SYSFUN, or SYSPROC schemas (or in any
other schema whose name begins with the letters SYS).

SQL Reference, Volume 1



Function path considerations for built-in functions

As already stated, the built-in functions participate in the function resolution
process exactly as do the user-defined functions. One difference between
built-in and user-defined functions, from a function resolution perspective, is
that the built-in functions must always be considered during function
resolution. Therefore, omission of SYSIBM from the path results in the
assumption (for function and data type resolution) that SYSIBM is the first
schema on the path.

For example, if a user’s SQL path is defined as:
"SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the
same number and types of arguments as SYSIBM.LENGTH, then an
unqualified reference to LENGTH in this user’s SQL statement will result in
selecting SHAREFUN.LENGTH. However, if the user’s SQL path is defined
as:

"SHAREFUN", "SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified
reference to LENGTH in this user’s SQL statement will result in selecting
SYSIBM.LENGTH, because SYSIBM implicitly appears first in the path.

To minimize potential problems in this area:
* Never use the names of built-in functions for user-defined functions.

* If, for some reason, it is necessary to create a user-defined function with the
same name as a built-in function, be sure to qualify any references to it.

Example of function resolution
Following is an example of successful function resolution. (Note that not all

required keywords are shown.)

There are seven ACT functions, in three different schemas, registered as:

CREATE FUNCTION AUGUSTUS.ACT (CHAR(5), INT, DOUBLE) SPECIFIC ACT_1 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT 2 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE, INT) SPECIFIC ACT 3 ...
CREATE FUNCTION JULIUS.ACT (INT, DOUBLE, DOUBLE) SPECIFIC ACT 4 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT 5 ...

CREATE FUNCTION JULIUS.ACT (SMALLINT, INT, DOUBLE) SPECIFIC ACT 6 ...
CREATE FUNCTION NERO.ACT (INT, INT, DEC(7,2)) SPECIFIC ACT 7 ...

The function reference is as follows (where I1 and 12 are INTEGER columns,
and D is a DECIMAL column):

SELECT ... ACT(I1, I2, D) ...

Assume that the application making this reference has an SQL path
established as:

Chapter 2. Language elements 173



Example of function resolution

174

"JULIUS","AUGUSTUS", "CAESAR"

Following through the algorithm...

* The function with specific name ACT_7 is eliminated as a candidate,
because the schema NERO is not included in the SQL path.

* The function with specific name ACT_3 is eliminated as a candidate,
because it has the wrong number of parameters. ACT_1 and ACT_6 are
eliminated because, in both cases, the first argument cannot be promoted to
the data type of the first parameter.

* Because there is more than one candidate remaining, the arguments are
considered in order.

* For the first argument, the remaining functions, ACT_2, ACT_4, and ACT_5
are an exact match with the argument type. No functions can be eliminated
from consideration; therefore the next argument must be examined.

* For this second argument, ACT_2 and ACT_5 are exact matches, but ACT_4
is not, so it is eliminated from consideration. The next argument is
examined to determine some differentiation between ACT_2 and ACT _5.

* For the third and last argument, neither ACT_2 nor ACT_5 match the
argument type exactly, but both are equally good.

* There are two functions remaining, ACT_2 and ACT_5, with identical
parameter signatures. The final tie-breaker is to see which function’s
schema comes first in the SQL path, and on this basis, ACT_5 is the
function chosen.

Function invocation

Once the function is selected, there are still possible reasons why the use of
the function may not be permitted. Each function is defined to return a result
with a specific data type.If this result data type is not compatible with the
context in which the function is invoked, an error will occur. For example,
given functions named STEP defined, this time, with different data types as
the result:

STEP(SMALLINT) returns CHAR(5)
STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):
SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen.An error occurs on the statement because the result type is CHAR(S)
instead of a numeric type as required for an argument of the addition
operator.

A couple of other examples where this can happen are as follows, both of
which will result in an error on the statement:

SQL Reference, Volume 1



Function invocation

* The function was referenced in a FROM clause, but the function selected by
the function resolution step was a scalar or column function.

* The reverse case, where the context calls for a scalar or column function,
and function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact
match to the data types of the parameters of the selected function, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns. This includes the case where
precision, scale, or length differs between the argument and the parameter.

Conservative binding semantics

There are instances in which routines and data types are resolved when a
statement is processed, and the database manager must be able to repeat this
resolution. This is true in:

* Static DML statements in packages
* Views

¢ Triggers

¢ Check constraints

* SQL routines

For static DML statements in packages, the routine and data type references
are resolved during a bind operation. Routine and data type references in
views, triggers, SQL routines, and check constraints are resolved when the
database object is created.

If routine resolution is performed again on any routine references in these
objects, it could change the behavior if:

* A new routine has been added with a signature that is a better match, but
the actual executable performs different operations.

* The definer has been granted the execute privilege on a routine with a
signature that is a better match, but the actual executable performs different
operations.

Similarly, if resolution is performed again on any data type in these objects, it
could change the behavior if a new data type has been added with the same
name in a different schema that is also on the SQL path. To avoid this, the
database manager applies conservative binding semantics wherever necessary.
This ensures that routine and data type references will be resolved using the
same SQL path and the set of routines to which it previously resolved when it
was bound. The creation timestamp of routines and data types considered
during resolution is not later than the time when the statement was bound.
(Built-in functions added starting with Version 6.1 have a creation timestamp
that is based on the time of database creation or migration.) In this way, only
the routines and data types that were considered during routine and data

Chapter 2. Language elements 175



Conservative binding semantics

176

type resolution when the statement was originally processed will be
considered. Hence, newly created routines, newly authorized routines, and
data types are not considered when conservative binding semantics are
applied.

Consider a database with two functions that have the signatures
SCHEMAT1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). Assume the SQL
path contains both schemas SCHEMA1 and SCHEMA? (although their order
within the SQL path does not matter). USER1 has been granted the EXECUTE
privilege on the function SCHEMA2.BAR(DOUBLE). Suppose USER1 creates a
view that calls BAR(INT_VAL). This will resolve to the function
SCHEMAZ2.BAR(DOUBLE). The view will always use
SCHEMA2.BAR(DOUBLE), even if someone grants USER1 the EXECUTE
privilege on SCHEMA1.BAR(INTEGER) after the view has been created.

For static DML in packages, the packages can rebind implicitly, or by
explicitly issuing the REBIND command (or corresponding API), or the BIND
command (or corresponding API). The implicit rebind is always performed to
resolve routines and data types with conservative binding semantics. The
REBIND command provides the option to resolve with conservative binding
semantics (RESOLVE CONSERVATIVE) or to resolve by considering any new
routines and data types (RESOLVE ANY, the default option).

Implicit rebind of a package always resolves the same routine. Even if
EXECUTE privilege on a better-matched routine was granted, that routine will
not be considered. Explicit rebind of a package can result in a different routine
being selected. (But if RESOLVE CONSERVATIVE is specified, routine
resolution will follow conservative binding semantics).

If a routine is specified during the creation of a view, trigger, constraint, or
SQL routine body, the specific instance of the routine to be used is determined
by routine resolution at the time the object is created. Subsequent granting of
the EXECUTE privilege after the object has been created will not change the
specific routine that the object uses.

Consider a database with two functions that have the signatures
SCHEMA1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). USER1 has been
granted the EXECUTE privilege on the function SCHEMA2.BAR(DOUBLE).
Suppose USERI creates a view that calls BAR(INT_VAL). This will resolve to
the function SCHEMA2.BAR(DOUBLE). The view will always use
SCHEMA2.BAR(DOUBLE), even if someone grants USER1 the EXECUTE
privilege on SCHEMA1.BAR(INTEGER) after the view has been created.

The same behavior occurs in other database objects. For example, if a package
is implicitly rebound (perhaps after dropping an index), the package will refer

SQL Reference, Volume 1



Conservative binding semantics

to the same specific routine both before and after the implicit rebind. An
explicit rebind of a package, however, can result in a different routine being
selected.

Related reference:
« ["CURRENT PATH” on page 159
« ["Promotion of data types” on page 111

* ["Assignments and comparisons” on page 117]

Chapter 2. Language elements 177



Methods

Methods

A database method of a structured type is a relationship between a set of
input data values and a set of result values, where the first input value (or
subject argument) has the same type, or is a subtype of the subject type (also
called the subject parameter), of the method. For example, a method called
CITY, of type ADDRESS, can be passed input data values of type VARCHAR,
and the result is an ADDRESS (or a subtype of ADDRESS).

Methods are defined implicitly or explicitly, as part of the definition of a
user-defined structured type.

Implicitly defined methods are created for every structured type. Observer
methods are defined for each attribute of the structured type. Observer
methods allow applications to get the value of an attribute for an instance of
the type. Mutator methods are also defined for each attribute, allowing
applications to mutate the type instance by changing the value for an attribute
of a type instance. The CITY method described above is an example of a
mutator method for the type ADDRESS.

Explicitly defined methods, or user-defined methods, are methods that are
registered to a database in SYSCAT.ROUTINES, by using a combination of
CREATE TYPE (or ALTER TYPE ADD METHOD) and CREATE METHOD
statements. All methods defined for a structured type are defined in the same
schema as the type.

User-defined methods for structured types extend the function of the database
system by adding method definitions (provided by users or third party
vendors) that can be applied to structured type instances in the database
engine. Defining database methods lets the database exploit the same methods
in the engine that an application uses, providing more synergy between
application and database.

External and SQL user-defined methods

A user-defined method can be either external or based on an SQL expression.
An external method is defined to the database with a reference to an object
code library and a function within that library that will be executed when the
method is invoked. A method based on an SQL expression returns the result
of the SQL expression when the method is invoked. Such methods do not
require any object code library, because they are written completely in SQL.

A user-defined method can return a single-valued answer each time it is
called. This value can be a structured type. A method can be defined as type
preserving (using SELF AS RESULT), to allow the dynamic type of the subject
argument to be returned as the returned type of the method. All implicitly
defined mutator methods are type preserving.

178 SQL Reference, Volume 1



Method signatures

Method signatures

A method is identified by its subject type, a method name, the number of
parameters, and the data types of its parameters. This is called a method
signature, and it must be unique within the database.

There can be more than one method with the same name for a structured
type, provided that:

* The number of parameters or the data types of the parameters are different,
or

¢ The methods are part of the same method hierarchy (that is, the methods
are in an overriding relationship or override the same original method), or

* The same function signature (using the subject type or any of its subtypes
or supertypes as the first parameter) does not exist.

A method name that has multiple method instances is called an overloaded
method. A method name can be overloaded within a type, in which case there
is more than one method by that name for the type (all of which have
different parameter types). A method name can also be overloaded in the
subject type hierarchy, in which case there is more than one method by that
name in the type hierarchy. These methods must have different parameter

types.

A method can be invoked by referring (in an allowable context) to the method
name, preceded by both a reference to a structured type instance (the subject
argument), and the double dot operator. A list of arguments enclosed in
parentheses must follow. Which method is actually invoked depends on the
static type of the subject type, using the method resolution process described
in the following section. Methods defined WITH FUNCTION ACCESS can
also be invoked using function invocation, in which case the regular rules for
function resolution apply.

If function resolution results in a method defined WITH FUNCTION ACCESS,
all subsequent steps of method invocation are processed.

Access to methods is controlled through the EXECUTE privilege. GRANT and
REVOKE statements are used to specify who can or cannot execute a specific
method or a set of methods. The EXECUTE privilege (or DBADM authority)
is needed to invoke a method. The definer of the method automatically
receives the EXECUTE privilege. The definer of an external method or an SQL
method having the WITH GRANT option on all underlying objects also
receives the WITH GRANT option with the EXECUTE privilege on the
method. The definer (or SYSADM or DBADM) must then grant it to the user
who wants to invoke the method from any SQL statement, or reference the
method in any DDL statement (such as CREATE VIEW, CREATE TRIGGER,

Chapter 2. Language elements 179



Method signatures

180

or when defining a constraint). If the EXECUTE privilege is not granted to a
user, the method will not be considered by the method resolution algorithm,
even if it is a better match.

Method resolution

After method invocation, the database manager must decide which of the
possible methods with the same name is the “best fit”. Functions (built-in or
user-defined) are not considered during method resolution.

An argument is a value passed to a method upon invocation. When a method
is invoked in SQL, it is passed the subject argument (of some structured type)
and a list of zero or more arguments. They are positional in that the semantics
of an argument are determined by its position in the argument list. A
parameter is a formal definition of an input to a method. When a method is
defined to the database, either implicitly (system-generated for a type) or by a
user (a user-defined method), its parameters are specified (with the subject
parameter as the first parameter), and the order of their definitions defines
their positions and their semantics. Therefore, every parameter is a particular
positional input to a method. On invocation, an argument corresponds to a
particular parameter by virtue of its position in the list of arguments.

The database manager uses the name of the method given in the invocation,
EXECUTE privilege on the method, the number and data types of the
arguments, all the methods with the same name for the subject argument’s
static type (and it’s supertypes), and the data types of their corresponding
parameters as the basis for deciding whether or not to select a method. The
following are the possible outcomes of the decision process:

* A particular method is deemed to be the best fit. For example, given the
methods named RISK for the type SITE with signatures defined as:

PROXIMITY(INTEGER) FOR SITE
PROXIMITY(DOUBLE) FOR SITE

the following method invocation (where ST is a SITE column, DB is a
DOUBLE column):

SELECT ST..PROXIMITY(DB) ...
then, the second PROXIMITY will be chosen.

The following method invocation (where SI is a SMALLINT column):
SELECT ST..PROXIMITY(SI) ...

would choose the first PROXIMITY, because SMALLINT can be promoted
to INTEGER and is a better match than DOUBLE, which is further down
the precedence list.

SQL Reference, Volume 1



Method resolution

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter that is closest in the
structured type hierarchy to the static type of the function argument.

No method is deemed to be an acceptable fit. For example, given the same
two functions in the previous case and the following function reference
(where C is a CHAR(5) column):

SELECT ST..PROXIMITY(C) ...

the argument is inconsistent with the parameter of both PROXIMITY
functions.

A particular method is selected based on the methods in the type hierarchy
and the number and data types of the arguments passed on invocation. For
example, given methods named RISK for the types SITE and DRILLSITE (a
subtype of SITE) with signatures defined as:

RISK(INTEGER) FOR DRILLSITE
RISK(DOUBLE) FOR SITE

and the following method invocation (where DRST is a DRILLSITE column,
DB is a DOUBLE column):

SELECT DRST..RISK(DB) ...

the second RISK will be chosen, because DRILLSITE can be promoted to
SITE.

The following method reference (where SI is a SMALLINT column):
SELECT DRST..RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to
INTEGER, which is closer on the precedence list than DOUBLE, and
DRILLSITE is a better match than SITE, which is a supertype.

Methods within the same type hierarchy cannot have the same signatures,
considering parameters other than the subject parameter.

Determining the best fit
A comparison of the data types of the arguments with the defined data types

of the parameters of the methods under consideration forms the basis for the
decision of which method in a group of like-named methods is the “best fit”.
Note that the data types of the results of the methods under consideration do

not enter into this determination.

Method resolution is performed using the following steps:

1. First, find all methods from the catalog (SYSCAT.ROUTINES) such that all
of the following are true:

Chapter 2. Language elements 181



Determining the best fit

* The method name matches the invocation name, and the subject
parameter is the same type or is a supertype of the static type of the
subject argument.

* The invoker has the EXECUTE privilege on the method.
* The number of defined parameters matches the invocation.

* Each invocation argument matches the method’s corresponding defined
parameter in data type, or is “promotable” to it.

2. Next, consider each argument of the method invocation, from left to right.
The leftmost argument (and thus the first argument) is the implicit SELF
parameter. For example, a method defined for type ADDRESS_T has an
implicit first parameter of type ADDRESS_T. For each argument, eliminate
all functions that are not the best match for that argument. The best match
for a given argument is the first data type appearing in the precedence list
corresponding to the argument data type for which there exists a function
with a parameter of that data type. Length, precision, scale and the FOR
BIT DATA attribute are not considered in this comparison. For example, a
DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact
match for a VARCHAR(6) parameter.

The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Note that only the static type (declared type) of the
structured-type argument is considered, not the dynamic type (most
specific type).

3. At most, one candidate method remains after Step 2. This is the method
that is chosen.

4. If there are no candidate methods remaining after step 2, an error is
returned (SQLSTATE 42884).

Example of method resolution
Following is an example of successful method resolution.

There are seven FOO methods for three structured types defined in a
hierarchy of GOVERNOR as a subtype of EMPEROR as a subtype of
HEADOFSTATE, registered with the following signatures:

CREATE METHOD FOO (CHAR(5), INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO 1 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR HEADOFSTATE SPECIFIC F00_2 ...
CREATE METHOD FOO (INT, INT, DOUBLE, INT) FOR HEADOFSTATE SPECIFIC F00 3 ...
CREATE METHOD FOO (INT, DOUBLE, DOUBLE)  FOR EMPEROR SPECIFIC F00_4 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR EMPEROR SPECIFIC F00 5 ...
CREATE METHOD FOO (SMALLINT, INT, DOUBLE) FOR EMPEROR SPECIFIC F00_6 ...
CREATE METHOD FOO (INT, INT, DEC(7,2)) FOR GOVERNOR SPECIFIC F00_7 ...

The method reference is as follows (where I1 and 12 are INTEGER columns, D
is a DECIMAL column and E is an EMPEROR column):

182 SQL Reference, Volume 1



Example of method resolution
SELECT E..FOO(I1, 12, D) ...

Following through the algorithm...

¢ FOQ_7 is eliminated as a candidate, because the type GOVERNOR is a
subtype (not a supertype) of EMPEROR.

¢ FOO_3 is eliminated as a candidate, because it has the wrong number of
parameters.

¢ FOO_1 and FOO_6 are eliminated because, in both cases, the first argument
(not the subject argument) cannot be promoted to the data type of the first
parameter. Because there is more than one candidate remaining, the
arguments are considered in order.

* For the subject argument, FOO_2 is a supertype, while FOO_4 and FOO_5
match the subject argument.

* For the first argument, the remaining methods, FOO_4 and FOO_5, are an
exact match with the argument type. No methods can be eliminated from
consideration; therefore the next argument must be examined.

¢ For this second argument, FOO_5 is an exact match, but FOO_4 is not, so it
is eliminated from consideration. This leaves FOO_5 as the method chosen.

Method invocation

Once the method is selected, there are still possible reasons why the use of the
method may not be permitted.

Each method is defined to return a result with a specific data type. If this
result data type is not compatible with the context in which the method is
invoked, an error will occur. For example, assume that the following methods
named STEP are defined, each with a different data type as the result:

STEP(SMALLINT) FOR TYPEA RETURNS CHAR(5)
STEP(DOUBLE) FOR TYPEA RETURNS INTEGER

and the following method reference (where S is a SMALLINT column and TA
is a column of TYPEA):

SELECT 3 + TA..STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen. An error occurs on the statement, because the result type is CHAR(5)
instead of a numeric type, as required for an argument of the addition
operator.

Starting from the method that has been chosen, the algorithm described in
“Dynamic dispatch of methods” is used to build the set of dispatchable
methods at compile time. Exactly which method is invoked is described in
“Dynamic dispatch of methods”.

Note that when the selected method is a type preserving method:

Chapter 2. Language elements 183



Method invocation

184

* the static result type following function resolution is the same as the static
type of the subject argument of the method invocation

* the dynamic result type when the method is invoked is the same as the
dynamic type of the subject argument of the method invocation.

This may be a subtype of the result type specified in the type preserving
method definition, which in turn may be a supertype of the dynamic type
that is actually returned when the method is processed.

In cases where the arguments of the method invocation were not an exact
match to the data types of the parameters of the selected method, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns. This includes the case where
precision, scale, or length differs between the argument and the parameter,
but excludes the case where the dynamic type of the argument is a subtype of
the parameter’s static type.

Dynamic dispatch of methods

Methods provide the functionality and encapsulate the data of a type. A
method is defined for a type and can always be associated with this type. One
of the method’s parameters is the implicit SELF parameter. The SELF
parameter is of the type for which the method has been declared. The
argument that is passed as the SELF argument when the method is invoked in
a DML statement is called subject.

When a method is chosen using method resolution (see [“Method resolution”]
, or a method has been specified in a DDL statement, this
method is known as the “most specific applicable authorized method”. If the
subject is of a structured type, that method could have one or more overriding
methods. DB2 must then determine which of these methods to invoke, based
on the dynamic type (most specific type) of the subject at run time. This
determination is called “determining the most specific dispatchable method”.
That process is described here.

1. Find the original method in the method hierarchy that the most specific
applicable authorized method is part of. This is called the root method.
2. Create the set of dispatchable methods, which includes the following:

* The most specific applicable authorized method.

* Any method that overrides the most specific applicable authorized
method, and which is defined for a type that is a subtype of the subject
of this invocation.

3. Determine the most specific dispatchable method, as follows:

a. Start with an arbitrary method that is an element of the set of
dispatchable methods and that is a method of the dynamic type of the
subject, or of one of its supertypes. This is the initial most specific
dispatchable method.

SQL Reference, Volume 1



Dynamic dispatch of methods

b. Iterate through the elements of the set of dispatchable methods. For
each method: If the method is defined for one of the proper subtypes
of the type for which the most specific dispatchable method is defined,
and if it is defined for one of the supertypes of the most specific type
of the subject, then repeat step 2 with this method as the most specific
dispatchable method; otherwise, continue iterating.

4. Invoke the most specific dispatchable method.
Example:

Given are three types, "Person”, "Employee”, and "Manager”. There is an
original method "income”, defined for "Person”, which computes a person’s
income. A person is by default unemployed (a child, a retiree, and so on).
Therefore, "income” for type "Person” always returns zero. For type
"Employee” and for type "Manager”, different algorithms have to be applied
to calculate the income. Hence, the method "income” for type "Person” is
overridden in "Employee” and "Manager”.

Create and populate a table as follows:

CREATE TABLE aTable (id integer, personColumn Person);
INSERT INTO aTable VALUES (0, Person()), (1, Employee()), (2, Manager());

List all persons who have a minimum income of $40000:

SELECT id, person, name
FROM aTable
WHERE person..income() >= 40000;

The method "income” for type "Person” is chosen, using method resolution, to
be the most specific applicable authorized method.

1. The root method is "income” for "Person” itself.

2. The second step of the algorithm above is carried out to construct the set
of dispatchable methods:

* The method "income” for type "Person” is included, because it is the
most specific applicable authorized method.

* The method "income” for type "Employee”, and "income” for "Manager”
is included, because both methods override the root method, and both
"Employee” and "Manager” are subtypes of "Person”.

Therefore, the set of dispatchable methods is: {"income” for "Person”,

non

"income” for "Employee”, "income” for "Manager"}.
3. Determine the most specific dispatchable method:
* For a subject whose most specific type is "Person”:

a. Let the initial most specific dispatchable method be "income” for
type "Person”.

Chapter 2. Language elements 185



Dynamic dispatch of methods

b.

Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of "Person” and for a supertype
of the most specific type of the subject, "income” for type "Person” is
the most specific dispatchable method.

* For a subject whose most specific type is "Employee”:

a.

b.

Let the initial most specific dispatchable method be "income” for
type "Person”.

Iterate through the set of dispatchable methods. Because method
"income” for type "Employee” is defined for a proper subtype of
"Person” and for a supertype of the most specific type of the subject
(Note: A type is its own super- and subtype.), method "income” for
type "Employee” is a better match for the most specific dispatchable
method. Repeat this step with method "income” for type "Employee’
as the most specific dispatchable method.

"

Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of "Employee” and for a
supertype of the most specific type of the subject, method "income”
for type "Employee” is the most specific dispatchable method.

* For a subject whose most specific type is "Manager”:

a. Let the initial most specific dispatchable method be "income” for

b.

type "Person”.

Iterate through the set of dispatchable methods. Because method
"income” for type "Manager” is defined for a proper subtype of
"Person” and for a supertype of the most specific type of the subject
(Note: A type is its own super- and subtype.), method "income” for
type "Manager” is a better match for the most specific dispatchable
method. Repeat this step with method "income” for type "Manager”
as the most specific dispatchable method.

Because there is no other method in the set of dispatchable methods
that is defined for a proper subtype of "Manager” and for a
supertype of the most specific type of the subject, method "income”
for type "Manager” is the most specific dispatchable method.

4. Invoke the most specific dispatchable method.

Related reference:

* ['Promotion of data types” on page 111|

* [’Assignments and comparisons” on page 117

186 SQL Reference, Volume 1



Expressions

Expressions

An expression specifies a value. It can be a simple value, consisting of only a

constant or a column name, or it can be more complex. When repeatedly

using similar complex expressions, an SQL function to encapsulate a common
expression can be considered.

In a Unicode database, an expression that accepts a character or graphic string
will accept any string types for which conversion is supported.

expression:
|—0per‘ator
— function |
i: + :‘ —(expression)
- —constant

operator:

—co lumn-name
—host-variable
—special-register
(1)
—(scalar-fullselect)
(2)

—Llabeled-duration

(3)
—case-expression

(4)

—cast-specification

(5)

—dereference-operation
(6)
—OLAP-function
(7)
—XML-function
(8)
—method-invocation
(9)
—subtype-treatment
(10)

Lsequence-reference

(11)

——CONCAT
/
*

+

Chapter 2. Language elements

187



Expressions

Notes:

See [‘Scalar fullselect” on page 194| for more information.

See [“Labeled durations” on page 195 for more information.

See ["CASE expressions” on page 201| for more information.

See [“CAST specifications” on page 203 for more information.

See |”Dereference operations” on page 206| for more information.

See [“OLAP functions” on page 207| for more information.

See ["XML functions” on page 214| for more information.

See [“Method invocation” on page 21§ for more information.

O 0 NI O U e W -

See [“Subtype treatment” on page 219| for more information.

—
o

See [“Sequence reference” on page 220| for more information.

11 || may be used as a synonym for CONCAT.

Expressions without operators

If no operators are used, the result of the expression is the specified value.

Examples:
SALARY : SALARY ' SALARY 'MAX (SALARY)

Expressions with the concatenation operator

The concatenation operator (CONCAT) links two string operands to form a
string expression.

The operands of concatenation must be compatible strings. Note that a binary
string cannot be concatenated with a character string, including character
strings defined as FOR BIT DATA (SQLSTATE 42884).

In a Unicode database, concatenation involving both character string operands
and graphic string operands will first convert the character operands to
graphic operands. Note that in a non-Unicode database, concatenation cannot
involve both character and graphic operands.

If either operand can be null, the result can be null, and if either is null, the
result is the null value. Otherwise, the result consists of the first operand
string followed by the second. Note that no check is made for improperly
formed mixed data when doing concatenation.

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the
operands as shown in the following table:

188 SQL Reference, Volume 1



Expressions with the concatenation operator

Table 12. Data Type and Length of Concatenated Operands

Operands Combined Result

Length

Attributes
CHAR(A) CHAR(B) <255 CHAR(A+B)
CHAR(A) CHAR(B) >254 VARCHAR(A+B)
CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B)

>4000

LONG VARCHAR

CHAR(A) LONG VARCHAR

LONG VARCHAR

VARCHAR(A) VARCHAR(B)

<4001

VARCHAR(A+B)

VARCHAR(A) VARCHAR(B)

>4000

LONG VARCHAR

VARCHAR(A) LONG VARCHAR

LONG VARCHAR

LONG VARCHAR LONG VARCHAR

LONG VARCHAR

CLOB(A) CHAR(B)

CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B)

CLOB(MIN(A+B, 2G))

CLOB(A) LONG VARCHAR

CLOB(MIN(A+32K, 2G))

CLOB(A) CLOB(B)

CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B)

<128

GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B)

>127

VARGRAPHIC(A +B)

GRAPHIC(A) VARGRAPHIC(B)

<2001

VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B)

>2000

LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC

LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B)

<2001

VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B)

>2000

LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC

LONG VARGRAPHIC

LONG VARGRAPHIC LONG
VARGRAPHIC

LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B)

DBCLOB(MIN(A+B, 1G))

Chapter 2. Language elements

189



Expressions with the concatenation operator

190

Table 12. Data Type and Length of Concatenated Operands (continued)

Operands Combined Result

Length

Attributes
DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))
DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))
DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))
BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Note that, for compatibility with previous versions, there is no automatic
escalation of results involving LONG data types to LOB data types. For
example, concatenation of a CHAR(200) value and a completely full LONG
VARCHAR value would result in an error rather than in a promotion to a
CLOB data type.

The code page of the result is considered a derived code page and is
determined by the code page of its operands.

One operand may be a parameter marker. If a parameter marker is used, then
the data type and length attributes of that operand are considered to be the
same as those for the non-parameter marker operand. The order of operations
must be considered to determine these attributes in cases with nested
concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the
following:

FIRSTNME CONCAT ' ' CONCAT LASTNAME
returns the value Pierre Fermat.

Example 2: Given:

e COLA defined as VARCHAR(5) with value 'AA'

* :host_var defined as a character host variable with length 5 and value
1 BB 1

e COLC defined as CHAR(5) with value 'CC'

e COLD defined as CHAR(5) with value 'DDDDD'

The value of COLA CONCAT :host_var CONCAT COLC CONCAT COLD is
'"AABB CC  DDDDD'

SQL Reference, Volume 1



Expressions with the concatenation operator

The data type is VARCHAR, the length attribute is 17 and the result code
page is the database code page.

Example 3: Given:
COLA defined as CHAR(10)
COLB defined as VARCHAR(5)

The parameter marker in the expression:
COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15), because COLA CONCAT COLB is evaluated first,
giving a result that is the first operand of the second CONCAT operation.

User-defined types
A user-defined type cannot be used with the concatenation operator, even if it

is a distinct type with a source data type that is a string type. To concatenate,
create a function with the CONCAT operator as its source. For example, if
there were distinct types TITLE and TITLE_DESCRIPTION, both of which had
VARCHAR(25) data types, the following user-defined function, ATTACH,
could be used to concatenate them.

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a
user-defined function to add the new data types.

CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Expressions with arithmetic operators

If arithmetic operators are used, the result of the expression is a value derived
from the application of the operators to the values of the operands.

If any operand can be null, or the database is configured with
DFT_SQLMATHWARN set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null
value.

Arithmetic operators can be applied to signed numeric types and datetime
types (see|“Datetime arithmetic in SQL” on page 196). For example, USER+2 is
invalid. Sourced functions can be defined for arithmetic operations on distinct
types with a source type that is a signed numeric type.

The prefix operator + (unary plus) does not change its operand. The prefix
operator — (unary minus) reverses the sign of a nonzero operand; and if the

Chapter 2. Language elements 191



Expressions with arithmetic operators

data type of A is small integer, the data type of —A is large integer. The first
character of the token following a prefix operator must not be a plus or minus
sign.

The infix operators +, —, *, and / specify addition, subtraction, multiplication,
and division, respectively. The value of the second operand of division must
not be zero. These operators can also be treated as functions. Thus, the
expression "+"(a,b) is equivalent to the expression a+b. “operator” function.

Arithmetic errors
If an arithmetic error such as zero divide or a numeric overflow occurs during

the processing of an expression, an error is returned and the SQL statement
processing the expression fails with an error (SQLSTATE 22003 or 22012).

A database can be configured (using DFT_SQLMATHWARN set to yes) so
that arithmetic errors return a null value for the expression, issue a warning
(SQLSTATE 01519 or 01564), and proceed with processing of the SQL
statement. When arithmetic errors are treated as nulls, there are implications
on the results of SQL statements. The following are some examples of these
implications.

* An arithmetic error that occurs in the expression that is the argument of a
column function causes the row to be ignored in the determining the result
of the column function. If the arithmetic error was an overflow, this may
significantly impact the result values.

* An arithmetic error that occurs in the expression of a predicate in a
WHERE clause can cause rows to not be included in the result.

* An arithmetic error that occurs in the expression of a predicate in a check
constraint results in the update or insert proceeding since the constraint is
not false.

If these types of impacts are not acceptable, additional steps should be taken
to handle the arithmetic error to produce acceptable results. Some examples
are:

* add a case expression to check for zero divide and set the desired value for
such a situation

* add additional predicates to handle nulls (like a check constraint on not
nullable columns could become:

check (clxc2 is not null and clxc2>5000)

to cause the constraint to be violated on an overflow).

Two-integer operands

If both operands of an arithmetic operator are integers, the operation is
performed in binary and the result is a large integer unless either (or both)
operand is a big integer, in which case the result is a big integer. Any

192 SQL Reference, Volume 1



Two-integer operands

remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of the result type.

Integer and decimal operands

If one operand is an integer and the other is a decimal, the operation is
performed in decimal using a temporary copy of the integer that has been
converted to a decimal number with precision p and scale 0; p is 19 for a big
integer, 11 for a large integer, and 5 for a small integer.

Two-decimal operands

If both operands are decimal, the operation is performed in decimal. The
result of any decimal arithmetic operation is a decimal number with a
precision and scale that are dependent on the operation and the precision and
scale of the operands. If the operation is addition or subtraction and the
operands do not have the same scale, the operation is performed with a
temporary copy of one of the operands. The copy of the shorter operand is
extended with trailing zeros so that its fractional part has the same number of
digits as the longer operand.

The result of a decimal operation must not have a precision greater than 31.
The result of decimal addition, subtraction, and multiplication is derived from
a temporary result which may have a precision greater than 31. If the
precision of the temporary result is not greater than 31, the final result is the
same as the temporary result.

Decimal arithmetic in SQL

The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and s denote the precision and scale of the
first operand, and the symbols p' and s' denote the precision and scale of the

second operand.

Addition and subtraction
The precision is min(31,max(p-s,p’-s’) +max(s,s")+1). The scale of the result of

addition and subtraction is max (s,s”).

Multiplication
The precision of the result of multiplication is min (31,p+ p’) and the scale is

min(31,s+s”).

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale
must not be negative.

Note: The MIN_DEC_DIV_3 database configuration parameter alters the scale

for decimal arithmetic operations involving division. If the parameter
value is set to NO, the scale is calculated as 31-p+s-s'. If the parameter

Chapter 2. Language elements 193



Division

is set to YES, the scale is calculated as MAX(3, 31-p+ s-s'). This ensures
that the result of decimal division always has a scale of at least 3
(precision is always 31).

Floating-point operands

If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point, the operands having first been converted to
double-precision floating-point numbers, if necessary. Thus, if any element of
an expression is a floating-point number, the result of the expression is a
double-precision floating-point number.

An operation involving a floating-point number and an integer is performed
with a temporary copy of the integer which has been converted to
double-precision floating-point. An operation involving a floating-point
number and a decimal number is performed with a temporary copy of the
decimal number which has been converted to double-precision floating-point.
The result of a floating-point operation must be within the range of
floating-point numbers.

User-defined types as operands

A user-defined type cannot be used with arithmetic operators, even if its
source data type is numeric. To perform an arithmetic operation, create a
function with the arithmetic operator as its source. For example, if there were
distinct types INCOME and EXPENSES, both of which had DECIMAL(S,2)
data types, then the following user-defined function, REVENUE, could be
used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Scalar fullselect

A scalar fullselect, as supported in an expression, is a fullselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If
the fullselect does not return a row, the result of the expression is the null
value. If the select list element is an expression that is simply a column name
or a dereference operation, the result column name is based on the name of
the column.

Datetime operations and durations

Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. Following is a
definition of durations and a specification of the rules for datetime arithmetic.

194 SQL Reference, Volume 1



Datetime operations and durations

A duration is a number representing an interval of time. There are four types
of durations.

Labeled durations

labeled-duration:

f—r=function YEAR |

(expression)—  YEARS
constant —MONTH
column-name—— | —MONTHS
host-variable— DAY
—DAYS
—HOUR:
—HOURS
—MINUTE
—MINUTES———
—SECOND
—SECONDS
—MICROSECOND—
LMICROSECONDS—

A labeled duration represents a specific unit of time as expressed by a number
(which can be the result of an expression) followed by one of the seven
duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,
SECONDS, or MICROSECONDS. (The singular form of these keywords is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.) The number specified is converted as if it were assigned to
a DECIMAL(15,0) number. A labeled duration can only be used as an operand
of an arithmetic operator in which the other operand is a value of data type
DATE, TIME, or TIMESTAMP. Thus, the expression HIREDATE + 2 MONTHS
+ 14 DAYS is valid, whereas the expression HIREDATE + (2 MONTHS + 14
DAYS) is not. In both of these expressions, the labeled durations are 2
MONTHS and 14 DAYS.

Date duration
A date duration represents a number of years, months, and days, expressed as

a DECIMAL(8,0) number. To be properly interpreted, the number must have
the format yyyymmdd., where yyyy represents the number of years, mm the
number of months, and dd the number of days. (The period in the format
indicates a DECIMAL data type.) The result of subtracting one date value
from another, as in the expression HIREDATE — BRTHDATE, is a date
duration.

Time duration
A time duration represents a number of hours, minutes, and seconds, expressed

as a DECIMAL(6,0) number. To be properly interpreted, the number must
have the format hhmmss., where hh represents the number of hours, mm the

Chapter 2. Language elements 195



Time duration

196

number of minutes, and ss the number of seconds. (The period in the format
indicates a DECIMAL data type.) The result of subtracting one time value
from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,

minutes, seconds, and microseconds, expressed as a DECIMAL(20,6) number.
To be properly interpreted, the number must have the format
yyyymmddhhmmss.zzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent,
respectively, the number of years, months, days, hours, minutes, seconds, and
microseconds. The result of subtracting one timestamp value from another is a
timestamp duration.

Datetime arithmetic in SQL

The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the
other operand must be a duration. The specific rules governing the use of the
addition operator with datetime values follow.

* If one operand is a date, the other operand must be a date duration or
labeled duration of YEARS, MONTHS, or DAYS.

* If one operand is a time, the other operand must be a time duration or a
labeled duration of HOURS, MINUTES, or SECONDS.

* If one operand is a timestamp, the other operand must be a duration. Any
type of duration is valid.

* Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not
the same as those for addition because a datetime value cannot be subtracted
from a duration, and because the operation of subtracting two datetime values
is not the same as the operation of subtracting a duration from a datetime
value. The specific rules governing the use of the subtraction operator with
datetime values follow.

* If the first operand is a date, the second operand must be a date, a date
duration, a string representation of a date, or a labeled duration of YEARS,
MONTHS, or DAYS.

* If the second operand is a date, the first operand must be a date, or a string
representation of a date.

* If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of HOURS,
MINUTES, or SECONDS.

* If the second operand is a time, the first operand must be a time, or string
representation of a time.

* If the first operand is a timestamp, the second operand must be a
timestamp, a string representation of a timestamp, or a duration.

SQL Reference, Volume 1



Datetime arithmetic in SQL

* If the second operand is a timestamp, the first operand must be a
timestamp or a string representation of a timestamp.

* Neither operand of the subtraction operator can be a parameter marker.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATEL1) is a date duration that specifies the number of years, months, and
days between the two dates. The data type of the result is DECIMAL(S,0). If
DATEI1 is greater than or equal to DATE2, DATE?2 is subtracted from DATEL.
If DATEL] is less than DATE2, however, DATEI is subtracted from DATE2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = DATE1 — DATE2.

If DAY(DATE2) <= DAY (DATE1)
then DAY (RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)

then DAY (RESULT) = N + DAY(DATEL) - DAY (DATE2)
where N = the last day of MONTH(DATE2).
MONTH(DATE2) 1is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000") — '12/31/1999" is 00000215. (or, a
duration of 0 years, 2 months, and 15 days).

Incrementing and decrementing dates: The result of adding a duration to a
date, or of subtracting a duration from a date, is itself a date. (For the
purposes of this operation, a month denotes the equivalent of a calendar page.
Adding months to a date, then, is like turning the pages of a calendar, starting
with the page on which the date appears.) The result must fall between the
dates January 1, 0001 and December 31, 9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date
is affected. The month is unchanged, as is the day unless the result would be
February 29 of a non-leap-year. In this case, the day is changed to 28, and a
warning indicator in the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless

Chapter 2. Language elements 197



Incrementing and decrementing dates

198

the result would be invalid (September 31, for example). In this case, the day
is set to the last day of the month, and a warning indicator in the SQLCA is
set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day
portion of the date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and
subtracted from dates. As with labeled durations, the result is a valid date,
and a warning indicator is set in the SQLCA whenever an end-of-month
adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration
is subtracted from a date, the date is incremented by the specified number of
years, months, and days, in that order. Thus, DATE1 + X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:

DATEL + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number
of days, months, and years, in that order. Thus, DATE1 — X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:

DATEL - DAY(X) DAYS — MONTH(X) MONTHS — YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the
same date one month later unless that date does not exist in the later month.
In that case, the date is set to that of the last day of the later month. For
example, January 28 plus one month gives February 28; and one month added
to January 29, 30, or 31 results in either February 28 or, for a leap year,
February 29.

Note: If one or more months is added to a given date and then the same
number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting time values: The result of subtracting one time (TIME2) from
another (TIME1) is a time duration that specifies the number of hours,
minutes, and seconds between the two times. The data type of the result is
DECIMALC(6,0).

If TIMEL is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

SQL Reference, Volume 1



Subtracting time values

If TIMEL1 is less than TIME2, however, TIME1 is subtracted from TIME2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = TIME1 — TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIMEL) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIMEL)
then MINUTE(RESULT) = MINUTE(TIMEL) - MINUTE(TIME2).

If MINUTE(TIMEL) > MINUTE(TIMEL)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26") — "00:32:56 is 102930. (a duration
of 10 hours, 29 minutes, and 30 seconds).

Incrementing and decrementing time values: The result of adding a
duration to a time, or of subtracting a duration from a time, is itself a time.
Any overflow or underflow of hours is discarded, thereby ensuring that the
result is always a time. If a duration of hours is added or subtracted, only the
hours portion of the time is affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and
subtracted from times. The result is a time that has been incremented or
decremented by the specified number of hours, minutes, and seconds, in that
order. TIMEL + X, where “X” is a DECIMAL(6,0) number, is equivalent to the
expression:

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time "24:00:00” is accepted as a valid time, it is never
returned as the result of time addition or subtraction, even if the
duration operand is zero (for example, time("24:00:00")+0 seconds =
’00:00:00").

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

Chapter 2. Language elements 199



Subtracting timestamps

200

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years,
months, days, hours, minutes, seconds, and microseconds between the two
timestamps. The data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TSI is less
than TS2, however, TS1 is subtracted from TS2 and the sign of the result is
made negative. The following procedural description clarifies the steps
involved in the operation result = TS1 — TS2:

If MICROSECOND(TS2) <= MICROSECOND(TS1)

then MICROSECOND(RESULT) = MICROSECOND(TS1) -
MICROSECOND(TS2) .

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) - MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in
the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) — HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for
subtracting dates.

Incrementing and decrementing timestamps: The result of adding a
duration to a timestamp, or of subtracting a duration from a timestamp is
itself a timestamp. Date and time arithmetic is performed as previously
defined, except that an overflow or underflow of hours is carried into the date
part of the result, which must be within the range of valid dates.
Microseconds overflow into seconds.

Precedence of operations

Expressions within parentheses and dereference operations are evaluated first
from left to right. (Parentheses are also used in subselect statements, search
conditions, and functions. However, they should not be used to arbitrarily
group sections within SQL statements.) When the order of evaluation is not
specified by parentheses, prefix operators are applied before multiplication
and division, and multiplication and division are applied before addition and
subtraction. Operators at the same precedence level are applied from left to
right.

SQL Reference, Volume 1



CASE expressions

1.10 » (Salary + Bonus) + Salary / :VAR3

o o o o

Figure 11. Precedence of Operations

CASE expressions

case-expression .

ELSE NULL:
—CASE——searched-when-clause END
| 1
simple-when- clause—I l—ELSE—resuZt -expression—

searched-when-clause:

|—'—WHEN—search-condition—THEN result-expression |
NULL

simple-when-clause:

|—expression—'—wHEN—expression—THEN result-expression I
NULL

CASE expressions allow an expression to be selected based on the evaluation
of one or more conditions. In general, the value of the case-expression is the
value of the result-expression following the first (leftmost) case that evaluates to
true. If no case evaluates to true and the ELSE keyword is present then the
result is the value of the result-expression or NULL. If no case evaluates to true
and the ELSE keyword is not present then the result is NULL. Note that when
a case evaluates to unknown (because of NULLs), the case is not true and
hence is treated the same way as a case that evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY
clause, or an ORDER BY clause, the search-condition in a searched-when-clause
cannot be a quantified predicate, IN predicate using a fullselect, or an EXISTS
predicate (SQLSTATE 42625).

When using the simple-when-clause, the value of the expression prior to the first

WHEN keyword is tested for equality with the value of the expression
following the WHEN keyword. The data type of the expression prior to the

Chapter 2. Language elements 201



CASE expressions

tirst WHEN keyword must therefore be comparable to the data types of each
expression following the WHEN keyword(s). The expression prior to the first
WHEN keyword in a simple-when-clause cannot include a function that is
variant or has an external action (SQLSTATE 42845).

A result-expression is an expression following the THEN or ELSE keywords.
There must be at least one result-expression in the CASE expression (NULL
cannot be specified for every case) (SQLSTATE 42625). All result expressions
must have compatible data types (SQLSTATE 42804).

Examples:

e If the first character of a department number is a division in the
organization, then a CASE expression can be used to list the full name of
the division to which each employee belongs:

SELECT EMPNO, LASTNAME,

CASE SUBSTR(WORKDEPT,1,1)
WHEN 'A' THEN 'Administration’
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'

END

FROM EMPLOYEE;

* The number of years of education are used in the EMPLOYEE table to give
the education level. A CASE expression can be used to group these and to
show the level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE
WHEN EDLEVEL < 15 THEN 'SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE'
ELSE 'POST GRADUATE'
END
FROM EMPLOYEE

* Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees
who earn more than 25% of their income from commission, but who are not
fully paid on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25;

* The following CASE expressions are the same:

SELECT LASTNAME,
CASE
WHEN LASTNAME = 'Haas' THEN 'President'

202 SQL Reference, Volume 1



CASE expressions

SELECT LASTNAME,
CASE LASTNAME
WHEN 'Haas' THEN 'President’

There are two scalar functions, NULLIF and COALESCE, that are specialized
to handle a subset of the functionality provided by CASE. [Table 13|shows the
equivalent expressions using CASE or these functions.

Table 13. Equivalent CASE Expressions

Expression Equivalent Expression
CASE WHEN el=e2 THEN NULL ELSE el END NULLIF(el,e2)

CASE WHEN el IS NOT NULL THEN el ELSE e2 COALESCE(el,e2)
END

CASE WHEN el IS NOT NULL THEN el ELSE COALESCE(el,e2,....eN)

COALESCE(e2,....eN) END

CAST specifications

cast-specification:

—AS—data-type >
NULL
parameter-marker—

I—CAST—(—Eexp ression

. ) I
L 1)
SCOPE—[typed— table-name
typed- view-name——l_

Notes:
1 The SCOPE clause only applies to the REF data type.

The CAST specification returns the cast operand (the first operand) cast to the
type specified by the data type. If the cast is not supported, an error is
returned (SQLSTATE 42846).

expression
If the cast operand is an expression (other than parameter marker or
NULL), the result is the argument value converted to the specified target
data type.

When casting character strings (other than CLOBs) to a character string
with a different length, a warning (SQLSTATE 01004) is returned if
truncation of other than trailing blanks occurs. When casting graphic
character strings (other than DBCLOBs) to a graphic character string with
a different length, a warning (SQLSTATE 01004) is returned if truncation

Chapter 2. Language elements 203



CAST specifications

204

of other than trailing blanks occurs. For BLOB, CLOB and DBCLOB cast
operands, the warning is issued if any characters are truncated.

NULL

If the cast operand is the keyword NULL, the result is a null value that
has the specified data type.

parameter-marker

A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case
because it has a special meaning. If the cast operand is a parameter-marker,
the specified data type is considered a promise that the replacement will be
assignable to the specified data type (using store assignment for strings).
Such a parameter marker is considered a typed parameter marker. Typed
parameter markers will be treated like any other typed value for the
purpose of function resolution, DESCRIBE of a select list or for column
assignment.

data type

The name of an existing data type. If the type name is not qualified, the
SQL path is used to do data type resolution. A data type that has an
associated attributes like length or precision and scale should include
these attributes when specifying data type (CHAR defaults to a length of 1
and DECIMAL defaults to a precision of 5 and scale of 0 if not specified).
Restrictions on the supported data types are based on the specified cast
operand.

* For a cast operand that is an expression, the supported target data types
depend on the data type of the cast operand (source data type).

* For a cast operand that is the keyword NULL, any existing data type
can be used.

* For a cast operand that is a parameter marker, the target data type can
be any existing data type. If the data type is a user-defined distinct
type, the application using the parameter marker will use the source
data type of the user-defined distinct type. If the data type is a
user-defined structured type, the application using the parameter
marker will use the input parameter type of the TO SQL transform
function for the user-defined structured type.

SCOPE

When the data type is a reference type, a scope may be defined that
identifies the target table or target view of the reference.

typed-table-name
The name of a typed table. The table must already exist (SQLSTATE
42704). The cast must be to data-type REF(S), where S is the type of
typed-table-name (SQLSTATE 428DM).

SQL Reference, Volume 1



CAST specifications

typed-view-name
The name of a typed view. The view must exist or have the same
name as the view being created that includes the cast as part of the
view definition (SQLSTATE 42704). The cast must be to data-type
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character data, the result data type is a
fixed-length character string . When character data is cast to numeric data, the
result data type depends on the type of number specified. For example, if cast
to integer, it becomes a large integer .

Examples:

* An application is only interested in the integer portion of the SALARY
(defined as decimal(9,2)) from the EMPLOYEE table. The following query,
including the employee number and the integer value of SALARY, could be
prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

+ Assume the existence of a distinct type called T_AGE that is defined on
SMALLINT and used to create column AGE in PERSONNEL table. Also
assume the existence of a distinct type called R_YEAR that is defined on
INTEGER and used to create column RETIRE_YEAR in PERSONNEL table.
The following update statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST( ? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data
type of R_YEAR, although the application will use an integer for this
parameter marker. This does not require the explicit CAST specification
because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a
distinct type T_AGE. This satisfies the requirement that the comparison
must be performed with compatible data types. The application will use the
source data type (which is SMALLINT) for processing this parameter
marker.

Successful processing of this statement assumes that the function path
includes the schema name of the schema (or schemas) where the two
distinct types are defined.

* An application supplies a value that is a series of bits, for example an audio
stream, and it should not undergo code page conversion before being used
in an SQL statement. The application could use the following CAST:

CAST( ? AS VARCHAR(10000) FOR BIT DATA)

Chapter 2. Language elements 205



Dereference operations

206

Dereference operations

dereference-operation:

—scoped-ref-expression— -> —namel |
» ]
Lexp ressi onl‘

The scope of the scoped reference expression is a table or view called the
target table or view. The scoped reference expression identifies a target row.
The target row is the row in the target table or view (or in one of its subtables
or subviews) whose object identifier (OID) column value matches the
reference expression. The dereference operation can be used to access a
column of the target row, or to invoke a method, using the target row as the
subject of the method. The result of a dereference operation can always be
null. The dereference operation takes precedence over all other operators.

scoped-ref-expression
An expression that is a reference type that has a scope (SQLSTATE
428DT). If the expression is a host variable, parameter marker or other
unscoped reference type value, a CAST specification with a SCOPE clause
is required to give the reference a scope.

namel
Specifies an unqualified identifier.

If no parentheses follow namel, and namel matches the name of an
attribute of the target type, then the value of the dereference operation is
the value of the named column in the target row. In this case, the data
type of the column (made nullable) determines the result type of the
dereference operation. If no target row exists whose object identifier
matches the reference expression, then the result of the dereference
operation is null. If the dereference operation is used in a select list and is
not included as part of an expression, namel becomes the result column
name.

If parentheses follow namel, or if namel does not match the name of an
attribute of the target type, then the dereference operation is treated as a
method invocation. The name of the invoked method is namel. The
subject of the method is the target row, considered as an instance of its
structured type. If no target row exists whose object identifier matches the
reference expression, the subject of the method is a null value of the target
type. The expressions inside parentheses, if any, provide the remaining
parameters of the method invocation. The normal process is used for

SQL Reference, Volume 1



Dereference operations

resolution of the method invocation. The result type of the selected
method (made nullable) determines the result type of the dereference
operation.

The authorization ID of the statement that uses a dereference operation must
have SELECT privilege on the target table of the scoped-ref-expression
(SQLSTATE 42501).

A dereference operation can never modify values in the database. If a
dereference operation is used to invoke a mutator method, the mutator
method modifies a copy of the target row and returns the copy, leaving the
database unchanged.

Examples:

* Assume the existence of an EMPLOYEE table that contains a column called
DEPTREF which is a reference type scoped to a typed table based on a type
that includes the attribute DEPTNAME. The values of DEPTREEF in the
table EMPLOYEE should correspond to the OID column values in the target
table of DEPTREF column.

SELECT EMPNO, DEPTREF->DEPTNAME
FROM EMPLOYEE

* Using the same tables as in the previous example, use a dereference
operation to invoke a method named BUDGET, with the target row as
subject parameter, and '1997" as an additional parameter.

SELECT EMPNO, DEPTREF->BUDGET('1997') AS DEPTBUDGET97
FROM EMPLOYEE

OLAP functions

OLAP-function:

ranking-function i I
numbering-function
aggregation-function

ranking-function:

F—RANK () i OVER—(
DENSE_RANK () L‘ window-partition-clause ’J

> window-order-clause '—) |

numbering-function:

|—ROW_NUMBER ()—OVER—( >

L‘ window-partition-clause ’J

Chapter 2. Language elements 207



OLAP functions

> )
|—‘ window-order-clause ’J

aggregation-function:

F—column-function—OVER—(
L‘ window-partition-clause ’J

>

L‘ window-order-clause i |
L‘ window-aggregation-group-clause 'J

|—RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING—

>

L‘ window-aggregation-group-clause i

window-partition-clause:

—PARTITION BY—"—partitioning-expression

window-order-clause:

)

asc option

—ORDER BY—Y——sort-key-expression
l—l desc option ’J

ORDER OF—table-designator-

asc option:

NULLS LAST
—Asc [ ]

|—NULLS FI RST—|

desc option:

NULLS FIRST
[ ]

—DESC
Lvuies Last—)

208 SQL Reference, Volume 1



OLAP functions

window-aggregation-group-clause:

ROWS group-start | |
RANGE group-between '—
group-end '—

group-start:

UNBOUNDED PRECEDING |
unsigned-constant—PRECEDING—

CURRENT ROW

group-between:

|—BETWEEN—| group-bound1l f—AND—| group-bound? i |

group-bound1:

UNBOUNDED PRECEDING I
unsigned-constant—PRECEDING—
unsigned-constant—FOLLOWING—
CURRENT ROW

group-bound2:

UNBOUNDED FOLLOWING I
unsigned-constant—PRECEDING—
unsigned-constant—FOLLOWING—
CURRENT ROW

group-end:

UNBOUNDED FOLLOWING _| I
unsigned-constant—FOLLOWING

On-Line Analytical Processing (OLAP) functions provide the ability to return
ranking, row numbering and existing column function information as a scalar
value in a query result. An OLAP function can be included in expressions in a
select-list or the ORDER BY clause of a select-statement (SQLSTATE 42903).
An OLAP function cannot be used as an argument of a column function
(SQLSTATE 42607). The query result to which the OLAP function is applied is
the result table of the innermost subselect that includes the OLAP function.

When specifying an OLAP function, a window is specified that defines the
rows over which the function is applied, and in what order. When used with
a column function, the applicable rows can be further refined, relative to the
current row, as either a range or a number of rows preceding and following

Chapter 2. Language elements 209



OLAP functions

210

the current row. For example, within a partition by month, an average can be
calculated over the previous three month period.

The ranking function computes the ordinal rank of a row within the window.
Rows that are not distinct with respect to the ordering within their window
are assigned the same rank. The results of ranking may be defined with or
without gaps in the numbers resulting from duplicate values.

If RANK is specified, the rank of a row is defined as 1 plus the number of
rows that strictly precede the row. Thus, if two or more rows are not distinct
with respect to the ordering, then there will be one or more gaps in the
sequential rank numbering.

If DENSE_RANK (or DENSERANK) is specified, the rank of a row is defined
as 1 plus the number of preceding rows that are distinct with respect to the
ordering. Therefore, there will be no gaps in the sequential rank numbering.

The ROW_NUMBER (or ROWNUMBER) function computes the sequential
row number of the row within the window defined by the ordering, starting
with 1 for the first row. If the ORDER BY clause is not specified in the
window, the row numbers are assigned to the rows in arbitrary order, as
returned by the subselect (not according to any ORDER BY clause in the
select-statement).

The data type of the result of RANK, DENSE_RANK or ROW_NUMBER is
BIGINT. The result cannot be null.

PARTITION BY (partitioning-expression,...)
Defines the partition within which the function is applied. A
partitioning-expression is an expression used in defining the partitioning of
the result set. Each column-name referenced in a partitioning-expression
must unambiguously reference a result set column of the OLAP function
subselect statement (SQLSTATE 42702 or 42703). A partitioning-expression
cannot include a scalar-fullselect (SQLSTATE 42822) or any function that is
not deterministic or has an external action (SQLSTATE 42845).

ORDER BY (sort-key-expression,...)
Defines the ordering of rows within a partition that determines the value
of the OLAP function or the meaning of the ROW values in the
window-aggregation-group-clause (it does not define the ordering of the
query result set).

sort-key-expression
An expression used in defining the ordering of the rows within a window
partition. Each column name referenced in a sort-key-expression must
unambiguously reference a column of the result set of the subselect,
including the OLAP function (SQLSTATE 42702 or 42703). A

SQL Reference, Volume 1



OLAP functions

sort-key-expression cannot include a scalar fullselect (SQLSTATE 42822) or
any function that is not deterministic or that has an external action
(SQLSTATE 42845). This clause is required for the RANK and
DENSE_RANK functions (SQLSTATE 42601).

ASC
Uses the values of the sort-key-expression in ascending order.

DESC
Uses the values of the sort-key-expression in descending order.

NULLS FIRST
The window ordering considers null values before all non-null values in
the sort order.

NULLS LAST
The window ordering considers null values after all non-null values in the
sort order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied
to the result table of the subselect. There must be a table reference
matching table-designator in the FROM clause of the subselect that specifies
this clause (SQLSTATE 42703). The subselect (or fullselect) corresponding
to the specified table-designator must include an ORDER BY clause that is
dependant on the data (SQLSTATE 428FI). The ordering that is applied is
the same as if the columns of the ORDER BY clause in the nested
subselect (or fullselect) were included in the outer subselect (or fullselect),
and these columns were specified in place of the ORDER OF clause.

window-aggregation-group-clause
The aggregation group of a row R is a set of rows defined in relation to R
(in the ordering of the rows of R’s partition). This clause specifies the
aggregation group. If this clause is not specified, the default is the same as
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,
providing a cumulative aggregation result.

ROWS
Indicates the aggregation group is defined by counting rows.

RANGE
Indicates the aggregation group is defined by an offset from a sort
key.

group-start
Specifies the starting point for the aggregation group. The aggregation
group end is the current row. Specification of the group-start clause is
equivalent to a group-between clause of the form "BETWEEN
group-start AND CURRENT ROW".

Chapter 2. Language elements 211



OLAP functions

group-between

Specifies the aggregation group start and end based on either ROWS
or RANGE.

group-end

Specifies the ending point for the aggregation group. The aggregation
group start is the current row. Specification of the group-end clause is
equivalent to a group-between clause of the form "BETWEEN
CURRENT ROW AND group-end”.

UNBOUNDED PRECEDING

Includes the entire partition preceding the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

UNBOUNDED FOLLOWING

Includes the entire partition following the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

CURRENT ROW

Specifies the start or end of the aggregation group based on the
current row. If ROWS is specified, the current row is the aggregation
group boundary. If RANGE is specified, the aggregation group
boundary includes the set of rows with the same values for the
sort-key-expressions as the current row. This clause cannot be specified
in group-bound?2 if group-bound1 specifies value FOLLOWING.

value PRECEDING

Specifies either the range or number of rows preceding the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow subtraction. This
clause cannot be specified in group-bound? if group-boundl1 is
CURRENT ROW or value FOLLOWING.

value FOLLOWING

Specifies either the range or number of rows following the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow addition.

Examples:

212  SQL Reference, Volume 1



OLAP functions

Display the ranking of employees, in order by surname, according to their
total salary (based on salary plus bonus) that have a total salary more than
$30,000.
SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

FROM EMPLOYEE WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER
BY LASTNAME with:

ORDER BY RANK_SALARY

or
ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)
Rank the departments according to their average total salary.

SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,
RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY RANK_AVG_SAL

Rank the employees within a department according to their education level.
Having multiple employees with the same rank in the department should
not increase the next ranking value.

SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,
DENSE_RANK() OVER
(PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK EDLEVEL
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

Provide row numbers in the result of a query.

SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,
LASTNAME, SALARY
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

List the top five wage earners.

SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY
FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMPLOYEE) AS RANKED EMPLOYEE
WHERE RANK_SALARY < 6
ORDER BY RANK_SALARY

Note that a nested table expression was used to first compute the result,

including the rankings, before the rank could be used in the WHERE
clause. A common table expression could also have been used.

Chapter 2. Language elements 213



XML functions

XML functions

XML-function:

F—XML2CLOB— ( xmlagg-function | ) |
l:l xmlelement-function ’J

xmlagg-function:

|—XMLAGG—(—| xmlelement-function i \\ ) |

)

|_ ASC
ORDER BY—'| sort-key i [ _|_|
DESC

sort-key:

|—|:COZUI77I7-HGI77: a I
sort-key-expression

xmlelement-function:

|—XMLELEMENT—(—NAME—eZement-namc >

> ) I

xmlattributes-function i

-

Y _element-content

xmlattributes-function '—,—'elernent—contentl

xmlattributes-function:

)

|—XMLATTRI BUTES—(——attribute-value

I—AS—attribute—name—l

XML2CLOB
Returns the argument as a CLOB value. The schema is SYSIBM. The
argument must be an expression of data type XML. The result has the
CLOB data type.

XMLAGG
Returns the concatenation of a set of XML data. The schema is SYSIBM.
The data type of the result is XML, and its length is set to 1 073 741 823. If

214  SQL Reference, Volume 1



XML functions

the XMLAGG function is applied to an empty set, the result is a null
value. Otherwise, the result is the concatenation of the values in the set.

ORDER BY
Specifies the order of the rows from the same grouping set that are
processed in the aggregation. If the ORDER BY clause is omitted, or if
the ORDER BY clause cannot distinguish the order of the column
data, the rows in the same grouping set are arbitrarily ordered.

sort-key
The sort key can be a column name or a sort-key-expression. Note
that if the sort key is a constant, it does not refer to the position of the
output column (as in the ordinary ORDER BY clause), but it is simply
a constant, which implies no sort key.

Restrictions on using the XMLAGG function are:
* Column functions cannot be used as direct input (SQLSTATE 42607).

* XMLAGG cannot be used as a column function of an OLAP aggregate
function (SQLSTATE 42601).

XMLELEMENT
Constructs an XML element from the arguments. The schema is SYSIBM.
This function takes an element name, an optional collection of attributes,
and zero or more arguments that will make up the element’s content. The
result data type is XML.

NAME
This keyword precedes the name of the XML element.

element-name
The name of the XML element.

xmlattributes-function
XML attributes that are the result of the XMLATTRIBUTES function. If
specified, this must appear in the second argument of XMLELEMENT
as the XMLATTRIBUTES function with the appropriate format.

element-content
The content of the generated elements is specified by an expression or
a list of expressions. The data type of the result of the expression must
be one of SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC,
REAL, DOUBLE, CHAR, VARCHAR, LONG VARCHAR, CLOB,
GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB, DATE,
TIME, TIMESTAMP, XML, or any distinct type whose source type is
one of the preceding data types. Character string data defined as FOR
BIT DATA is not allowed. The expressions can be any SQL expression,
but cannot include a scalar fullselect, or a subquery.

Chapter 2. Language elements 215



XML functions

XMLATTRIBUTES
Constructs XML attributes from the arguments. The schema is SYSIBM.
The result has the same internal XML data type as the arguments.

attribute-value
The attribute value is an expression. The data type of the result of the
expression must be one of: SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, REAL, DOUBLE, CHAR, VARCHAR, LONG
VARCHAR, CLOB, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,
DBCLOB, DATE, TIME, TIMESTAMP, or any distinct type whose
source type is one of the preceding data types. Character string data
defined as FOR BIT DATA is not allowed. The expression can be any
SQL expression but cannot include a scalar fullselect or a subquery. If
the expression is not a simple column reference, an attribute name
must be specified. Duplicate attribute names are not allowed
(SQLSTATE 42713).

attribute-name
The attribute name is an SQL identifier.

Examples:

* Construct a CLOB from the expression returned by the XMLELEMENT
function. The query
SELECT e.empno, XML2CLOB(XMLELEMENT (NAME "Emp", e.firstnme || ' ' ||
e.lastname))

AS "Result" FROM employee e
WHERE e.edlevel = 12

produces the following result:

EMPNO Result
000290 <Emp>JOHN PARKER</Emp>
000310 <Emp>MAUDE SETRIGHT</Emp>
* Produce a department element (for each department) with a list of
employees, sorted by employee last name:
SELECT XML2CLOB(XMLELEMENT (NAME "Department",
XMLATTRIBUTES (e.workdept AS "name"),

XMLAGG (XMLELEMENT (NAME "emp", e.lastname)
ORDER BY e.lastname

)
)) AS "dept Tist"
FROM employee e
WHERE e.workdept IN ('CO1','E21')
GROUP BY workdept

This query produces the following output. Note that no spaces or newline

characters are actually produced in the result; the following output has
been formatted for clarity.

216  SQL Reference, Volume 1



XML functions

dept_Tist

<Department name = "CO1">
<emp>KWAN</emp>
<emp>NICHOLLS</emp>
<emp>QUINTANA</emp>

</Department>

<Department name = "E21">
<emp>GOUNOT</emp>
<emp>LEE</emp>
<emp>MEHTA</emp>
<emp>SPENSER</emp>

</Department>

* For each department that reports to department AQ0, create an empty XML
element named Mgr with an ID attribute equal to the MGRNO. The query

SELECT d.deptno, XML2CLOB(XMLELEMENT(NAME "Mgr",
XMLATTRIBUTES (d.mgrno)))
AS "Result" FROM department d
WHERE d.admrdept = 'A0O'

produces the following result:
DEPTNO Result

A0O <Mgr 1D="000010"/>
BO1 <Mgr 1D="000020"/>
co1 <Mgr 1D="000030"/>
DO1 <Mgr/>

* Produce an XML element named Emp for each employee, with nested
elements for the employee’s full name and the date the employee was
hired. The query

SELECT e.empno, XML2CLOB
(XMLELEMENT (NAME "Emp",
XMLELEMENT (NAME "name", e.firstnme || ' ' || e.lastname),
XMLELEMENT (NAME "hiredate", e.hiredate)))
AS "Result" FROM employee e
WHERE e.edlevel = 12

produces the following result (formatted here for convenience; the output
XML has no extraneous whitespace characters):

EMPNO Result

000290 <Emp>
<name>JOHN PARKER</name>
<hiredate>1980-05-30</hiredate>
</Emp>

000310 <Emp>
<name>MAUDE SETRIGHT</name>
<hiredate>1964-09-12</hiredate>
</Emp>

* Using the XMLATTRIBUTES function, along with the XML2CLOB and
XMLELEMENT functions, construct the XML attributes. The query

Chapter 2. Language elements 217



XML functions

SELECT XML2CLOB(XMLELEMENT (NAME "Emp:Exempt",
XMLATTRIBUTES (e.firstnme, e.lastname AS "name:last", e."midinit")))
AS "result"
FROM employee e
WHERE e.lastname='GEYER'

produces the following result:

<Emp:Exempt
FIRSTNME="JOHN"
name:last="GEYER"
MIDINIT="B"

/>

Method invocation

method-invocation:

subject-expression..method-name
Yy xpressionl‘

Both system-generated observer and mutator methods, as well as user-defined
methods are invoked using the double-dot operator.

subject-expression
An expression with a static result type that is a user-defined structured

type.

method-name
The unqualified name of a method. The static type of subject-expression or
one of its supertypes must include a method with the specified name.

(expression,...)
The arguments of method-name are specified within parentheses. Empty
parentheses can be used to indicate that there are no arguments. The
method-name and the data types of the specified argument expressions are
used to resolve to the specific method, based on the static type of
subject-expression.

The double-dot operator used for method invocation is a high precedence left
to right infix operator. For example, the following two expressions are
equivalent:

a..b..c + x..y..z

and
((a..b)..c) + ((x..y)..z)

218 SQL Reference, Volume 1



Method invocation

If a method has no parameters other than its subject, it can be invoked with
or without parentheses. For example, the following two expressions are

equivalent:
pointl..x
pointl..x()

Null subjects in method calls are handled as follows:

* If a system-generated mutator method is invoked with a null subject, an
error results (SQLSTATE 2202D)

¢ If any method other than a system-generated mutator is invoked with a
null subject, the method is not executed, and its result is null. This rule
includes user-defined methods with SELF AS RESULT.

When a database object (a package, view, or trigger, for example) is created,
the best fit method that exists for each of its method invocations is found.

Note: Methods of types defined WITH FUNCTION ACCESS can also be
invoked using the regular function notation. Function resolution
considers all functions, as well as methods with function access as
candidate functions. However, functions cannot be invoked using
method invocation. Method resolution considers all methods and does
not consider functions as candidate methods. Failure to resolve to an
appropriate function or method results in an error (SQLSTATE 42884).

Example:

* Use the double-dot operator to invoke a method called AREA. Assume the
existence of a table called RINGS, with a column CIRCLE_COL of
structured type CIRCLE. Also, assume that the method AREA has been
defined previously for the CIRCLE type as AREA() RETURNS DOUBLE.

SELECT CIRCLE_COL..AREA() FROM RINGS
Subtype treatment

subtype-treatment:

—TREAT—(—expression—AS—data-type—) |

The subtype-treatment is used to cast a structured type expression into one of
its subtypes. The static type of expression must be a user-defined structured
type, and that type must be the same type as, or a supertype of, data-type. If
the type name in data-type is unqualified, the SQL path is used to resolve the
type reference. The static type of the result of subtype-treatment is data-type,
and the value of the subtype-treatment is the value of the expression. At run
time, if the dynamic type of the expression is not data-type or a subtype of
data-type, an error is returned (SQLSTATE 0D000).

Chapter 2. Language elements 219



Subtype treatment

220

Example:

 If an application knows that all column object instances in a column
CIRCLE_COL have the dynamic type COLOREDCIRCLE, use the following
query to invoke the method RGB on such objects. Assume the existence of a
table called RINGS, with a column CIRCLE_COL of structured type
CIRCLE. Also, assume that COLOREDCIRCLE is a subtype of CIRCLE and
that the method RGB has been defined previously for COLOREDCIRCLE as
RGB() RETURNS DOUBLE.

SELECT TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
FROM RINGS

At run time, if there are instances of dynamic type CIRCLE, an error is
raised (SQLSTATE 0D000). This error can be avoided by using the TYPE
predicate in a CASE expression, as follows:
SELECT (CASE
WHEN CIRCLE_COL IS OF (COLOREDCIRCLE)
THEN TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
ELSE NULL

END)
FROM RINGS

Sequence reference

sequence-reference:
nextval-expression | I
prevval-expression l—l

nextval-expression:

—NEXTVAL FOR—sequence-name |

prevval-expression:

—PREVVAL FOR—sequence-name |

NEXTVAL FOR sequence-name
A NEXTVAL expression generates and returns the next value for the
sequence specified by sequence-name.

PREVVAL FOR sequence-name
A PREVVAL expression returns the most recently generated value for the
specified sequence for a previous statement within the current application
process. This value can be referenced repeatedly by using PREVVAL
expressions that specify the name of the sequence. There may be multiple
instances of PREVVAL expressions specifying the same sequence name
within a single statement; they all return the same value.

SQL Reference, Volume 1



Sequence reference

A PREVVAL expression can only be used if a NEXTVAL expression
specifying the same sequence name has already been referenced in the
current application process, in either the current or a previous transaction
(SQLSTATE 51035).

Notes:

* A new value is generated for a sequence when a NEXTVAL expression
specifies the name of that sequence. However, if there are multiple instances
of a NEXTVAL expression specifying the same sequence name within a
query, the counter for the sequence is incremented only once for each row
of the result, and all instances of NEXTVAL return the same value for a row
of the result.

* The same sequence number can be used as a unique key value in two
separate tables by referencing the sequence number with a NEXTVAL
expression for the first row (this generates the sequence value), and a
PREVVAL expression for the other rows (the instance of PREVVAL refers to
the sequence value most recently generated in the current session), as
shown below:

INSERT INTO order(orderno, cutno)
VALUES (NEXTVAL FOR order_seq, 123456);

INSERT INTO Tine_item (orderno, partno, quantity)
VALUES (PREVVAL FOR order seq, 987654, 1);

¢ NEXTVAL and PREVVAL expressions can be specified in the following
places:

select-statement or SELECT INTO statement (within the select-clause,
provided that the statement does not contain a DISTINCT keyword, a
GROUP BY clause, an ORDER BY clause, a UNION keyword, an
INTERSECT keyword, or EXCEPT keyword)

INSERT statement (within a VALUES clause)
INSERT statement (within the select-clause of the fullselect)

UPDATE statement (within the SET clause (either a searched or a
positioned UPDATE statement), except that NEXTVAL cannot be
specified in the select-clause of the fullselect of an expression in the SET
clause)

SET Variable statement (except within the select-clause of the fullselect of
an expression; a NEXTVAL expression can be specified in a trigger, but a
PREVVAL expression cannot)

VALUES INTO statement (within the select-clause of the fullselect of an
expression)

CREATE PROCEDURE statement (within the routine-body of an SQL
procedure)

CREATE TRIGGER statement within the triggered-action (a NEXTVAL
expression may be specified, but a PREVVAL expression cannot)

Chapter 2. Language elements 221



Sequence reference

222

* NEXTVAL and PREVVAL expressions cannot be specified (SQLSTATE
428F9) in the following places:

e In
in

join condition of a full outer join
DEFAULT value for a column in a CREATE or ALTER TABLE statement
generated column definition in a CREATE OR ALTER TABLE statement

summary table definition in a CREATE TABLE or ALTER TABLE
statement

condition of a CHECK constraint

CREATE TRIGGER statement (a NEXTVAL expression may be specified,
but a PREVVAL expression cannot)

CREATE VIEW statement
CREATE METHOD statement
CREATE FUNCTION statement

addition, a NEXTVAL expression cannot be specified (SQLSTATE 428F9)
the following places:

CASE expression
parameter list of an aggregate function
subquery in a context other than those explicitly allowed above

SELECT statement for which the outer SELECT contains a DISTINCT
operator

join condition of a join
SELECT statement for which the outer SELECT contains a GROUP BY
clause

SELECT statement for which the outer SELECT is combined with
another SELECT statement using the UNION, INTERSECT, or EXCEPT
set operator

nested table expression
parameter list of a table function

WHERE clause of the outer-most SELECT statement, or a DELETE or
UPDATE statement

ORDER BY clause of the outer-most SELECT statement

select-clause of the fullselect of an expression, in the SET clause of an
UPDATE statement

IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine

* When a value is generated for a sequence, that value is consumed, and the
next time that a value is requested, a new value will be generated. This is
true even when the statement containing the NEXTVAL expression fails or
is rolled back.

If an INSERT statement includes a NEXTVAL expression in the VALUES list
for the column, and if an error occurs at some point during the execution of

SQL Reference, Volume 1



Sequence reference

the INSERT (it could be a problem in generating the next sequence value,
or a problem with the value for another column), then an insertion failure
occurs (SQLSTATE 23505), and the value generated for the sequence is
considered to be consumed. In some cases, reissuing the same INSERT
statement might lead to success.

For example, consider an error that is the result of the existence of a unique
index for the column for which NEXTVAL was used and the sequence
value generated already exists in the index. It is possible that the next value
generated for the sequence is a value that does not exist in the index and so
the subsequent INSERT would succeed.

¢ If in generating a value for a sequence, the maximum value for the
sequence is exceeded (or the minimum value for a descending sequence)
and cycles are not permitted, then an error occurs (SQLSTATE 23522). In
this case, the user could ALTER the sequence to extend the range of
acceptable values, or enable cycles for the sequence, or DROP and CREATE
a new sequence with a different data type that has a larger range of values.

For example, a sequence may have been defined with a data type of
SMALLINT, and eventually the sequence runs out of assignable values.
DROP and re-create the sequence with the new definition to redefine the
sequence as INTEGER.

* A reference to a NEXTVAL expression in the select statement of a cursor
refers to a value that is generated for a row of the result table. A sequence
value is generated for a NEXTVAL expression for each row that is fetched
from the database. If blocking is done at the client, the values may have
been generated at the server prior to the processing of the FETCH
statement. This can occur when there is blocking of the rows of the result
table. If the client application does not explicitly FETCH all the rows that
the database has materialized, then the application will not see the results
of all the generated sequence values (for the materialized rows that were
not returned).

* A reference to a PREVVAL expression in the select statement of a cursor
refers to a value that was generated for the specified sequence prior to the
opening of the cursor. However, closing the cursor can affect the values
returned by PREVVAL for the specified sequence in subsequent statements,
or even for the same statement in the event that the cursor is reopened.
This would be the case when the select statement of the cursor included a
reference to NEXTVAL for the same sequence name.

Examples:

Assume that there is a table called "order”, and that a sequence called
"order_seq” is created as follows:

Chapter 2. Language elements 223



Sequence reference

224

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

Following are some examples of how to generate an "order_seq” sequence
number with a NEXTVAL expression:

INSERT INTO order(orderno, custno)
VALUES (NEXTVAL FOR order_seq, 123456) ;

or

UPDATE order
SET orderno = NEXTVAL FOR order_seq
WHERE custno = 123456;

or
VALUES NEXTVAL FOR order_seq INTO :hv_seq;

Related reference:

+ [“Identifiers” on page 65

+ I"'TYPE predicate” on page 244|

+ I"CHAR” on page 303

[“INTEGER” on page 384

[“Fullselect” on page 595

“CREATE TABLE statement” in the SQL Reference, Volume 2
* ["'Methods” on page 178|

“CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* ['Casting between data types” on page 113|

* ["Assignments and comparisons” on page 117

[‘Rules for result data types” on page 134]

[‘Rules for string conversions” on page 139|

SQL Reference, Volume 1



Predicates

Predicates

Predicates

A predicate specifies a condition that is true, false, or unknown about a given
row or group.

The following rules apply to all types of predicates:

All values specified in a predicate must be compatible.

An expression used in a basic, quantified, IN, or BETWEEN predicate must
not result in a character string with a length attribute greater than 4 000, a
graphic string with a length attribute greater than 2 000, or a LOB string of
any size.

The value of a host variable can be null (that is, the variable may have a
negative indicator variable).

The code page conversion of operands of predicates involving two or more
operands, with the exception of LIKE, is done according to the rules for
string conversions.

Use of a DATALINK value is limited to the NULL predicate.

Use of a structured type value is limited to the NULL predicate and the
TYPE predicate.

In a Unicode database, all predicates that accept a character or graphic
string will accept any string type for which conversion is supported.

A fullselect is a form of the SELECT statement that, when used in a predicate,
is also called a subquery.

Related reference:

* [“Fullselect” on page 595|

* [‘Rules for string conversions” on page 139|

Chapter 2. Language elements 225



Search conditions

226

Search conditions

search-condition:

predicate |_ _|
NOT SELECTIVITY—numeric-constant
(search-condition)

L[AND predicate |_ _| l
OR——I |:NOT:| SELECTIVITY—numeric-constant
(search-condition)

A search condition specifies a condition that is “true,” “false,” or “unknown”
about a given row.

The result of a search condition is derived by application of the specified
logical operators (AND, OR, NOT) to the result of each specified predicate. If
logical operators are not specified, the result of the search condition is the
result of the specified predicate.

AND and OR are defined in [Table 14} in which P and Q are any predicates:
Table 14. Truth Tables for AND and OR

P Q P AND Q POR Q
True True True True

True False False True

True Unknown Unknown True
False True False True
False False False False
False Unknown False Unknown
Unknown True Unknown True
Unknown False False Unknown
Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, NOT is applied before AND, and
AND is applied before OR. The order in which operators at the same

SQL Reference, Volume 1



Search conditions

precedence level are evaluated is undefined to allow for optimization of
search conditions.

MAJPROJ = 'MA2100' AND DEPTNO ='D11' OR DEPTNO = 'B03' OR DEPTNO = 'E11"

c @ =

MAJPROJ = 'MA2100' AND (DEPTNO ='D11'OR DEPTNO = 'B03) OR DEPTNO = 'E11'

o o o

Figure 12. Search Conditions Evaluation Order

SELECTIVITY wvalue
The SELECTIVITY clause is used to indicate to DB2 what the expected
selectivity percentage is for the predicate. SELECTIVITY can be specified
only when the predicate is a user-defined predicate.

A user-defined predicate is a predicate that consists of a user-defined
function invocation, in the context of a predicate specification that
matches the predicate specification on the PREDICATES clause of
CREATE FUNCTION. For example, if the function foo is defined with
PREDICATES WHEN-=1..., then the following use of SELECTIVITY is
valid:

SELECT =

FROM STORES
WHERE foo(parm,parm) = 1 SELECTIVITY 0.004

The selectivity value must be a numeric literal value in the inclusive range
from 0 to 1 (SQLSTATE 42615). If SELECTIVITY is not specified, the
default value is 0.01 (that is, the user-defined predicate is expected to
filter out all but one percent of all the rows in the table). The
SELECTIVITY default can be changed for any given function by updating
its SELECTIVITY column in the SYSSTAT.FUNCTIONS view. An error will
be returned if the SELECTIVITY clause is specified for a non user-defined
predicate (SQLSTATE 428E5).

A user-defined function (UDF) can be applied as a user-defined predicate
and, hence, is potentially applicable for index exploitation if:

* the predicate specification is present in the CREATE FUNCTION
statement

Chapter 2. Language elements 227



Search conditions

228

* the UDF is invoked in a WHERE clause being compared (syntactically)
in the same way as specified in the predicate specification

* there is no negation (NOT operator)
Examples:

In the following query, the within UDF specification in the WHERE clause
satisfies all three conditions and is considered a user-defined predicate.
SELECT ~

FROM customers
WHERE within(Tocation, :sanJose) = 1 SELECTIVITY 0.2

However, the presence of within in the following query is not
index-exploitable due to negation and is not considered a user-defined
predicate.

SELECT *

FROM customers
WHERE NOT(within(location, :sandose) = 1) SELECTIVITY 0.3

In the next example, consider identifying customers and stores that are within
a certain distance of each other. The distance from one store to another is
computed by the radius of the city in which the customers live.
SELECT *
FROM customers, stores

WHERE distance(customers.loc, stores.loc) <
CityRadius(stores.loc) SELECTIVITY 0.02

In the above query, the predicate in the WHERE clause is considered a
user-defined predicate. The result produced by CityRadius is used as a search
argument to the range producer function.

However, since the result produced by CityRadius is used as a range producer
function, the above user-defined predicate will not be able to make use of the
index extension defined on the stores.loc column. Therefore, the UDF will
make use of only the index defined on the customers.loc column.

Related reference:

* “CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

SQL Reference, Volume 1



Basic predicate

Basic predicate

»>—expression—— = —expression ><

Notes:

1 The following forms of the comparison operators are also supported in
basic and quantified predicates: "=, A<, A>, =, I<, and !>. In code pages
437, 819, and 850, the forms —=, =<, and —> are supported.

All of these product-specific forms of the comparison operators are
intended only to support existing SQL that uses these operators, and are
not recommended for use when writing new SQL statements.

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown.
Otherwise the result is either true or false.

For values x and y:

Predicate Is True If and Only If...
x=y x is equal to y

x<>y x is not equal to y

X<y x is less than y

x>y x is greater than y

x>=y x is greater than or equal to y
x<=y x is less than or equal to y
Examples:

EMPNO="'528671"

SALARY < 20000

PRSTAFF <> :VAR1

SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

Chapter 2. Language elements 229



Quantified predicate

230

Quantified predicate

»»——expressionl =

SOME (fullselectl) <
(1) EANY{
<> ALL

vV A

A

Vv

L (—~—expression2——)— = —I:SOME (fullselect2)—

ANY

Notes:

1

The following forms of the comparison operators are also supported in
basic and quantified predicates: "=, A<, A>, =, <, and !>. In code pages
437, 819, and 850, the forms —=, =<, and —> are supported.

All of these product-specific forms of the comparison operators are
intended only to support existing SQL that uses these operators, and are
not recommended for use when writing new SQL statements.

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the predicate operator
(SQLSTATE 428C4). The fullselect may return any number of rows.

When ALL is specified:

The result of the predicate is true if the fullselect returns no values or if the
specified relationship is true for every value returned by the fullselect.

The result is false if the specified relationship is false for at least one value
returned by the fullselect.

The result is unknown if the specified relationship is not false for any
values returned by the fullselect and at least one comparison is unknown
because of the null value.

When SOME or ANY is specified:

The result of the predicate is true if the specified relationship is true for
each value of at least one row returned by the fullselect.

The result is false if the fullselect returns no rows or if the specified
relationship is false for at least one value of every row returned by the
fullselect.

The result is unknown if the specified relationship is not true for any of the
rows and at least one comparison is unknown because of a null value.

SQL Reference, Volume 1



Quantified predicate

Examples: Use the following tables when referring to the following examples.

TBLAB: TBLXY:

COLA COLB COLX CcoLy
1 12 2 22
2 12 3 23
3 13
4 14
Figure 13.
Example 1

SELECT COLA FROM TBLAB
WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at
least one of these values.

Example 2

SELECT COLA FROM TBLAB
WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater
than at least one of these values.

Example 3

SELECT COLA FROM TBLAB
WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is
greater than both these values.

Example 4

SELECT COLA FROM TBLAB
WHERE COLA > ALL(SELECT COLX FROM TBLXY
WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is
true for all rows in TBLAB.

Example 5

SELECT = FROM TBLAB
WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

Chapter 2. Language elements 231



Quantified predicate

The subselect returns all entries from TBLXY. The predicate is true for the
subselect, hence the result is as follows:

Example 6

SELECT * FROM TBLAB
WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true
for the subselect, hence the result is as follows:

232  SQL Reference, Volume 1



BETWEEN predicate

BETWEEN predicate

»—expression—l_—_l—BETwEEN—expression—AND—expression ><
NOT
The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:
valuel BETWEEN value2 AND value3

is equivalent to the search condition:
valuel >= value2 AND valuel <= value3

The BETWEEN predicate:
valuel NOT BETWEEN value2 AND value3

is equivalent to the search condition:
NOT(valuel BETWEEN value2 AND value3); that is,

valuel < value2 OR valuel > value3.

The first operand (expression) cannot include a function that is variant or has
an external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime
values, all values are converted to the data type of the datetime operand.

Examples:

Example 1
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2
SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above
$40,000.00.

Chapter 2. Language elements 233



EXISTS predicate

EXISTS predicate

»>—EXISTS—(fullselect) ><

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and

* The result is true only if the number of rows specified by the fullselect is
not zero.

* The result is false only if the number of rows specified is zero
* The result cannot be unknown.

Example:
EXISTS (SELECT = FROM TEMPL WHERE SALARY < 10000)

234  SQL Reference, Volume 1



IN predicate

IN predicate
expression]—l_—_l—IN (fullselectl) ><
NOT- ——————
(—X—expression2—1—)—
expression2
(—Y—expression3 ) |_ _| IN—(fullselect2)
NOT:

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the IN keyword (SQLSTATE
428C4). The fullselect may return any number of rows.

* An IN predicate of the form:
expression IN expression

is equivalent to a basic predicate of the form:
expression = expression
* An IN predicate of the form:
expression IN (fullselect)

is equivalent to a quantified predicate of the form:
expression = ANY (fullselect)
* An IN predicate of the form:
expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:
expression <> ALL (fullselect)
* An IN predicate of the form:

expression IN (expressiona, expressionb, ..., expressionk)

is equivalent to:
expression = ANY (fullselect)

where fullselect in the values-clause form is:
VALUES (expressiona), (expressionb), ..., (expressionk)
¢ An IN predicate of the form:

(expressiona, expressionb,..., expressionk) IN (fullselect)

is equivalent to a quantified predicate of the form:

Chapter 2. Language elements 235



IN predicate
(expressiona, expressionb,..., expressionk) = ANY (fullselect)

The values for expression1 and expression2 or the column of fullselect] in the IN
predicate must be compatible. Each expression3 value and its corresponding
column of fullselect? in the IN predicate must be compatible. The rules for
result data types can be used to determine the attributes of the result used in
the comparison.

The values for the expressions in the IN predicate (including corresponding
columns of a fullselect) can have different code pages. If a conversion is
necessary, the code page is determined by applying rules for string
conversions to the IN list first, and then to the predicate, using the derived
code page for the IN list as the second operand.

Examples:

Example 1: The following evaluates to true if the value in the row under
evaluation in the DEPTNO column contains D01, B01, or CO01:

DEPTNO IN ('DO1', 'BO1', 'CO1'")

Example 2: The following evaluates to true only if the EMPNO (employee
number) on the left side matches the EMPNO of an employee in department
E11:

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

Example 3: Given the following information, this example evaluates to true if
the specific value in the row of the COL_1 column matches any of the values
in the list:

Table 15. IN Predicate example

Expressions Type Code Page
COL_1 column 850
HV_2 host variable 437
HV_3 host variable 437
CON_1 constant 850

When evaluating the predicate:
COL_1 IN (:HV 2, :HV 3, CON 4)

the two host variables will be converted to code page 850, based on the rules
for string conversions.

236  SQL Reference, Volume 1



IN predicate

Example 4: The following evaluates to true if the specified year in EMENDATE
(the date an employee activity on a project ended) matches any of the values
specified in the list (the current year or the two previous years):

YEAR (EMENDATE) IN (YEAR(CURRENT DATE),

YEAR(CURRENT DATE - 1 YEAR),
YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left
side match MANAGER and DEPTNUMB respectively for any row of the ORG
table.

(ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

Related reference:

* ['Rules for result data types” on page 134

* ['Rules for string conversions” on page 139

Chapter 2. Language elements 237



LIKE predicate

LIKE predicate

»—match—expression—l_——l—LI KE—pattern-expression >
NOT

|—ESCAPE—escape-express ionJ

The LIKE predicate searches for strings that have a certain pattern. The
pattern is specified by a string in which the underscore and the percent sign
may have special meanings. Trailing blanks in a pattern are part of the
pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The values for match-expression, pattern-expression, and escape-expression are
compatible string expressions. There are slight differences in the types of
string expressions supported for each of the arguments. The valid types of
expressions are listed under the description of each argument.

None of the expressions can yield a distinct type. However, it can be a
function that casts a distinct type to its source type.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.
The expression can be specified by:
* A constant
* A special register
* A host variable (including a locator variable or a file reference variable)
* A scalar function
* A large object locator
* A column name
* An expression concatenating any of the above
pattern-expression
An expression that specifies the string that is to be matched.
The expression can be specified by:
* A constant
* A special register
* A host variable

* A scalar function whose operands are any of the above

238  SQL Reference, Volume 1



LIKE predicate

* An expression concatenating any of the above

with the following restrictions:

* No element in the expression can be of type LONG VARCHAR, CLOB,
LONG VARGRAPHIC, or DBCLOB. In addition it cannot be a BLOB
file reference variable.

* The actual length of pattern-expression cannot be more than 32 672 bytes.

A simple description of the use of the LIKE pattern is that the pattern is
used to specify the conformance criteria for values in the match-expression,
where:

* The underscore character (_) represents any single character.
* The percent sign (%) represents a string of zero or more characters.
* Any other character represents itself.

If the pattern-expression needs to include either the underscore or the
percent character, the escape-expression is used to specify a character to
precede either the underscore or the percent character in the pattern.

A rigorous description of the use of the LIKE pattern follows. Note that
this description ignores the use of the escape-expression; its use is covered
later.

* Let m denote the value of match-expression and let p denote the value of
pattern-expression. The string p is interpreted as a sequence of the
minimum number of substring specifiers so each character of p is part
of exactly one substring specifier. A substring specifier is an underscore,
a percent sign, or any non-empty sequence of characters other than an
underscore or a percent sign.

The result of the predicate is unknown if m or p is the null value.
Otherwise, the result is either true or false. The result is true if m and p
are both empty strings or there exists a partitioning of m into substrings
such that:

— A substring of m is a sequence of zero or more contiguous characters
and each character of m is part of exactly one substring.

— If the nth substring specifier is an underscore, the nth substring of m
is any single character.

— If the nth substring specifier is a percent sign, the nth substring of m
is any sequence of zero or more characters.

— If the nth substring specifier is neither an underscore nor a percent
sign, the nth substring of m is equal to that substring specifier and
has the same length as that substring specifier.

— The number of substrings of m is the same as the number of
substring specifiers.

Chapter 2. Language elements 239



LIKE predicate

Thus, if p is an empty string and m is not an empty string, the result is
false. Similarly, it follows that if m is an empty string and p is not an
empty string (except for a string containing only percent signs), the
result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT
(m LIKE p).

When the escape-expression is specified, the pattern-expression must not
contain the escape character identified by the escape-expression except
when immediately followed by the escape character, the underscore
character or the percent sign character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database then it
can contain mixed data. In this case, the pattern can include both SBCS
and MBCS characters. The special characters in the pattern are interpreted
as follows:

* An SBCS underscore refers to one SBCS character.

* A DBCS underscore refers to one MBCS character.

* A percent (either SBCS or DBCS) refers to a string of zero or more SBCS
or MBCS characters.

escape-expression

This optional argument is an expression that specifies a character to be
used to modify the special meaning of the underscore (_) and percent (%)
characters in the pattern-expression. This allows the LIKE predicate to be
used to match values that contain the actual percent and underscore
characters.

The expression can be specified by any one of:

* a constant

* a special register

* a host variable

* a scalar function whose operands are any of the above

* an expression concatenating any of the above

with the restrictions that:

* No element in the expression can be of type LONG VARCHAR, CLOB,
LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

* The result of the expression must be one SBCS or DBCS character or a
binary string containing exactly 1 byte (SQLSTATE 22019).

240 SQL Reference, Volume 1



LIKE predicate

When escape characters are present in the pattern string, an underscore,
percent sign, or escape character can represent a literal occurrence of itself.
This is true if the character in question is preceded by an odd number of
successive escape characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as
follows:

* Let S be such a sequence, and suppose that S is not part of a larger
sequence of successive escape characters. Suppose also that S contains a
total of n characters. Then the rules governing S depend on the value of
n:

- If nis odd, S must be followed by an underscore or percent sign
(SQLSTATE 22025). S and the character that follows it represent
(n-1)/2 literal occurrences of the escape character followed by a
literal occurrence of the underscore or percent sign.

— If nis even, S represents n/2 literal occurrences of the escape
character. Unlike the case where n is odd, S could end the pattern. If
it does not end the pattern, it can be followed by any character
(except, of course, an escape character, which would violate the
assumption that S is not part of a larger sequence of successive
escape characters). If S is followed by an underscore or percent sign,
that character has its special meaning.

Following is a illustration of the effect of successive occurrences of the
escape character (which, in this case, is the back slash (\) ).

Pattern string Actual Pattern

\% A percent sign
\\% A back slash followed by zero or more arbitrary characters
\\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the
match-expression value.

* The match-expression value is never converted.

* If the code page of pattern-expression is different from the code page of
match-expression, the value of pattern-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

* If the code page of escape-expression is different from the code page of
match-expression, the value of escape-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

Chapter 2. Language elements 241



LIKE predicate

Notes:

The number of trailing blanks is significant in both the match-expression and
the pattern-expression. If the strings are not the same length, the shorter
string is not padded with blank spaces. For example, the expression
"PADDED ' LIKE 'PADDED' would not result in a match.

If the pattern specified in a LIKE predicate is a parameter marker, and a
fixed-length character host variable is used to replace the parameter marker,
the value specified for the host variable must have the correct length. If the
correct length is not specified, the select operation will not return the
intended results.

For example, if the host variable is defined as CHAR(10), and the value
WYSE% is assigned to that host variable, the host variable is padded with
blanks on assignment. The pattern used is:

"WYSE% !

The database manager searches for all values that start with WYSE and that
end with five blank spaces. If you want to search only for values that start
with "WYSE’, assign a value of "WSYE%%%%%%’ to the host variable.

Examples:

Search for the string 'SYSTEMS’ appearing anywhere within the
PROJNAME column in the PROJECT table.

SELECT PROJNAME FROM PROJECT
WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

Search for a string with a first character of ‘J” that is exactly two characters
long in the FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

Search for a string of any length, with a first character of 'J’, in the
FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J%'

In the CORP_SERVERS table, search for a string in the LA_SERVERS
column that matches the value in the CURRENT SERVER special register.

SELECT LA_SERVERS FROM CORP_SERVERS
WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER
Retrieve all strings that begin with the character sequence "%_\" in column
A of table T.
SELECT A FROM T
WHERE T.A LIKE '\%\_\\%' ESCAPE '\'
Use the BLOB scalar function to obtain a one-byte escape character that is
compatible with the match and pattern data types (both BLOBs).

SELECT COLBLOB FROM TABLET
WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X'OE')

242  SQL Reference, Volume 1



NULL predicate

NULL predicate

»>—expression—IS |_ _| NULL- ><
NOT

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the
expression is null, the result is true. If the value is not null, the result is false.
If NOT is specified, the result is reversed.

Examples:
PHONENO IS NULL

SALARY IS NOT NULL

Chapter 2. Language elements 243



TYPE predicate

TYPE predicate

»—expression IS OF (—~ typename ) —><
Lyor J Loty

IS
|_ —l OF DYNAMIC TYPE
|—NOT—|

A TYPE predicate compares the type of an expression with one or more
user-defined structured types.

The dynamic type of an expression involving the dereferencing of a reference
type is the actual type of the referenced row from the target typed table or
view. This may differ from the target type of an expression involving the
reference which is called the static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The
result of the predicate is true if the dynamic type of the expression is a subtype
of one of the structured types specified by typename, otherwise the result is
false. If ONLY precedes any typename the proper subtypes of that type are not
considered.

If typename is not qualified, it is resolved using the SQL path. Each typename
must identify a user-defined type that is in the type hierarchy of the static
type of expression (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an
expression involving a reference type value. The static type for this form of
expression is the target type of the reference.

The syntax IS OF and OF DYNAMIC TYPE are equivalent alternatives for the
TYPE predicate. Similarly, IS NOT OF and NOT OF DYNAMIC TYPE are
equivalent alternatives.

Examples:

A table hierarchy exists with root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table, ACTIVITIES, includes a column
called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE.
The following is a type predicate that evaluates to true when a row
corresponding to WHO_RESPONSIBLE is a manager:

DEREF (WHO RESPONSIBLE) IS OF (MGR)

244  SQL Reference, Volume 1



TYPE predicate

If a table contains a column EMPLOYEE of type EMP, EMPLOYEE may
contain values of type EMP as well as values of its subtypes like MGR. The
following predicate

EMPL IS OF (MGR)
returns true when EMPL is not null and is actually a manager.

Related reference:
« ['DEREF” on page 335|

Chapter 2. Language elements 245



TYPE predicate

246  SQL Reference, Volume 1



Chapter 3. Functions

Functions overview

A function is an operation that is denoted by a function name followed by a
pair of parentheses enclosing the specification of arguments (there may be no
arguments).

Built-in functions are provided with the database manager; they return a single
result value, and are identified as part of the SYSIBM schema. Built-in
functions include column functions (such as AVG), operator functions (such as
“+”), casting functions (such as DECIMAL), and others (such as SUBSTR).

User-defined functions are registered to a database in SYSCAT.ROUTINES
(using the CREATE FUNCTION statement). User-defined functions are never
part of the SYSIBM schema. One such set of functions is provided with the
database manager in a schema called SYSFUN, and another in a schema
called SYSPROC.

Functions are classified as aggregate (column) functions, scalar functions, row
functions, or table functions.

* The argument of an column function is a collection of like values. A column
function returns a single value (possibly null), and can be specified in an
SQL statement wherever an expression can be used.

* The arguments of a scalar function are individual scalar values, which can be
of different types and have different meanings. A scalar function returns a
single value (possibly null), and can be specified in an SQL statement
wherever an expression can be used.

* The argument of a row function is a structured type. A row function returns
a row of built-in data types and can only be specified as a transform
function for a structured type.

* The arguments of a table function are individual scalar values, which can be
of different types and have different meanings. A table function returns a
table to the SQL statement, and can be specified only within the FROM
clause of a SELECT statement.

The function name, combined with the schema, gives the fully qualified name

of a function. The combination of schema, function name, and input
parameters make up a function signature.

© Copyright IBM Corp. 1993 - 2002 247



Functions overview

In some cases, the input parameter type is specified as a specific built-in data
type, and in other cases, it is specified through a general variable like
any-numeric-type. If a particular data type is specified, an exact match will only
occur with the specified data type. If a general variable is used, each of the
data types associated with that variable results in an exact match.

Additional functions may be available, because user-defined functions can be
created in different schemas, using one of the function signatures as a source.

You can also create external functions in your applications.

Related concepts:

* ["Aggregate functions” on page 269

Related reference:

* [[Functions” on page 16§
* ["Subselect” on page 554

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

248  SQL Reference, Volume 1



Functions overview

The following table summarizes information about the supported functions.
The function name, combined with the schema, gives the fully qualified name
of a function. The “Input parameters” column shows the expected data type
for each argument during function invocation. Many of the functions include
variations of the input parameters, allowing either different data types or
different numbers of arguments to be used. The combination of schema,
function name and input parameters makes up a function signature. The
“Returns” column shows the possible data types of values returned by the

function.

Table 16. Supported functions

Function name

Schema

| Description

Input parameters

Returns

ABS or ABSVAL

SYSIBM

| Returns the absolute value of the argumen

t.

Any expression that returns a built-in numeric data type.

Same data type and length
as the argument

SYSFUN | Returns the absolute value of the argument.

SMALLINT SMALLINT
ABS or ABSVAL INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

SYSFUN Returns the arccosine of the argument as an angle expressed in
ACOS radians.

DOUBLE DOUBLE

SYSFUN Returns the ASCII code value of the leftmost character of the argument

as an integer.

ASCII CHAR INTEGER

VARCHAR(4000) INTEGER

CLOB(1M) INTEGER

SYSFUN Returns the arcsine of the argument as an angle, expressed in radians.
ASIN DOUBLE | DOUBLE

SYSFUN Returns the arctangent of the argument as an angle, expressed in
ATAN radians.

DOUBLE | DOUBLE

SYSFUN Returns the arctangent of x and y coordinates, specified by the first and
ATAN?2 second arguments respectively, as an angle, expressed in radians.

DOUBLE, DOUBLE DOUBLE

SYSIBM Returns the hyperbolic arctangent of the argument, where the
ATANH argument is an angle expressed in radians.

DOUBLE | DOUBLE
AVG SYSIBM Returns the average of a set of numbers (column function).

numeric-type *

| numeric-type *

Chapter 3. Functions 249



Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description
Input parameters Returns
SYSIBM Returns a 64 bit integer representation of a number or character string
in the form of an integer constant.
BIGINT numeric-type BIGINT
VARCHAR BIGINT
SYSIBM | Casts from source type to BLOB, with optional length.
BLOB string-type BLOB
string-type, INTEGER BLOB
SYSFUN | Returns the smallest integer greater than or equal to the argument.
SMALLINT SMALLINT
CEIL or CEILING INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
SYSIBM Returns a string representation of the source type.
character-type CHAR
character-type, INTEGER CHAR(integer)
datetime-type CHAR
CHAR datetime-type, keyword * CHAR
SMALLINT CHAR(6)
INTEGER CHAR(11)
BIGINT CHAR(20)
DECIMAL CHAR(2+precision)
DECIMAL, VARCHAR CHAR(2+precision)
CHAR SYSFUN Returns a character string representation of a floating-point number.
DOUBLE | CHAR(4)
SYSFUN Returns the character that has the ASCII code value specified by the
argument. The value of the argument should be between 0 and 255;
CHR otherwise, the return value is null.
INTEGER | CHAR(1)
CLOB SYSIBM | Casts from source type to CLOB, with optional length.
character-type CLOB
character-type, INTEGER CLOB
COALESCE 3 SYSIBM | Returns the first non-null argument in the set of arguments.
any-type, any-union-compatible-type, ... | any-type
SYSIBM | Returns the concatenation of 2 string arguments.
CONCAT or ||
string-type, compatible-string-type | max string-type

250  SQL Reference, Volume 1




Functions overview

Table 16. Supported functions (continued)

Function name

Schema | Description

Input parameters | Returns

CORRELATION or CORR

SYSIBM | Returns the coefficient of correlation of a set of number pairs.

numeric-type, numeric-type | DOUBLE

SYSFUN Returns the cosine of the argument, where the argument is an angle
COS expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns the hyperbolic cosine of the argument, where the argument is
COSH an angle expressed in radians.

DOUBLE | DOUBLE

SYSFUN Returns the cotangent of the argument, where the argument is an angle
COT expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns the count of the number of rows in a set of rows or values
COUNT (column function).

any-builtin-type * | INTEGER

SYSIBM Returns the number of rows or values in a set of rows or values

(column function). Result can be greater than the maximum value of

COUNT_BIG integer.

any-builtin-type * | DECIMAL(31,0)

COVARIANCE or COVAR

SYSIBM | Returns the covariance of a set of number pairs.

numeric-type, numeric-type | DOUBLE
SYSIBM | Returns a date from a single input value.
DATE DATE
DATE TIMESTAMP DATE
DOUBLE DATE
VARCHAR DATE
SYSIBM Returns the day part of a value.
VARCHAR INTEGER
DAY DATE INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns a mixed case character string containing the name of the day
(for example, Friday) for the day portion of the argument based on
what the locale was when db2start was issued.
DAYNAME VARCHAR(26) VARCHAR(100)
DATE VARCHAR(100)
TIMESTAMP VARCHAR(100)

251

Chapter 3. Functions



Functions overview

Table 16. Supported functions (continued)

Function name

Schema | Description

Input parameters

Returns

SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Sunday.
DAYOFWEEK VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Monday.
DAYOFWEEK _ISO VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSFUN Returns the day of the year in the argument as an integer value in the
range 1-366.
DAYOFYEAR VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSIBM Returns an integer representation of a date.
DAYS VARCHAR INTEGER
TIMESTAMP INTEGER
DATE INTEGER
SYSIBM Casts from source type to DBCLOB, with optional length.
DBCLOB graphic-type DBCLOB
graphic-type, INTEGER DBCLOB
SYSIBM Returns the database partition number of the row. The argument is a
DBPARTITIONNUM 3 column name within a table.
any-type INTEGER
SYSIBM Returns decimal representation of a number, with optional precision
and scale.
DECIMAL or DEC numeric-type DECIMAL
numeric-type, INTEGER DECIMAL
numeric-type INTEGER, INTEGER DECIMAL

DECIMAL or DEC

SYSIBM Returns decimal representation of a character string, with optional
precision, scale, and decimal-character.

VARCHAR DECIMAL

VARCHAR, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER, VARCHAR DECIMAL

252

SQL Reference, Volume 1




Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description

Input parameters Returns

SYSIBM Returns a value that is the result of decrypting encrypted data using a
password string.

DECRYPT_BIN VARCHAR FOR BIT DATA VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA, VARCHAR VARCHAR FOR BIT DATA

SYSIBM Returns a value that is the result of decrypting encrypted data using a
password string.

DECRYPT_CHAR VARCHAR FOR BIT DATA VARCHAR

VARCHAR FOR BIT DATA, VARCHAR VARCHAR

SYSFUN Returns the number of degrees converted from the argument in
DEGREES expressed in radians.

DOUBLE DOUBLE

SYSIBM Returns an instance of the target type of the reference type argument.
DEREF REF(any-structured-type) with defined scope any-structured-type (same as

input target type)

SYSFUN Returns the difference between the sounds of the words in the two
argument strings as determined using the SOUNDEX function. A value

DIFFERENCE of 4 means the strings sound the same.

VARCHAR(4000), VARCHAR(4000) | INTEGER
DICITS SYSIBM | Returns the character string representation of a number.

DECIMAL | CHAR

SYSIBM | Returns the comment attribute of a datalink value.
DLCOMMENT

DATALINK | VARCHAR(254)

SYSIBM | Returns the link type attribute of a datalink value.
DLLINKTYPE

DATALINK | VARCHAR(4)

SYSIBM Returns a DATALINK value which has an attribute indicating that the
DLNEWCOPY referenced file has changed.

DATALINK | VARCHAR(254)

SYSIBM Returns a DATALINK value which has an attribute indicating that the
DLPREVIOUSCOPY previous version of the file should be restored.

DATALINK | VARCHAR(254)

SYSIBM Returns a DATALINK value. When the function is on the right hand
side of a SET clause in an UPDATE statement, or is in a VALUES
clause in an INSERT statement, the assignment of the returned value

DLREPLACECONTENT results in replacing the content of a file by another file and then
creating a link to it.

DATALINK | VARCHAR(254)

SYSIBM Returns the complete URL (including access token) from a DATALINK

DLURLCOMPLETE value.
DATALINK | VARCHAR

Chapter 3. Functions 253



Functions overview

Table 16. Supported functions (continued)

Function name

Schema

| Description

Input parameters

| Returns

SYSIBM Returns the data location attribute from a DATALINK value with a
DLURLCOMPLETEONLY link type of URL.
DATALINK | VARCHAR(254)
SYSIBM Returns the complete URL value from a DATALINK value with a link
DLURLCOMPLETEWRITE type of URL.
DATALINK | VARCHAR(254)
SYSIBM Returns the path and file name (including access token) of a datalink
DLURLPATH value.
DATALINK | VARCHAR
SYSIBM Returns the path and file name (without any access token) of a
DLURLPATHONLY datalink value.
DATALINK | VARCHAR
SYSIBM Returns the path and file name necessary to access a file within a given
DLURLPATHWRITE server from a DATALINK value with a linktype of URL.
DATALINK | VARCHAR(254)
SYSIBM | Returns the scheme from the URL attribute of a datalink value.
DLURLSCHEME
DATALINK | VARCHAR
SYSIBM | Returns the server from the URL attribute of a datalink value.
DLURLSERVER
DATALINK | VARCHAR
SYSIBM Builds a datalink value from a data-location argument, link type
argument and optional comment-string argument.
DLVALUE VARCHAR DATALINK
VARCHAR, VARCHAR DATALINK
VARCHAR, VARCHAR, VARCHAR DATALINK
DOUBLE or SYSIBM Returns the floating-point representation of a number.
DOUBLE_PRECISION numeric-type | DOUBLE
SYSFUN Returns the floating-point number corresponding to the character
string representation of a number. Leading and trailing blanks in
DOUBLE argument are ignored.
VARCHAR | DOUBLE
SYSIBM Returns a value that is the result of encrypting a data string
expression.
ENCRYPT VARCHAR VARCHAR FOR BIT DATA

VARCHAR, VARCHAR

VARCHAR FOR BIT DATA

VARCHAR, VARCHAR, VARCHAR

VARCHAR FOR BIT DATA

EVENT_MON_STATE

SYSIBM

Returns the operational state of particular event monitor.

VARCHAR

INTEGER

254

SQL Reference, Volume 1




Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description
Input parameters | Returns
EXP SYSFUN | Returns the exponential function of the argument.
DOUBLE | DOUBLE
FLOAT SYSIBM Same as DOUBLE.
SYSFUN Returns the largest integer less than or equal to the argument.
SMALLINT SMALLINT
FLOOR INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
GETHINT SYSIBM Returns the password hint if one is found.
VARCHAR or CLOB | VARCHAR
SYSIBM Returns a bit data character string that is unique compared to any

GENERATE_UNIQUE

other execution of the same function.

no argument

| CHAR(13) FOR BIT DATA

SYSFUN Returns the information necessary to install an identical routine on
another database server running at the same level and operating
GET_ROUTINE_SAR system.
BLOB(3M), CHAR(2), VARCHAR(257) | BLOB(3M)
SYSIBM Cast from source type to GRAPHIC, with optional length.
GRAPHIC graphic-type GRAPHIC
graphic-type, INTEGER GRAPHIC
SYSIBM Used with grouping-sets and super-groups to indicate sub-total rows
generated by a grouping set (column function). The value returned is:
1 The value of the argument in the returned row is a null
GROUPING value and the row was generated for a grouping set. This
generated row provides a sub-total for a grouping set.
0 otherwise.
any-type | SMALLINT
SYSIBM Returns the partitioning map index (0 to 4095) of the row. The
HASHEDVALUE 3 argument is a column name within a table.
any-type | INTEGER
HEX SYSIBM | Returns the hexadecimal representation of a value.
any-builtin-type | VARCHAR
SYSIBM | Returns the hour part of a value.
VARCHAR INTEGER
HOUR TIME INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER

Chapter 3. Functions 255




Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description
Input parameters | Returns
SYSIBM | Returns the most recently assigned value for an identity column.
IDENTITY_VAL_LOCAL
| DECIMAL
SYSFUN Returns a string where argument3 bytes have been deleted from

argument1 beginning at argument2 and where argument4 has been
inserted into argumentl beginning at argument?2.

INSERT VARCHAR(4000), INTEGER, INTEGER, VARCHAR(4000) | VARCHAR(4000)
CLOB(1IM), INTEGER, INTEGER, CLOB(1M) CLOB(1M)
BLOB(1M), INTEGER, INTEGER, BLOB(1M) BLOB(1M)
SYSIBM Returns the integer representation of a number.

INTEGER or INT numeric-type INTEGER
VARCHAR INTEGER
SYSFUN Returns an integer value representing the number of days from

January 1, 4712 B.C. (the start of the Julian date calendar) to the date
value specified in the argument.

JULIAN_DAY VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSIBM Returns a string in which all the characters have been converted to
lower case characters.
LCASE or LOWER CHAR CHAR
VARCHAR VARCHAR
SYSFUN Returns a string in which all the characters have been converted to

lower case characters. LCASE will only handle characters in the
invariant set. Therefore, LCASE(UCASE(string)) will not necessarily

LCASE return the same result as LCASE(string).
VARCHAR(4000) VARCHAR(4000)
CLOB(1M) CLOB(1M)
SYSFUN Returns a string consisting of the leftmost argument2 bytes in

argumentl.

LEEFT VARCHAR(4000), INTEGER VARCHAR(4000)
CLOB(1M), INTEGER CLOB(1M)
BLOB(1M), INTEGER BLOB(1M)
SYSIBM Returns the length of the operand in bytes (except for double byte

LENGTH string types which return the length in characters).
any-builtin-type | INTEGER

N SYSFUN Returns the natural logarithm of the argument (same as LOG).
DOUBLE | DOUBLE

256  SQL Reference, Volume 1



Table 16. Supported functions (continued)

Functions overview

Function name Schema | Description

Input parameters

Returns

SYSFUN

Returns the starting position of the first occurrence of argumentl within
argument2. If the optional third argument is specified, it indicates the

character position in argument2 at which the search is to begin. If
argumentl is not found within arqument2, the value 0 is returned.

VARCHAR(4000), VARCHAR(4000) INTEGER

LOCATE VARCHAR(4000), VARCHAR(4000), INTEGER INTEGER
CLOB(1M), CLOB(1M) INTEGER
CLOB(1M), CLOB(1M), INTEGER INTEGER
BLOB(1M), BLOB(1M) INTEGER
BLOB(1M), BLOB(1M), INTEGER INTEGER

LOG SYSFUN | Returns the natural logarithm of the argument (same as LN).
DOUBLE | DOUBLE
SYSFUN | Returns the base 10 logarithm of the argument.

HoG1o DOUBLE | DOUBLE
SYSIBM | Returns a long string.

LONG_VARCHAR

character-type

| LONG VARCHAR

LONG._VARGRAPHIC SYSIBM | Casts from source type to LONG_VARGRAPHIC.
graphic-type | LONG VARGRAPHIC
SYSIBM | Returns the characters of the argument with leading blanks removed.
CHAR VARCHAR
LTRIM VARCHAR VARCHAR
GRAPHIC VARGRAPHIC
VARGRAPHIC VARGRAPHIC
SYSFUN | Returns the characters of the argument with leading blanks removed.
LTRIM VARCHAR(4000) VARCHAR(4000)
CLOB(1M) CLOB(1M)
MAX SYSIBM | Returns the maximum value in a set of values (column function).
any-builtin-type ° same as input type
SYSIBM | Returns the microsecond (time-unit) part of a value.
MICROSECOND VARCHAR INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER

Chapter 3. Functions 257



Functions overview

Table 16. Supported functions (continued)

Function name

Schema | Description

Input parameters Returns

SYSFUN Returns an integer value in the range 0 to 86 400 representing the
number of seconds between midnight and time value specified in the
argument.

MIDNIGHT_SECONDS VARCHAR(26) INTEGER
TIME INTEGER
TIMESTAMP INTEGER

MIN SYSIBM | Returns the minimum value in a set of values (column function).
any-builtin-type ° same as input type

SYSIBM | Returns the minute part of a value.

VARCHAR INTEGER

MINUTE TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

SYSFUN Returns the remainder ( modulus) of argument1 divided by argument2.
The result is negative only if argument] is negative.

MOD SMALLINT, SMALLINT SMALLINT

INTEGER, INTEGER INTEGER

BIGINT, BIGINT BIGINT

SYSIBM Returns the month part of a value.

VARCHAR INTEGER

MONTH DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

SYSFUN Returns a mixed case character string containing the name of month
(for example, January) for the month portion of the argument that is a
date or timestamp, based on what the locale was when the database
was started.

MONTHNAME

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

MQDB2 | Publishes data to an MQSeries location.

MQPUBLISH
VARCHAR(4000) | INTEGER
MQDB2 | Returns a message from an MQSeries location.
MQREAD -
string-type | VARCHAR(4000)
MQDB2 Returns a table with messages and message metadata from an
MQREADALL MQSeries location.
See ['MQREADALL” on page 495} |
258  SQL Reference, Volume 1




Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description
Input parameters | Returns
MQDB2 Returns a message from an MQSeries location and removes the
MQRECEIVE message from the associated queue.
string-type | VARCHAR(4000)
MQDB2 Returns a table containing the messages and message metadata from
an MQSeries location and removes the messages from the associated
MQRECEIVEALL
queue.
See ["MQRECEIVEALL” on page 499 |
MQDB2 | Sends data to an MQSeries location.
MQSEND
VARCHAR(4000) | INTEGER
MQDB2 Subscribes to MQSeries messages published on a specific topic.
MQSUBSCRIBE | 8= P P P
string-type | INTEGER
MQDB2 | Unsubscribes to MQSeries messages published on a specific topic.
MQUNSUBSCRIBE
string-type | INTEGER
SYSIBM Returns the product of two arguments as a decimal value. This
function is useful when the sum of the argument precisions is greater
MULTIPLY_ALT than 31.
exact-numeric-type, exact-numeric-type | DECIMAL
SYSIBM Returns NULL if the arguments are equal, else returns the first
NULLIF 3 argument.
any-type >, any-comparable-type® | any-type
POSSTR SYSIBM | Returns the position at which one string is contained in another.
string-type, compatible-string-type | INTEGER
SYSFUN | Returns the value of argument1 to the power of argument2.
INTEGER, INTEGER INTEGER
POWER BIGINT, BIGINT BIGINT
DOUBLE, INTEGER DOUBLE
DOUBLE, DOUBLE DOUBLE
SYSFUN Passes the information necessary to create and define an SQL routine
at the database server.
PUT_ROUTINE_SAR BLOB(3M)
BLOB(3M), VARCHAR(128), INTEGER
SYSFUN Returns an integer value in the range 1 to 4 representing the quarter of
the year for the date specified in the argument.
QUARTER VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER

Chapter 3. Functions 259



Functions overview

Table 16. Supported functions (continued)

Function name Schema | Description

Input parameters | Returns

SYSFUN Returns the number of radians converted from argument which is
RADIANS expressed in degrees.

DOUBLE | DOUBLE

SYSIBM Raises an error in the SQLCA. The sqlstate returned is indicated by
RAISE_ERROR® argument1. The second argument contains any text to be returned.

VARCHAR, VARCHAR | any-type ©

SYSFUN Returns a random floating point value between 0 and 1 using the

argument as the optional seed value.

RAND no argument required DOUBLE

INTEGER DOUBLE
REAL SYSIBM Returns the single-precision floating-point representation of a number.

numeric-type | REAL

SYSIBM Returns a string formatted with XML tags and containing column
REC2XML names and column data.

DECIMAL, VARCHAR, VARCHAR, any-type” | VARCHAR

SYSIBM | Returns quantities used to compute diagnostic statistics.
REGR_AVGX - -

numeric-type, numeric-type | DOUBLE

SYSIBM | Returns quantities used to compute diagnostic statistics.
REGR_AVGY

numeric-type, numeric-type | DOUBLE

SYSIBM Returns the number of non-null number pairs used to fit the regression
REGR_COUNT line.

numeric-type, numeric-type | INTEGER
REGR_INTERCEPT or SYSIBM | Returns the y-intercept of the regression line.
REGR_ICPT numeric-type, numeric-type | DOUBLE

SYSIBM | Returns the coefficient of determination for the regression.
REGR_R2

numeric-type, numeric-type | DOUBLE

SYSIBM | Returns the slope of the line.
REGR_SLOPE - -

numeric-type, numeric-type | DOUBLE

SYSIBM | Returns quantities used to compute diagnostic statistics.
REGR_SXX

numeric-type, numeric-type | DOUBLE

SYSIBM | Returns quantities used to compute diagnostic statistics.
REGR_SXY - -

numeric-type, numeric-type | DOUBLE

SYSIBM | Returns quantities used to compute diagnostic statistics.
REGR_SYY

numeric-type, numeric-type | DOUBLE

260 SQL Reference, Volume 1




Table 16. Supported functions (continued)

Functions overview

Function name

Schema | Description

Input parameters

Returns

SYSFUN Returns a character string composed of argument1 repeated argument2
times.

REPEAT VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

SYSFUN Replaces all occurrences of argument2 in argument1 with argument3.

REPLACE VARCHAR(4000), VARCHAR(4000), VARCHAR(4000) VARCHAR(4000)

CLOB(1IM), CLOB(1M), CLOB(1M) CLOB(1M)

BLOB(1M), BLOB(1M), BLOB(1M) BLOB(1M)

SYSFUN Returns a string consisting of the rightmost argument2 bytes in
argumentl.

RIGHT VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

SYSFUN Returns the first argument rounded to argument2 places right of the
decimal point. If argument2 is negative, argument1 is rounded to the
absolute value of argument2 places to the left of the decimal point.

ROUND INTEGER, INTEGER INTEGER

BIGINT, INTEGER BIGINT

DOUBLE, INTEGER DOUBLE

SYSIBM Returns the characters of the argument with trailing blanks removed.

CHAR VARCHAR

RTRIM VARCHAR VARCHAR

GRAPHIC VARGRAPHIC

VARGRAPHIC VARGRAPHIC

SYSFUN | Returns the characters of the argument with trailing blanks removed.

RTRIM VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

SYSIBM | Returns the second (time-unit) part of a value.

VARCHAR INTEGER

SECOND TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

Chapter 3. Functions 261




Functions overview

Table 16. Supported functions (continued)

Function name

Schema

| Description

Input parameters

Returns

SQLCACHE_SNAPSHOT

SYSFUN Returns an indicator of the sign of the argument. If the argument is
less than zero, -1 is returned. If argument equals zero, 0 is returned. If
argument is greater than zero, 1 is returned.

SIGN SMALLINT SMALLINT
INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
SYSFUN Returns the sine of the argument, where the argument is an angle
SIN expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns the hyperbolic sine of the argument, where the argument is an
SINH angle expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns the small integer representation of a number.
SMALLINT numeric-type SMALLINT

VARCHAR SMALLINT

SYSFUN Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other

SOUNDEX strings. See also DIFFERENCE.

VARCHAR(4000) | CHAR()

SPACE SYSFUN Returns a character string consisting of argument1 blanks.

INTEGER | VARCHAR(4000)

SYSFUN Returns a table of the snapshot of the db2 dynamic SQL statement

cache (table function).

See [[SOLCACHE_SNAPSHOT” on page 544 |

SORT SYSFUN | Returns the square root of the argument.

DOUBLE | DOUBLE

SYSIBM | Returns the standard deviation of a set of numbers (column function).
STDDEV

DOUBLE | DOUBLE

SYSIBM Returns a substring of a string arqument] starting at argument2 for

argument3 characters. If argument3 is not specified, the remainder of the

SUBSTR string is assumed.

string-type, INTEGER string-type

string-type, INTEGER, INTEGER string-type
SUM SYSIBM Returns the sum of a set of numbers (column function).

numeric-type * max-numeric-type *
262  SQL Reference, Volume 1




Functions overview

Table 16. Supported functions (continued)

Function name

Schema

| Description

Input parameters

Returns

TABLE_NAME

SYSIBM Returns an unqualified name of a table or view based on the object
name given in argument] and the optional schema name given in
argument2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

TABLE_SCHEMA

SYSIBM Returns the schema name portion of the two part table or view name
given by the object name in argument1 and the optional schema name
in argument?2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

SYSFUN Returns the tangent of the argument, where the argument is an angle
TAN expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns the hyperbolic tangent of the argument, where the argument is
TANH an angle expressed in radians.

DOUBLE | DOUBLE

SYSIBM Returns a time from a value.

TIME TIME
TIME

TIMESTAMP TIME

VARCHAR TIME

SYSIBM Returns a timestamp from a value or a pair of values.

TIMESTAMP TIMESTAMP

VARCHAR TIMESTAMP
TIMESTAMP VARCHAR, VARCHAR TIMESTAMP

VARCHAR, TIME TIMESTAMP

DATE, VARCHAR TIMESTAMP

DATE, TIME TIMESTAMP

SYSIBM Returns a timestamp from a character string (argumentl) that has been

TIMESTAMP_FORMAT

interpreted using a format template (argument2).

VARCHAR, VARCHAR

TIMESTAMP

TIMESTAMP_ISO

SYSFUN Returns a timestamp value based on a date, time, or timestamp
argument. If the argument is a date, it inserts zero for all the time
elements. If the argument is a time, it inserts the value of CURRENT
DATE for the date elements and zero for the fractional time element.

DATE TIMESTAMP

TIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR(26) TIMESTAMP

263

Chapter 3. Functions




Functions overview

Table 16. Supported functions (continued)

Function name

Schema | Description

Input parameters

Returns

VARGRAPHIC

SYSFUN Returns an estimated number of intervals of type arqument] based on
the difference between two timestamps. The second argument is the
result of subtracting two timestamp types and converting the result to
CHAR. Valid values of interval (argumentl) are:

1 Fractions of a second

2 Seconds

4 Minutes
TIMESTAMPDIFF 8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

INTEGER, CHAR(22) INTEGER

SYSIBM | Returns a character representation of a timestamp.

TO_CHAR Same as VARCHAR_FORMAT. Same as
VARCHAR_FORMAT.

SYSIBM | Returns a timestamp from a character string.

TO_DATE Same as TIMESTAMP_FORMAT. Same as
TIMESTAMP_FORMAT.

SYSIBM Returns a string in which one or more characters may have been
translated into other characters.

CHAR CHAR

VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR VARCHAR

TRANSLATE CHAR, VARCHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR, VARCHAR VARCHAR

GRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC VARGRAPHIC

GRAPHIC, VARGRAPHIC, VARGRAPHIC, GRAPHIC

VARGRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC, VARGRAPHIC

TRUNC or TRUNCATE

SYSFUN

Returns argumentl truncated to argument2 places right of the decimal
point. If argument?2 is negative, argumentl is truncated to the absolute
value of argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER
BIGINT, INTEGER BIGINT
DOUBLE, INTEGER DOUBLE

264 SQL Reference, Volume 1




Table 16. Supported functions (continued)

Functions overview

Function name

Schema | Description

Input parameters

| Returns

SYSIBM Returns the internal data type identifier of the dynamic data type of
5 the argument. Note that the result of this function is not portable
TYPE_ID across databases.
any-structured-type | INTEGER
SYSIBM Returns the unqualified name of the dynamic data type of the
TYPE_NAME 2 argument.

any-structured-type

| VARCHAR(18)

TYPE_SCHEMA 3

SYSIBM

Returns the schema name of the dynamic type of the argument.

any-structured-type

| VARCHAR(128)

SYSIBM Returns a string in which all the characters have been converted to
upper case characters.
UCASE or UPPER CHAR CHAR
VARCHAR VARCHAR
SYSFUN Returns a string in which all the characters have been converted to
UCASE upper case characters.
VARCHAR VARCHAR
VALUE ? SYSIBM Same as COALESCE.
SYSIBM Returns a VARCHAR representation of the first argument. If a second
argument is present, it specifies the length of the result.
VARCHAR character-type VARCHAR
character-type, INTEGER VARCHAR
datetime-type VARCHAR

VARCHAR_FORMAT

SYSIBM

Returns a character representation of a timestamp (argument1)
formatted as indicated by a format template (argument?2).

TIMESTAMP, VARCHAR

VARCHAR

VARCHAR, VARCHAR

VARCHAR

SYSIBM Returns a VARGRAPHIC representation of the first argument. If a
second argument is present, it specifies the length of the result.
VARGRAPHIC graphic-type VARGRAPHIC
graphic-type, INTEGER VARGRAPHIC
VARCHAR VARGRAPHIC
SYSIBM Returns the variance of a set of numbers (column function).
VARIANCE or VAR
DOUBLE DOUBLE
SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-54.
WEEK VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER

Chapter 3. Functions

265



Functions overview

Table 16. Supported functions (continued)

Function name

Schema | Description

Input parameters

Returns

SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-53. The first day of a week is Monday. Week 1 is the
first week of the year to contain a Thursday.

WEEK_ISO VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

SYSIBM Returns the year part of a value.

VARCHAR INTEGER

YEAR DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

on SYSIBM | Adds two numeric operands.

" numeric-type, numeric-type | max numeric-type
Y SYSIBM | Unary plus operator.

’ numeric-type | numeric-type

SYSIBM | Datetime plus operator.

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

" TIMESTAMP, DECIMAL(20,6) TIMESTAMP
" DECIMAL(8,0), DATE DATE
DECIMAL(6,0), TIME TIME

DECIMAL(20,6), TIMESTAMP TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code

datetime-type

“_n

SYSIBM

| Subtracts two numeric operands.

numeric-type, numeric-type

| max numeric-type

u_

SYSIBM

| Unary minus operator.

numeric-type

| numeric-type *

266  SQL Reference, Volume 1




Table 16. Supported functions (continued)

Functions overview

Function name Schema | Description
Input parameters Returns
SYSIBM | Datetime minus operator.
DATE, DATE DECIMAL(8,0)
TIME, TIME DECIMAL(6,0)
TIMESTAMP, TIMESTAMP DECIMAL(20,6)
DATE, VARCHAR DECIMAL(8,0)
TIME, VARCHAR DECIMAL(6,0)
Y TIMESTAMP, VARCHAR DECIMAL(20,6)
- VARCHAR, DATE DECIMAL(8,0)
VARCHAR, TIME DECIMAL(6,0)
VARCHAR, TIMESTAMP DECIMAL(20,6)
DATE, DECIMAL(8,0) DATE
TIME, DECIMAL(6,0) TIME
TIMESTAMP, DECIMAL(20,6) TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code

datetime-type

2

SYSIBM | Multiplies two numeric operands.

numeric-type, numeric-type

| max numeric-type

wp SYSIBM | Divides two numeric operands.

numeric-type, numeric-type | max numeric-type
“| SYSIBM | Same as CONCAT.
Notes

* References to string data types that are not qualified by a length should be assumed to support the maximum

length for the data type

* References to a DECIMAL data type without precision and scale should be assumed to allow any supported

precision and scale.

Chapter 3. Functions 267



Functions overview

Key to Table
any-builtin-type ~ Any data type that is not a distinct type.

any-type Any type defined to the database.
any-structured-type

Any user-defined structured type defined to the database.

any-comparable-type

Any type that is comparable with other argument types as defined in

|comparisons” on page 117

any-union-compatible-type

Any type that is compatible with other argument types as defined in|“Rules for result data|

character-type Any of the character string types: CHAR, VARCHAR, LONG VARCHAR, CLOB.
compatible-string-type

A string type that comes from the same grouping as the other argument (for example, if one
argument is a character-type the other must also be a character-type).

datetime-type Any of the datetime types: DATE, TIME, TIMESTAMP.
exact-numeric-type

Any of the exact numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL

graphic-type Any of the double byte character string types: GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, DBCLOB.

labeled-duration-code

As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or
minus operator, labeled-durations as defined in [‘Labeled durations” on page 195 can be used.
For a source function that does not use the plus or minus operator character as the name, the
following values must be used for the labeled-duration-code argument when invoking the
function.

YEAR or YEARS

MONTH or MONTHS

DAY or DAYS

HOUR or HOURS

MINUTE or MINUTES

SECOND or SECONDS
MICROSECOND or MICROSECONDS

NSO U s WN =

LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.
max-numeric-type The maximum numeric type of the arguments where maximum is defined as the rightmost

numeric-type.

max-string-type  The maximum string type of the arguments where maximum is defined as the rightmost

character-type or graphic-type. If arguments are BLOB, the max-string-type is BLOB.

numeric-type Any of the numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE.
string-type Any type from character type, graphic-type or BLOB.

Table Footnotes
1

When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL,
the result type is DOUBLE.

Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a
sourced function.

This function cannot be used as a source function.

The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, the use
of user-defined structured types, long string types or a DATALINK type is not supported.

The use of user-defined structured types, long string types or a DATALINK type is not supported.

The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a
particular type, will return a type appropriate to its invocation within a CASE expression.

The use of graphic-type, LOB-type, long string types and DATALINK types is not supported.

268

SQL Reference, Volume 1




Aggregate functions

Aggregate functions

The argument of a column function is a set of values derived from an
expression. The expression can include columns, but cannot include a
scalar-fullselect or another column function (SQLSTATE 42607). The scope of
the set is a group or an intermediate result table.

If a GROUP BY clause is specified in a query, and the intermediate result of
the FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then
the column functions are not applied; the result of the query is the empty set;
the SQLCODE is set to +100; and the SQLSTATE is set to '02000’.

If a GROUP BY clause is not specified in a query, and the intermediate result
of the FROM, WHERE, and HAVING clauses is the empty set, then the
column functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of
distinct values of JOBCODE for employees in department DO1:
SELECT COUNT(DISTINCT JOBCODE)

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'DO1'

The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, duplicate values are eliminated. If ALL is
implicitly or explicitly specified, duplicate values are not eliminated.

Expressions can be used in column functions. For example:

SELECT MAX(BONUS + 1000)
INTO :TOP_SALESREP_BONUS
FROM EMPLOYEE
WHERE COMM > 5000

Column functions can be qualified with a schema name (for example,
SYSIBM.COUNT(¥)).

Related concepts:

* [’Queries” on page 16|

Chapter 3. Functions 269



AVG

AVG

270

ALL
»—AVG—(%—expression—) >
DISTINCT-

The schema is SYSIBM.
The AVG function returns the average of a set of numbers.

The argument values must be numbers (built-in types only) and their sum
must be within the range of the data type of the result, except for a decimal
result data type. For decimal results, their sum must be within the range
supported by a decimal data type having a precision of 31 and a scale
identical to the scale of the argument values. The result can be null.

The data type of the result is the same as the data type of the argument
values, except that:

* The result is a large integer if the argument values are small integers.

* The result is double-precision floating point if the argument values are
single-precision floating point.

If the data type of the argument values is decimal with precision p and scale
s, the precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the average value of the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples:

* Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to
the average staffing level (PRSTAFF) of projects in department (DEPTNO)
‘D11,

SELECT AVG(PRSTAFF)
INTO :AVERAGE

FROM PROJECT
WHERE DEPTNO = 'D11'

SQL Reference, Volume 1



AVG

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample
table.

* Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2))
to the average of each unique staffing level value (PRSTAFF) of projects in
department (DEPTNO) 'D11".

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY CALC
FROM PROJECT
WHERE DEPTNO = 'D11'

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the
sample table.

Chapter 3. Functions 271



CORRELATION

CORRELATION

272

»—[CORRELATION (—expressionl—,—expression2—) >
CORR

The schema is SYSIBM.

The CORRELATION function returns the coefficient of correlation of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null. When not null, the result is between —1 and 1.

The function is applied to the set of (expressionl, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expression] or expression2 is null.

If the function is applied to an empty set, or if either STDDEV (expressionl) or
STDDEV (expression2) is equal to zero, the result is a null value. Otherwise, the
result is the correlation coefficient for the value pairs in the set. The result is
equivalent to the following expression:

COVARIANCE (expressionl ,expression2)/

(STDDEV (expressionl) =
STDDEV (expressionZ2))

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:

* Using the EMPLOYEE table, set the host variable CORRLN
(double-precision floating point) to the correlation between salary and
bonus for those employees in department (WORKDEPT) "A00".

SELECT CORRELATION(SALARY, BONUS)
INTO :CORRLN

FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

CORRLN is set to approximately 9.99853953399538E-001 when using the
sample table.

SQL Reference, Volume 1



COUNT

COUNT

|—ALL
»»>—COUNT—( expression ) <
|—DI STINCT—

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows
or values.

The data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows
in the set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT (expression) or COUNT(ALL expression) is a set of
values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of non-null
values in the set, including duplicates.

Examples:
* Using the EMPLOYEE table, set the host variable FEMALE (int) to the
number of rows where the value of the SEX column is "F’.

SELECT COUNT (%)
INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE being set to 13 when using the sample table.

* Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int)
to the number of departments (WORKDEPT) that have at least one female
as a member.

Chapter 3. Functions 273



COUNT

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE_IN_DEPT being set to 5 when using the sample table.
(There is at least one female in departments A00, C01, D11, D21, and E11.)

274  SQL Reference, Volume 1



COUNT_BIG

COUNT_BIG

|—ALL
»»>—COUNT_BIG—( |_ express ionT) <
DISTINCT-

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of
rows or values. It is similar to COUNT except that the result can be greater
than the maximum value of integer.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a decimal with precision 31 and scale 0. The
result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of
rows in the set. A row that includes only NULL values is included in the
count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a
set of values. The function is applied to the set of values derived from the
argument values by the elimination of null values. The result is the number of
non-null values in the set, including duplicates.

Examples:

* Refer to COUNT examples and substitute COUNT_BIG for occurrences of
COUNT. The results are the same except for the data type of the result.

* Some applications may require the use of COUNT but need to support
values larger than the largest integer. This can be achieved by use of
sourced user-defined functions and setting the SQL path. The following
series of statements shows how to create a sourced function to support
COUNT(*) based on COUNT_BIG and returning a decimal value with a
precision of 15. The SQL path is set such that the sourced function based on
COUNT_BIG is used in subsequent statements such as the query shown.

Chapter 3. Functions 275



COUNT_BIG

CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)
SOURCE SYSIBM.COUNT BIG();

SET CURRENT FUNCTION PATH RICK, SYSTEM PATH;

SELECT COUNT(*) FROM EMPLOYEE;

Note how the sourced function is defined with no parameters to support
COUNT(¥). This only works if you name the function COUNT and do not
qualify the function with the schema name when it is used. To get the same
effect as COUNT(*) with a name other than COUNT, invoke the function
with no parameters. Thus, if RICK.COUNT had been defined as
RICK.MYCOUNT instead, the query would have to be written as follows:

SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify
the type of the column. The following statements created a sourced function
that will take any CHAR column as a argument and use COUNT_BIG to
perform the counting.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE

SOURCE SYSIBM.COUNT_BIG(CHAR()):
SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

276  SQL Reference, Volume 1



COVARIANCE

COVARIANCE

COVARIANCE (—expressionl—,—expression2—) ><
CovaR——1

The schema is SYSIBM.

The COVARIANCE function returns the (population) covariance of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of (expression,expression2) pairs derived from
the argument values by the elimination of all pairs for which either expressionl
or expression?2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise,

the result is the covariance of the value pairs in the set. The result is

equivalent to the following;:

1. Let avgexpl be the result of AVG(expressionl) and let avgexp2 be the result
of AVG(expression2).

2. The result of COVARIANCE(expressionl, expression2) is AVG( (expressionl -
avgexpl) * (expression2 - avgexp2 )

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:

* Using the EMPLOYEE table, set the host variable COVARNCE
(double-precision floating point) to the covariance between salary and
bonus for those employees in department (WORKDEPT) "A00".

SELECT COVARIANCE (SALARY, BONUS)
INTO :COVARNCE
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

COVARNCE is set to approximately 1.68888888888889E+006 when using the
sample table.

Chapter 3. Functions 277



GROUPING

GROUPING

»»>—GROUPING— (—expression—) ><

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups, the GROUPING
function returns a value that indicates whether or not a row returned in a
GROUP BY answer set is a row generated by a grouping set that excludes the
column represented by expression.

The argument can be of any type, but must be an item of a GROUP BY
clause.

The result of the function is a small integer. It is set to one of the following
values:

1 The value of expression in the returned row is a null value, and the
row was generated by the super-group. This generated row can be
used to provide sub-total values for the GROUP BY expression.

0 The value is other than the above.
Example:

The following query:

SELECT SALES_DATE, SALES_PERSON,
SUM(SALES) AS UNITS_SOLD,
GROUPING (SALES_DATE) AS DATE_GROUP,
GROUPING (SALES_PERSON) AS SALES_GROUP
FROM SALES
GROUP BY CUBE (SALES_DATE, SALES_PERSON)
ORDER BY SALES_DATE, SALES_PERSON

results in:
SALES_DATE SALES_PERSON  UNITS_SOLD DATE_GROUP SALES_GROUP

12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1

278  SQL Reference, Volume 1



03/31/1996
03/31/1996
03/31/1996
03/31/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996

GOUNOT
LEE
LUCCHESSI

GOUNOT
LEE
LUCCHESSI

GOUNOT
LEE
LUCCHESSI

155

il ol o NoNoNoNo NoNo N o)

GROUPING

H O OO OOOrROOO

An application can recognize a SALES_DATE sub-total row by the fact that

the value of DATE_GROUP is 0 and the value of SALES_ GROUP is 1. A

SALES_PERSON sub-total row can be recognized by the fact that the value of
DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row
can be recognized by the value 1 for both DATE_GROUP and SALES_GROUP.

Related reference:

* [“Subselect” on page 554

Chapter 3. Functions

279



MAX

MAX

ALL
>>—M AX—(A[i—expression—) <
DISTINCT-

The schema is SYSIBM.
The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length and code page of the result are the same as the data
type, length and code page of the argument values. The result is considered to
be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:
* Using the EMPLOYEE table, set the host variable MAX_SALARY
(decimal(7,2)) to the maximum monthly salary (SALARY/12) value.

SELECT MAX(SALARY) / 12
INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.

» Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the
project name (PROJNAME) that comes last in the collating sequence.

SELECT MAX(PROJNAME)
INTO :LAST_PROJ
FROM PROJECT

280 SQL Reference, Volume 1



MAX

Results in LAST_PROJ being set to "'WELD LINE PLANNING” when using
the sample table.

Similar to the previous example, set the host variable LAST_PROJ (char(40))
to the project name that comes last in the collating sequence when a project
name is concatenated with the host variable PROJSUPP. PROJSUPP is
'_Support’; it has a char(8) data type.

SELECT MAX(PROJNAME CONCAT PROJSUPP)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to "'WELD LINE PLANNING_SUPPORT"
when using the sample table.

Chapter 3. Functions 281



MIN

MIN

282

ALL
>>—M IN—(Alii—expression—) <
DISTINCT-

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length, and code page of the result are the same as the data
type, length, and code page of the argument values. The result is considered
to be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If this function is applied to an empty set, the result of the function is a null
value. Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:

* Using the EMPLOYEE table, set the host variable COMM_SPREAD
(decimal(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) 'D11".

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD

FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when
using the sample table.

* Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10))
to the estimated ending date (PRENDATE) of the first project scheduled to
be completed.

SELECT MIN(PRENDATE)

INTO :FIRST_FINISHED
FROM PROJECT

SQL Reference, Volume 1



MIN

Results in FIRST_FINISHED being set to "1982-09-15" when using the
sample table.

Chapter 3. Functions 283



Regression functions

Regression functions

284

»»——REGR_AVGX——————(—expressionl—,—expression2—) >

-REGR_AVGY

—REGR_COUNT
REGR_INTERCEPT

—[REGR_ICPT——I_

| REGR_R2

| REGR_SLOPE

—REGR_SXX

-REGR_SXY

—REGR_SYY

The schema is SYSIBM.

The regression functions support the fitting of an ordinary-least-squares
regression line of the form y = a * x + b to a set of number pairs. The first
element of each pair (expressionl) is interpreted as a value of the dependent
variable (i.e., a "y value”). The second element of each pair (expression2 ) is
interpreted as a value of the independent variable (i.e., an "x value”).

The function REGR_COUNT returns the number of non-null number pairs
used to fit the regression line (see below).

The function REGR_INTERCEPT (the short form is REGR_ICPT) returns the
y-intercept of the regression line ("b” in the above equation)

The function REGR_R2 returns the coefficient of determination (also called
"R-squared” or "goodness-of-fit") for the regression.

The function REGR_SLOPE returns the slope of the line (the parameter "a” in
the above equation).

The functions REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SYY, and
REGR_SXY return quantities that can be used to compute various diagnostic
statistics needed for the evaluation of the quality and statistical validity of the
regression model (see below).

The argument values must be numbers.

The data type of the result of REGR_COUNT is integer. For the remaining
functions, the data type of the result is double-precision floating point. The
result can be null. When not null, the result of REGR_R?2 is between 0 and 1
and the result of both REGR_SXX and REGR_SYY is non-negative.

SQL Reference, Volume 1



Regression functions

Each function is applied to the set of (expressionl, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expressionl or expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT
returns the number of non-null pairs in the set, and the remaining functions
return results that are defined as follows:

REGR_SLOPE (expressionl,expression2) =

COVARIANCE (expressionl ,expression2) /VARIANCE (expression?2)

REGR_INTERCEPT (expressionl, expression2) =

AVG(expressionl) - REGR_SLOPE(expressionl, expression2) * AVG(expressionZ2)

REGR_R2 (expressionl, expression2) =
POWER (CORRELATION (expressionl, expression2), 2) if VARIANCE (expressionl)>0
REGR_R2 (expressionl, expression2) = 1 if VARIANCE(expressionl)=0

)
)

REGR_AVGX(expressionl, expression2 AVG(expression2)

REGR_AVGY (expressionl, expression2) = AVG(expressionl)

REGR_SXX(expressionl, expression2) =
REGR_COUNT (expressionl, expression2) * VARIANCE(expression2)

REGR_SYY (expressionl, expression2) =
REGR_COUNT (expressionl, expression2) * VARIANCE(expressionl)

REGR_SXY (expressionl, expression2) =
REGR_COUNT (expressionl, expression2) * COVARIANCE(expressionl, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the
regression line either has infinite slope or is undefined. In this case, the
functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null
value, and the remaining functions return values as defined above. If the set is
empty, REGR_COUNT returns zero and the remaining functions return a null
value.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

The regression functions are all computed simultaneously during a single pass
through the data. In general, it is more efficient to use the regression functions
to compute the statistics needed for a regression analysis than to perform the
equivalent computations using ordinary column functions such as AVERAGE,
VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can
be computed in terms of the above functions. For example:

Adjusted R2
1-((1-REGR_R2) * (REGR_COUNT - 1) / (REGR_COUNT - 2)))

Chapter 3. Functions 285



Regression functions

286

Standard error
SQRT( (REGR_SYY-
(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2) )

Total sum of squares
REGR_SYY

Regression sum of squares
POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares
(Total sum of squares)-(Regression sum of squares)

t statistic for slope
REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept
REGR_INTERCEPT/((Standard error) *
SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2) /REGR_SXX))

Example:

* Using the EMPLOYEE table, compute an ordinary-least-squares regression
line that expresses the bonus of an employee in department (WORKDEPT)
"A00" as a linear function of the employee’s salary. Set the host variables
SLOPE, ICPT, RSQR (double-precision floating point) to the slope, intercept,
and coefficient of determination of the regression line, respectively. Also set
the host variables AVGSAL and AVGBONUS to the average salary and
average bonus, respectively, of the employees in department "A00’, and set
the host variable CNT (integer) to the number of employees in department
"A00" for whom both salary and bonus data are available. Store the
remaining regression statistics in host variables SXX, SYY, and SXY.

SELECT REGR_SLOPE (BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
REGR_R2 (BONUS,SALARY), REGR_COUNT (BONUS,SALARY),
REGR_AVGX (BONUS, SALARY), REGR_AVGY (BONUS, SALARY),
REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
REGR_SXY (BONUS, SALARY)

INTO :SLOPE, :ICPT,

:RSQR, :CNT,

:AVGSAL, :AVGBONUS,

:SXX, :SYY,

:SXY

FROM EMPLOYEE

WHERE WORKDEPT = 'A0O'

When using the sample table, the host variables are set to the following
approximate values:

SLOPE: +1.71002671916749E-002
ICPT: +1.00871888623260E+002
RSQR: +9.99707928128685E-001
CNT: 3

SQL Reference, Volume 1



Regression functions

AVGSAL: +4.28333333333333E+004
AVGBONUS: +8.33333333333333E+002
SXX: +2.96291666666667E+008

SYY: +8.66666666666667E+004

SXY: +5.06666666666667E+006

Chapter 3. Functions 287



STDDEV

STDDEV

ALL
»—STDDEV—(A[i—expression—) >
DISTINCT-

The schema is SYSIBM.
The STDDEV function returns the standard deviation of a set of numbers.
The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:

* Using the EMPLOYEE table, set the host variable DEV (double-precision
floating point) to the standard deviation of the salaries for those employees
in department (WORKDEPT) "A00".

SELECT STDDEV (SALARY)
INTO :DEV

FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

Results in DEV being set to approximately 9938.00 when using the sample
table.

288  SQL Reference, Volume 1



SUM

SUM

ALL:
»—SUM—(A[i—expression—) ><
DISTINCT-

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum
must be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument
values except that:

* The result is a large integer if the argument values are small integers.

* The result is double-precision floating point if the argument values are
single-precision floating point.

If the data type of the argument values is decimal, the precision of the result
is 31 and the scale is the same as the scale of the argument values. The result
can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are also eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the sum of the values in the set.

Example:
* Using the EMPLOYEE table, set the host variable JOB_BONUS
(decimal(9,2)) to the total bonus (BONUS) paid to clerks (JOB="CLERK").

SELECT SUM(BONUS)
INTO :J0B_BONUS
FROM EMPLOYEE
WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800 when using the sample table.

Chapter 3. Functions 289



VARIANCE

VARIANCE

ALL
VARIANCE (%—express ion—) > <
VAR——I_ DISTINCT-

The schema is SYSIBM.
The VARIANCE function returns the variance of a set of numbers.
The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, redundant
duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Example:

* Using the EMPLOYEE table, set the host variable VARNCE
(double-precision floating point) to the variance of the salaries for those
employees in department (WORKDEPT) "A00".

SELECT VARIANCE (SALARY)
INTO :VARNCE

FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

Results in VARNCE being set to approximately 98763888.88 when using the
sample table.

290 SQL Reference, Volume 1



Scalar functions

Scalar functions

A scalar function can be used wherever an expression can be used. However,
the restrictions that apply to the use of expressions and column functions also
apply when an expression or column function is used within a scalar function.
For example, the argument of a scalar function can be a column function only
if a column function is allowed in the context in which the scalar function is
used.

The restrictions on the use of column functions do not apply to scalar
functions, because a scalar function is applied to a single value rather than to
a set of values.

The result of the following SELECT statement has as many rows as there are
employees in department DO01:
SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)

FROM EMPLOYEE
WHERE WORKDEPT = 'DO1'

Scalar functions can be qualified with a schema name (for example,
SYSIBM.CHAR(123)).

In a Unicode database, all scalar functions that accept a character or graphic
string will accept any string types for which conversion is supported.

Chapter 3. Functions 291



ABS or ABSVAL

ABS or ABSVAL

292

ABS (—expression—) ><
ABSVAL-

The schema is SYSIBM.

This function was first available in FixPak 2 of Version 7.1. The SYSFUN
version of the ABS (or ABSVAL) function continues to be available.

Returns the absolute value of the argument. The argument can be any built-in
numeric data type.

The result has the same data type and length attribute as the argument. The
result can be null; if the argument is null, the result is the null value. If the
argument is the maximum negative value for SMALLINT, INTEGER or
BIGINT, the result is an overflow error.

Example:
ABS (-51234)

returns an INTEGER with a value of 51234.

SQL Reference, Volume 1



ACOS

ACOS

»»>—ACOS—(—expression—) >

The schema is SYSIBM. (The SYSFUN version of the ACOS function continues
to be available.)

Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Example:

Assume that the host variable ACOSINE is a DECIMAL(10,9) host variable
with a value of 0.070737202.
SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1

This statement returns the approximate value 1.49.

Chapter 3. Functions 293



ASCII

ASCII

294

»»—ASCII—(—expression—) ><

The schema is SYSFUN.

Returns the ASCII code value of the leftmost character of the argument as an
integer.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is

1 048 576 bytes. LONG VARCHAR is converted to CLOB for processing by the
function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

SQL Reference, Volume 1



ASIN

ASIN

»»>—ASIN—(—expression—) >

The schema is SYSIBM. (The SYSFUN version of the ASIN function continues
to be available.)

Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 295



ATAN

ATAN

296

»»>—ATAN— (—expression—) ><
The schema is SYSIBM. (The SYSFUN version of the ATAN function continues
to be available.)

Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SQL Reference, Volume 1



ATAN2

ATAN2

»»>—ATAN2— (—expression—,—expression—) ><

The schema is SYSIBM. (The SYSFUN version of the ATAN2 function
continues to be available.)

Returns the arctangent of x and y coordinates as an angle expressed in
radians. The x and y coordinates are specified by the first and second
arguments, respectively.

The first and the second arguments can be of any built-in numeric data type.
Both are converted to a double-precision floating-point number for processing
by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 297



ATANH

ATANH

298

»»>—ATANH— (—expression—) ><

The schema is SYSIBM.

Returns the hyperbolic arctangent of the argument, where the argument is an
angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SQL Reference, Volume 1



BIGINT

BIGINT

»>—BIGINT—( numeric-expression ) <
Echaracter-expressioﬂ

datetime-expression

The schema is SYSIBM.

The BIGINT function returns a 64-bit integer representation of a number,
character string, date, time, or timestamp in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a big integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a big
integer column or variable.

datetime-expression
An expression that is of one of the following data types:
* DATE. The result is a BIGINT value representing the date as yyyymmadd.
* TIME. The result is a BIGINT value representing the time as hhmmss.

* TIMESTAMP. The result is a BIGINT value representing the timestamp
as yyyymmddhhmmss. The microseconds portion of the timestamp value
is not included in the result.

The result of the function is a big integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:
* From ORDERS_HISTORY table, count the number of orders and return the
result as a big integer value.

SELECT BIGINT (COUNT_BIG(*))
FROM ORDERS_HISTORY

Chapter 3. Functions 299



BIGINT

* Using the EMPLOYEE table, select the EMPNO column in big integer form
for further processing in the application.

SELECT BIGINT (EMPNO) FROM EMPLOYEE

* Assume that the column RECEIVED (timestamp) has an internal value
equivalent to "1988-12-22-14.07.21.136421".

BIGINT(RECEIVED)

results in the value 19 881 222 140 721.

* Assume that the column STARTTIME (time) has an internal value
equivalent to "12:03:04".

BIGINT(STARTTIME)

results in the value 120 304.

300 SQL Reference, Volume 1



BLOB

BLOB

»»—BLOB— (—string-expression B ] ) >
,—linteger

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression
A string-expression whose value can be a character string, graphic string, or
a binary string.

integer
An integer value specifying the length attribute of the resulting BLOB
data type. If integer is not specified, the length attribute of the result is the
same as the length of the input, except where the input is graphic. In this
case, the length attribute of the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples

* Given a table with a BLOB column named TOPOGRAPHIC_MAP and a
VARCHAR column named MAP_NAME, locate any maps that contain the
string 'Pellow Island” and return a single binary string with the map name
concatenated in front of the actual map.

SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP

FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE BLOB('%Pellow Island%')

Chapter 3. Functions 301



CEILING or CEIL

CEILING or CEIL

302

CEILING (—expression—) <
CEL L——I_

The schema is SYSIBM. (The SYSFUN version of the CEILING or CEIL
function continues to be available.)

Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. The result of the function
has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data
type of DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or the database is
configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

SQL Reference, Volume 1



CHAR

CHAR

Datetime to Character:

»»>—CHAR—(—datetime-expression |_ ) >
. IS0
USA.
EUR
JIS
LOCAL-

Character to Character:

»»—CHAR—(—character-expression |_ J ) >
,—integer

Integer to Character:

»»>—CHAR—(—integer-expression—) >

Decimal to Character:

»»>—CHAR—(—decimal-expression

) ><

I—,—decimal—character—l

Floating-point to Character:

»»>—CHAR—(—floating-point-expression

) ><

I—,—decimal-character—l

The schema is SYSIBM. The SYSFUN.CHAR(floating-point-expression) signature
continues to be available. In this case, the decimal character is locale sensitive,
and therefore returns either a period or a comma, depending on the locale of
the database server.

The CHAR function returns a fixed-length character string representation of:
* A datetime value, if the first argument is a date, time, or timestamp
* A character string, if the first argument is any type of character string

* An integer number, if the first argument is a SMALLINT, INTEGER, or
BIGINT

* A decimal number, if the first argument is a decimal number

* A double-precision floating-point number, if the first argument is a
DOUBLE or REAL.

Chapter 3. Functions 303



CHAR

The first argument must be of a built-in data type.

Note: The CAST expression can also be used to return a string-expression.

The result of the function is a fixed-length character string. If the first
argument can be null, the result can be null. If the first argument is null, the
result is the null value.

Datetime to Character

datetime-expression
An expression that is one of the following three data types

date

time

The result is the character string representation of the date
in the format specified by the second argument. The
length of the result is 10. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

The result is the character string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

timestamp

The second argument is not applicable and must not be
specified (SQLSTATE 42815). The result is the character
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

Character to Character

character-expression
An expression that returns a value that is CHAR, VARCHAR,
LONG VARCHAR, or CLOB data type.

integer

the length attribute for the resulting fixed length character string.
The value must be between 0 and 254.

If the length of the character-expression is less than the length
attribute of the result, the result is padded with blanks up to the
length of the result. If the length of the character-expression is greater
than the length attribute of the result, truncation is performed. A

304 SQL Reference, Volume 1



CHAR

warning is returned (SQLSTATE 01004) unless the truncated characters
were all blanks and the character-expression was not a long string
(LONG VARCHAR or CLOB).

Integer to Character

integer-expression
An expression that returns a value that is an integer data type
(either SMALLINT, INTEGER or BIGINT).

The result is the character string representation of the argument in the
form of an SQL integer constant. The result consists of n characters
that are the significant digits that represent the value of the argument
with a preceding minus sign if the argument is negative. It is left
justified.

* If the first argument is a small integer:

The length of the result is 6. If the number of characters in the
result is less than 6, then the result is padded on the right with
blanks to length 6.

e If the first argument is a large integer:

The length of the result is 11. If the number of characters in the
result is less than 11, then the result is padded on the right with
blanks to length 11.

* If the first argument is a big integer:

The length of the result is 20. If the number of characters in the
result is less than 20, then the result is padded on the right with
blanks to length 20.

The code page of the string is the code page of the database at the
application server.

Decimal to Character

decimal-expression
An expression that returns a value that is a decimal data type. If a
different precision and scale is desired, the DECIMAL scalar
function can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit
the decimal digits in the result character string. The character
cannot be a digit, plus ("+’), minus (") or blank (SQLSTATE
42815). The default is the period (’.") character.

The result is the fixed-length character-string representation of the

argument. The result includes a decimal character and p digits, where
p is the precision of the decimal-expression with a preceding minus sign

Chapter 3. Functions 305



CHAR

if the argument is negative. The length of the result is 2+p, where p is
the precision of the decimal-expression. This means that a positive value
will always include one trailing blank.

The code page of the string is the code page of the database at the
application server.

Floating-point to Character

floating-point-expression
An expression that returns a value that is a floating-point data
type (DOUBLE or REAL).

decimal-character
Specifies the single-byte character constant that is used to delimit
the decimal digits in the result character string. The character
cannot be a digit, plus (+), minus (-), or blank character
(SQLSTATE 42815). The default is the period (.) character.

The result is the fixed-length character-string representation of the
argument in the form of a floating-point constant. The length of the
result is 24. If the argument is negative, the first character of the result
is a minus sign. Otherwise, the first character is a digit. If the
argument value is zero, the result is 0EQ. Otherwise, the result
includes the smallest number of characters that can represent the
value of the argument such that the mantissa consists of a single digit
other than zero followed by the decimal-character and a sequence of
digits. If the number of characters in the result is less than 24, the
result is padded on the right with blanks to length 24.

The code page of the string is the code page of the database at the
application server.

Examples:

* Assume the column PRSTDATE has an internal value equivalent to
1988-12-25.

CHAR(PRSTDATE, USA)

Results in the value “12/25/1988".

* Assume the column STARTING has an internal value equivalent to 17:12:30,
the host variable HOUR_DUR (decimal(6,0)) is a time duration with a value
of 050000. (that is, 5 hours).

CHAR(STARTING, USA)

Results in the value '5:12 PM’.
CHAR(STARTING + :HOUR_DUR, USA)

306 SQL Reference, Volume 1



CHAR

Results in the value '10:12 PM’.

Assume the column RECEIVED (timestamp) has an internal value
equivalent to the combination of the PRSTDATE and STARTING columns.

CHAR(RECEIVED)

Results in the value “1988-12-25-17.12.30.000000’.

Use the CHAR function to make the type fixed length character and reduce
the length of the displayed results to 10 characters for the LASTNAME
column (defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is
returned.

Use the CHAR function to return the values for EDLEVEL (defined as
smallint) as a fixed length character string.

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value "18 ” (18
followed by four blanks).

Assume that STAFF has a SALARY column defined as decimal with
precision of 9 and scale of 2. The current value is 18357.50 and it is to be
displayed with a comma as the decimal character (18357,50).

CHAR(SALARY, ',")

returns the value ‘00018357,50’.

Assume the same SALARY column subtracted from 20000.25 is to be
displayed with the default decimal character.

CHAR(20000.25 - SALARY)

returns the value -0001642.75’.

Assume a host variable, SEASONS_TICKETS, has an integer data type and
a 10000 value.

CHAR(DECIMAL (:SEASONS_TICKETS,7,2))

Results in the character value "10000.00 ’.

Assume a host variable, DOUBLE_NUM has a double data type and a
value of -987.654321E-35.

CHAR(: DOUBLE_NUM)

Results in the character value of -9.87654321E-33 ’. Because the
result data type is CHAR(24), there are 9 trailing blanks in the result.

Chapter 3. Functions 307



CHAR

Related reference:

* ["Expressions” on page 187|

308 SQL Reference, Volume 1



CHR

CHR

»»>—CHR— (—expression—) >

The schema is SYSFUN.

Returns the character that has the ASCII code value specified by the
argument.

The argument can be either INTEGER or SMALLINT. The value of the
argument should be between 0 and 255; otherwise, the return value is null.

The result of the function is CHAR(1). The result can be null; if the argument
is null, the result is the null value.

Chapter 3. Functions 309



CLOB

CLOB

»»—CLOB— (—character-string-expression |_ J ) >
,—integer:

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type.

character-string-expression
An expression that returns a value that is a character string.

integer
An integer value specifying the length attribute of the resulting CLOB
data type. The value must be between 0 and 2 147 483 647. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a CLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

310 SQL Reference, Volume 1



COALESCE

COALESCE

(1)
»»—COALESCE (—expression—Y—,—expression ) ><

Notes:
1 VALUE is a synonym for COALESCE.

The schema is SYSIBM.
COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be
null only if all the arguments can be null, and the result is null only if all the
arguments are null. The selected argument is converted, if necessary, to the
attributes of the result.

The arguments must be compatible. They can be of either a built-in or
user-defined data type. (This function cannot be used as a source function
when creating a user-defined function. Because this function accepts any
compatible data types as arguments, it is not necessary to create additional
signatures to support user-defined distinct types.)

Examples:

* When selecting all the values from all the rows in the DEPARTMENT table,
if the department manager (MGRNO) is missing (that is, null), then return a
value of "ABSENT".

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
FROM DEPARTMENT

* When selecting the employee number (EMPNO) and salary (SALARY) from
all the rows in the EMPLOYEE table, if the salary is missing (that is, null),
then return a value of zero.

SELECT EMPNO, COALESCE(SALARY, 0)
FROM EMPLOYEE

Related reference:

* ['Rules for result data types” on page 134

Chapter 3. Functions 311



CONCAT

CONCAT

(1)

»>—CONCAT- (—expressionl—,—expression2—) ><
Notes:
1 I | may be used as a synonym for CONCAT.

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must
be compatible types.

The result of the function is a string. Its length is the sum of the lengths of the
two arguments. If either argument can be null, the result can be null; if the

argument is null, the result is the null value.

Related reference:

* [“Expressions” on page 187

312 SQL Reference, Volume 1



COS

COS

»»>—C0S—(—expression—) >

The schema is SYSIBM. (The SYSFUN version of the COS function continues
to be available.)

Returns the cosine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 313



COSH

COSH

314

»»—COSH— (—expression—)

The schema is SYSIBM.

Returns the hyperbolic cosine of the argument, where the argument is an
angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SQL Reference, Volume 1



CoT

COoT

»»>—COT—(—expression—) >

The schema is SYSIBM. (The SYSFUN version of the COT function continues
to be available.)

Returns the cotangent of the argument, where the argument is an angle
expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 315



DATE

DATE

»»>—DATE— (—expression—) ><

The schema is SYSIBM.
The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or
equal to 3 652 059, a valid string representation of a date or timestamp, or a
string of length 7 that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG
VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string
representation of a date or a timestamp.

If the argument is a string of length 7, it must represent a valid date in the
form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

* If the argument is a date, timestamp, or valid string representation of a date
or timestamp:

— The result is the date part of the value.
* If the argument is a number:

— The result is the date that is n-1 days after January 1, 0001, where 7 is
the integral part of the number.

* If the argument is a string with a length of 7:
— The result is the date represented by the string.

Examples:

Assume that the column RECEIVED (timestamp) has an internal value
equivalent to “1988-12-25-17.12.30.000000’.

* This example results in an internal representation of ‘1988-12-25".
DATE (RECEIVED)

* This example results in an internal representation of ‘1988-12-25".
DATE('1988-12-25")

* This example results in an internal representation of ‘1988-12-25".

316 SQL Reference, Volume 1



DATE

DATE('25.12.1988")
* This example results in an internal representation of ‘0001-02-04".
DATE (35)

Chapter 3. Functions 317



DAY

DAY

318

»»>—DAY— (—expression—) ><

The schema is SYSIBM.
The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration,
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

* If the argument is a date, timestamp, or valid string representation of a date
or timestamp:
— The result is the day part of the value, which is an integer between 1
and 31.
* If the argument is a date duration or timestamp duration:

— The result is the day part of the value, which is an integer between —99
and 99. A nonzero result has the same sign as the argument.

Examples:

* Using the PROJECT table, set the host variable END_DAY (smallint) to the
day that the WELD LINE PLANNING project (PROJNAME) is scheduled to
stop (PRENDATE).

SELECT DAY (PRENDATE)
INTO :END_DAY

FROM PROJECT
WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15 when using the sample table.

* Assume that the column DATE1 (date) has an internal value equivalent to
2000-03-15 and the column DATE2 (date) has an internal value equivalent
to 1999-12-31.

DAY (DATEL - DATE2)

Results in the value 15.

SQL Reference, Volume 1



DAYNAME

DAYNAME

»»>—DAYNAME— (—expression—)

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (e.g.

Friday) for the day portion of the argument based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

Chapter 3. Functions

319



DAYOFWEEK

DAYOFWEEK

»»>—DAYOFWEEK— (—expression—) ><
Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG

VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

320 SQL Reference, Volume 1



DAYOFWEEK_ISO

DAYOFWEEK_ISO

»»—DAYOFWEEK_ISO—(—expression—) >

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Monday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG

VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Chapter 3. Functions 321



DAYOFYEAR

DAYOFYEAR

»»>—DAYOFYEAR— (—expression—) ><

The schema is SYSFUN.

Returns the day of the year in the argument as an integer value in the range
1-366.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

322  SQL Reference, Volume 1



DAYS

DAYS

»»>—DAYS—(—expression—) >

The schema is SYSIBM.
The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D,
where D is the date that would occur if the DATE function were applied to
the argument.

Examples:

* Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to
the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000".

SELECT DAYS (PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS

FROM PROJECT
WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396.

* Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the
sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21".

SELECT SUM(DAYS (PRENDATE) — DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584 when using the sample table.

Chapter 3. Functions 323



DBCLOB

DBCLOB

»»—DBCLOB—(—graphic-expression C ] ) >
,—integer

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string
type.
graphic-expression

An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting DBCLOB
data type. The value must be between 0 and 1 073 741 823. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a DBCLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

324  SQL Reference, Volume 1



DBPARTITIONNUM

DBPARTITIONNUM

»»>—DBPARTITIONNUM— (—co Lumn-name—) >

The schema is SYSIBM.

The DBPARTITIONNUM function returns the partition number of the row.
For example, if used in a SELECT clause, it returns the partition number for
each row of the table that was used to form the result of the SELECT
statement.

The partition number returned on transition variables and tables is derived
from the current transition values of the partitioning key columns. For
example, in a before insert trigger, the function will return the projected
partition number given the current values of the new transition variables.
However, the values of the partitioning key columns may be modified by a
subsequent before insert trigger. Thus, the final partition number of the row
when it is inserted into the database may differ from the projected value.

The argument must be the qualified or unqualified name of a column in a
table. The column can have any data type. (This function cannot be used as a
source function when creating a user-defined function. Because it accepts any
data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.) If column-name references a column in a
view, the expression in the view for the column must reference a column of
the underlying base table, and the view must be deletable. A nested or
common table expression follows the same rules as a view.

The specific row (and table) for which the partition number is returned by the
DBPARTITIONNUM function is determined from the context of the SQL
statement that uses the function.

The data type of the result is INTEGER and is never null. Since row-level
information is returned, the results are the same, regardless of which column
is specified for the table. If there is no db2nodes.cfg file, the result is 0.

The DBPARTITIONNUM function cannot be used on replicated tables, within
check constraints, or in the definition of generated columns (SQLSTATE

42881).

For compatibility with versions earlier than Version 8, the keyword
NODENUMBER can be substituted for DBPARTITIONNUM.

Examples:

Chapter 3. Functions 325



DBPARTITIONNUM

¢ Count the number of rows where the row for an EMPLOYEE is on a

different partition from the employee’s department description in
DEPARTMENT.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPTNO=E.WORKDEPT
AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

e Join the EMPLOYEE and DEPARTMENT tables where the rows of the two
tables are on the same partition.

SELECT » FROM DEPARTMENT D, EMPLOYEE E
WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

* Log the employee number and the projected partition number of the new
row into a table called EMPINSERTLOGI for any insertion of employees by
creating a before trigger on the table EMPLOYEE.

CREATE TRIGGER EMPINSLOGTRIGI

BEFORE INSERT ON EMPLOYEE

REFERENCING NEW AW NEWTABLE

FOR EACH ROW MODE DB2SQL

INSERT INTO EMPINSERTLOGI

VALUES (NEWTABLE.EMPNO, DBPARTITIONNUM
(NEWTABLE.EMPNO) )

Related reference:
* “CREATE VIEW statement” in the SQL Reference, Volume 2

326 SQL Reference, Volume 1



DECIMAL

DECIMAL

Numeric to Decimal:

»—EDECIMAL (—numeric-expression

DEC

l—,—precision—integer

I )

|—,—sca1e-1‘ntegerJ

Character to Decimal:

DECIMAL (—character-expression
pEc—

l—,—precision-integer

I—,—sca]e—integer‘ |_ J l
,—decimal-character

Datetime to Decimal:

DECIMAL (—datetime-expression
pEc—

l—,—precision—integer

| )

l—,—sca] e—1'nteger‘—|

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of:

A number

A character string representation of a decimal number

A character string representation of an integer number

A character string representation of a floating-point number

A datetime value if the argument is a date, time, or timestamp

The result of the function is a decimal number with precision p and scale s,
where p and s are the second and third arguments, respectively. If the first
argument can be null, the result can be null; if the first argument is null, the
result is the null value.

Numeric to Decimal

Chapter 3. Functions 327



DECIMAL

numeric-expression
An expression that returns a value of any numeric data type.

precision-integer
An integer constant with a value in the range of 1 to 31.

The default for precision-integer depends on the data type of
numeric-expression:

¢ 15 for floating-point and decimal
* 19 for big integer
11 for large integer

* 5 for small integer.

scale-integer
An integer constant in the range of 0 to the precision-integer value.
The default is zero.

The result is the same number that would occur if the first argument
were assigned to a decimal column or variable with precision p and
scale s, where p and s are the second and third arguments,
respectively. An error occurs if the number of significant decimal
digits required to represent the whole part of the number is greater
than p-s.

Character to Decimal

character-expression
An expression that returns a value that is a character string with a
length not greater than the maximum length of a character
constant (4 000 bytes). It cannot have a CLOB or LONG
VARCHAR data type. Leading and trailing blanks are eliminated
from the string. The resulting substring must conform to the rules
for forming an SQL integer or decimal constant (SQLSTATE
22018).

The character-expression is converted to the database code page if
required to match the code page of the constant decimal-character.

precision-integer
An integer constant with a value in the range 1 to 31 that specifies
the precision of the result. If not specified, the default is 15.

scale-integer
An integer constant with a value in the range 0 to precision-integer
that specifies the scale of the result. If not specified, the default is
0.

decimal-character
Specifies the single-byte character constant used to delimit the

328 SQL Reference, Volume 1



DECIMAL

decimal digits in character-expression from the whole part of the
number. The character cannot be a digit, plus (+), minus (=), or
blank, and it can appear at most once in character-expression
(SQLSTATE 42815).

The result is a decimal number with precision p and scale s, where p
and s are the second and third arguments, respectively. Digits are
truncated from the end of the decimal number if the number of digits
to the right of the decimal character is greater than the scale. An error
occurs if the number of significant digits to the left of the decimal
character (the whole part of the number) in character-expression is
greater than p—s (SQLSTATE 22003). The default decimal character is
not valid in the substring if a different value for the decimal-character
argument is specified (SQLSTATE 22018).

Datetime to Decimal

datetime-expression
An expression that is of one of the following data types:

e DATE. The result is a DECIMAL(8,0) value representing the
date as yyyymmadd.

e TIME. The result is a DECIMAL(6,0) value representing the
time as hhimmss.

* TIMESTAMP. The result is a DECIMAL(20,6) value representing
the timestamp as yyyymmddhhmmss.nnnnnn.

This function allows the user to specify a precision, or a precision and
a scale. However, a scale cannot be specified without specifying a
precision. The default value for (precision,scale) is (8,0) for DATE,
(6,0) for TIME, and (20,6) for TIMESTAMP.

The result is a decimal number with precision p and scale s, where p
and s are the second and third arguments, respectively. Digits are
truncated from the end if the number of digits to the right of the
decimal character is greater than the scale. An error occurs if the
number of significant digits to the left of the decimal character (the
whole part of the number) in datetime-expression is greater than p—s
(SQLSTATE 22003).

Examples:

* Use the DECIMAL function in order to force a DECIMAL data type (with a
precision of 5 and a scale of 2) to be returned in a select-list for the
EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The
EMPNO column should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

Chapter 3. Functions 329



DECIMAL

Assume the host variable PERIOD is of type INTEGER. Then, in order to
use its value as a date duration it must be "cast” as decimal(8,0).

SELECT PRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

Assume that updates to the SALARY column are input through a window
as a character string using comma as a decimal character (for example, the
user inputs 21400,50). Once validated by the application, it is assigned to
the host variable newsalary which is defined as CHAR(10).

UPDATE STAFF
SET SALARY = DECIMAL(:newsalary, 9, 2, ',")
WHERE ID = :empid;

The value of newsalary becomes 21400.50.
Add the default decimal character (.) to a value.
DECIMAL('21400,50', 9, 2, '.')

This fails because a period (.) is specified as the decimal character, but a
comma (,) appears in the first argument as a delimiter.

Assume that the column STARTING (time) has an internal value equivalent
to 12:10:00".
DECIMAL (STARTING)

results in the value 121 000.

Assume that the column RECEIVED (timestamp) has an internal value
equivalent to "1988-12-22-14.07.21.136421".

DECIMAL (RECEIVED)

results in the value 19 881 222 140 721.136421.

The following table shows the decimal result and resulting precision and
scale for various datetime input values.

DECIMAL(arguments) Precision and Result
Scale
DECIMAL(2000-03-21) (8,0) 20000321
DECIMAL(2000-03-21, 10) (10,0) 20000321
DECIMAL(2000-03-21, 12, 2) (12,2) 20000321.00
DECIMAL(12:02:21) (6,0) 120221
DECIMAL(12:02:21, 10) (10,0) 120221
DECIMAL(12:02:21, 10, 2) (10,2) 120221.00
DECIMAL(2000-03-21- (20, 6) 20000321120221.123456

12.02.21.123456)

330 SQL Reference, Volume 1



DECIMAL(arguments)

Precision and
Scale

DECIMAL

Result

DECIMAL(2000-03-21-
12.02.21.123456, 23)

(23, 6)

20000321120221.123456

DECIMAL(2000-03-21-
12.02.21.123456, 23, 4)

(23, 4)

20000321120221.1234

Chapter 3. Functions

331



DECRYPT_BIN and DECRYPT_CHAR

DECRYPT_BIN and DECRYPT_CHAR

332

»><
<

DECRYPT_BIN—_I—(—encrypted—dutG
R

DECRYPT_CHA |—,—password-string-expressionJ

The schema is SYSIBM.

The DECRYPT_BIN and DECRYPT_CHAR functions both return a value that
is the result of decrypting encrypted-data. The password used for decryption is
either the password-string-expression value or the ENCRYPTION PASSWORD
value assigned by the SET ENCRYPTION PASSWORD statement. The
DECRYPT_BIN and DECRYPT_CHAR functions can only decrypt values that
are encrypted using the ENCRYPT function (SQLSTATE 428FE).

encrypted-data
An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR
BIT DATA value as a complete, encrypted data string. The data string
must have been encrypted using the ENCRYPT function.

password-string-expression
An expression that returns a CHAR or VARCHAR value with at least 6
bytes and no more than 127 bytes (SQLSTATE 428FC). This expression
must be the same password used to encrypt the data or decryption will
result in an error (SQLSTATE 428FD). If the value of the password
argument is null or not provided, the data will be encrypted using the
ENCRYPTION PASSWORD value, which must have been set for the
session (SQLSTATE 51039).

The result of the DECRYPT_BIN function is VARCHAR FOR BIT DATA. The
result of the DECRYPT_CHAR function is VARCHAR. If the encrypted-data
included a hint, the hint is not returned by the function. The length attribute
of the result is the length of the data type of the encrypted-data minus 8 bytes.
The actual length of the value returned by the function will match the length
of the original string that was encrypted. If the encrypted-data includes bytes
beyond the encrypted string, these bytes are not returned by the function.

If the first argument can be null, the result can be null. If the first argument is
null, the result is the null value.

If the data is decrypted on a different system that uses a code page different
from the code page in which the data was encrypted, then expansion may
occur when converting the decrypted value to the database code page. In such
situations, the encrypted-data value should be cast to a VARCHAR string with
a larger number of bytes.

Examples:

SQL Reference, Volume 1



DECRYPT_BIN and DECRYPT_CHAR

Example 1: This example uses the ENCRYPTION PASSWORD value to hold
the encryption password.

SET ENCRYPTION PASSWORD = 'Benl23';
INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832');
SELECT DECRYPT_CHAR(SSN)

FROM EMP;

This returns the value "289-46-8832’.

Example 2: This example explicitly passes the encryption password.

INSERT INTO EMP (SSN) VALUES ENCRYPT('289-46-8832','Benl23','');
SELECT DECRYPT(SSN, 'Benl123"')
FROM EMP;

This example returns the value '289-46-8832".

Related reference:

* “SET ENCRYPTION PASSWORD statement” in the SQL Reference, Volume 2
« ["ENCRYPT” on page 359

« ["GETHINT” on page 366|

Chapter 3. Functions 333



DEGREES

DEGREES

»»—DEGREES— (—expression—) ><

The schema is SYSFUN.

Returns the number of degrees converted from the argument expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

334  SQL Reference, Volume 1



DEREF

DEREF

»»>—DEREF— (—expression—) >

The DEREF function returns an instance of the target type of the argument.

The argument can be any value with a reference data type that has a defined
scope (SQLSTATE 428DT).

The static data type of the result is the target type of the argument. The
dynamic data type of the result is a subtype of the target type of the
argument. The result can be null. The result is the null value if expression is a
null value or if expression is a reference that has no matching OID in the target
table.

The result is an instance of the subtype of the target type of the reference. The
result is determined by finding the row of the target table or target view of
the reference that has an object identifier that matches the reference value. The
type of this row determines the dynamic type of the result. Since the type of
the result can be based on a row of a subtable or subview of the target table
or target view, the authorization ID of the statement must have SELECT
privilege on the target table and all of its subtables or the target view and all
of its subviews (SQLSTATE 42501).

Examples:

Assume that EMPLOYEE is a table of type EMP, and that its object identifier
column is named EMPID. Then the following query returns an object of type
EMP (or one of its subtypes), for each row of the EMPLOYEE table (and its
subtables). This query requires SELECT privilege on EMPLOYEE and all its
subtables.

SELECT DEREF(EMPID) FROM EMPLOYEE

Related reference:
« ['TYPE_NAME” on page 481]

Chapter 3. Functions 335



DIFFERENCE

DIFFERENCE

»»—DIFFERENCE— (—expression—,—expression—) >

The schema is SYSFUN.

Returns a value from 0 to 4 representing the difference between the sounds of
two strings based on applying the SOUNDEX function to the strings. A value
of 4 is the best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR
up to 4 000 bytes.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:

VALUES (DIFFERENCE('CONSTRAINT','CONSTANT'),SOUNDEX ('CONSTRAINT'),
SOUNDEX (' CONSTANT')) ,

(DIFFERENCE (' CONSTRAINT', 'CONTRITE'),SOUNDEX('CONSTRAINT'),
SOUNDEX (' CONTRITE"))

This example returns the following.

4 (523 C523
2 €523 C536

In the first row, the words have the same result from SOUNDEX while in the
second row the words have only some similarity.

336  SQL Reference, Volume 1



DIGITS

DIGITS

»»>—DIGITS—(—expression—) >

The schema is SYSIBM.
The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,
INTEGER, BIGINT or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal character. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the
string is:

* 5 if the argument is a small integer

¢ 10 if the argument is a large integer

* 19 if the argument is a big integer

* p if the argument is a decimal number with a precision of p.

Examples:

¢ Assume that a table called TABLEX contains an INTEGER column called
INTCOL containing 10-digit numbers. List all distinct four digit
combinations of the first four digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

* Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of
its values is -6.28. Then, for this value:

DIGITS (COLUMNX)
returns the value '000628'".
The result is a string of length six (the precision of the column) with

leading zeros padding the string out to this length. Neither sign nor
decimal point appear in the result.

Chapter 3. Functions 337



DLCOMMENT

DLCOMMENT

»»>—DLCOMMENT— (—datal ink-expression—) ><

The schema is SYSIBM.

The DLCOMMENT function returns the comment value, if it exists, from a
DATALINK value.

The argument must be an expression that results in a value with data type of
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:

* Prepare a statement to select the date, the description, and the comment

(from the link in the ARTICLES column) from the HOCKEY_GOALS table.
The rows to be selected are those for goals scored by either of the Richard
brothers (Maurice or Henri).

stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT (ARTICLES)
FROM HOCKEY_GOALS
WHERE BY_PLAYER = 'Maurice Richard'
OR BY_PLAYER = 'Henri Richard' ";

EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b', 'URL',"'A comment')

then the following function operating on that value:
DLCOMMENT (COLA)

will return the value:
A comment

338 SQL Reference, Volume 1



DLLINKTYPE

DLLINKTYPE

»»>—DLLINKTYPE—(—datalink-expression—) >

The schema is SYSIBM.

The DLLINKTYPE function returns the linktype value from a DATALINK
value.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(4). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:

* Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL',"'a comment')

then the following function operating on that value:
DLLINKTYPE(COLA)

will return the value:
URL

Chapter 3. Functions 339



DLNEWCOPY

DLNEWCOPY

»>—DLNEWCOPY—(—data-location—,—has-token—) ><

The schema is SYSIBM.

The DLNEWCOPY function returns a DATALINK value which has an
attribute indicating that the referenced file has changed. If such a value is
assigned to a DATALINK column as a result of an SQL UPDATE statement,
DB?2 is notified that an update to the linked file has completed. If the
DATALINK column is defined with RECOVERY YES, the new version of the
linked file is archived asynchronously. If such a value is assigned to a
DATALINK column as a result of an SQL INSERT statement, an error
(SQLSTATE 428D1) is returned.

data-location
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value. The value may have been
obtained earlier by a SELECT statement through the
DLURLCOMPLETEWRITE function.

has-token
An INTEGER value that indicates whether the data location contains a
write token.

0 The data location does not contain a write token.

1 The data location contains a write token.

An error occurs if the value is neither 0 nor 1 (SQLSTATE 42815), or the
token embedded in the data location is not valid (SQLSTATE 428D1).

The result of the function is a DATALINK value without the write token.
Neither data-location nor has-token can be null.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be in the data
location to complete the SQL UPDATE statement (SQLSTATE 428D1). On the
other hand, for WRITE PERMISSION ADMIN NOT REQUIRING TOKEN
FOR UPDATE, the write token is not required, but is allowed in the data
location.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be the same as the
one used to open the specified file, if it was opened (SQLSTATE 428D1).

340 SQL Reference, Volume 1



DLNEWCOPY

For any WRITE PERMISSION ADMIN column, even if the write token has
expired, the token is still considered valid as long as the same token is used to
open the specified file for write access.

In a case where no file update has taken place, or the DATALINK file is
linked with other options, such as WRITE PERMISSION BLOCKED/FS or NO
LINK CONTROL, this function will behave like DLVALUE.

Examples:

* Given a DATALINK value that was inserted into column COLA (defined
with WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE) in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL',"'a comment")

Use the scalar function DLURLCOMPLETEWRITE to fetch the value:

SELECT DLURLCOMPLETEWRITE (COLA)
FROM TBLA
WHERE ...

It returns:
HTTP://DLFS.ALMADEN. IBM.COM/X/y/*%* %%k kkkssxkkx*3a.b

where #***xxxxxxxxxxx% represents the write token.

Use the above value to locate and update the content of the file. Issue the
following SQL UPDATE statement to indicate that the file has been
successfully changed:

UPDATE TBLA
SET COLA = DLNEWCOPY('http://d1fs.almaden.ibm.com/x/y/#%xxxuxss

wkxxkxxRzaLh', 1)

WHERE ...

where #**xxxxxxxxxxxx* represents the same write token used to modify
the file referenced by the URL value. Note that if COLA is defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE,
the write token is not required in the above example.

* The value of the second argument (has-foken) can be substituted by the
following CASE statement. Assume the URL value is contained in a
variable named url_file. Issue the following SQL UPDATE statement to
indicate that the file has been successfully changed:

EXEC SQL UPDATE TBLA
SET COLA = DLNEWCOPY(:url_file,

(CASE
WHEN LENGTH(:url_file) = LENGTH(DLURLCOMPLETEONLY (COLA))

Chapter 3. Functions 341



DLNEWCOPY

THEN 0

ELSE 1

END))
WHERE ...

342 SQL Reference, Volume 1



DLPREVIOUSCOPY

DLPREVIOUSCOPY

»>—DLPREVIOUSCOPY— (—data-location—,—has-token—) >

The schema is SYSIBM.

The DLPREVIOUSCOPY function returns a DATALINK value which has an
attribute indicating that the previous version of the file should be restored. If
such a value is assigned to a DATALINK column as a result of an SQL
UPDATE statement, it triggers DB2 to restore the linked file from the
previously committed version. If such a value is assigned to a DATALINK
column as a result of an SQL INSERT statement, an error (SQLSTATE 428D1)
is returned.

data-location
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value. The value may have been
obtained earlier by a SELECT statement through the
DLURLCOMPLETEWRITE function.

has-token
An INTEGER value that indicates whether the data location contains a
write token.

0 The data location does not contain a write token.

1 The data location contains a write token.

An error occurs if the value is neither 0 nor 1 (SQLSTATE 42815), or the
token embedded in the data location is not valid (SQLSTATE 428D1).

The result of the function is a DATALINK value without the write token.
Neither data-location nor has-token can be null.

For a DATALINK column defined with WRITE PERMISSION ADMIN
REQUIRING TOKEN FOR UPDATE, the write token must be in the data
location to complete the SQL UPDATE statement (SQLSTATE 428D1). On the
other hand, for WRITE PERMISSION ADMIN NOT REQUIRING TOKEN
FOR UPDATE, the write token is not required, but is allowed in the data
location.

For a DATALINK column defined with WRITE PERMISSION ADMIN

REQUIRING TOKEN FOR UPDATE, the write token must be the same as the
one used to open the specified file, if it was opened (SQLSTATE 428D1).

Chapter 3. Functions 343



DLPREVIOUSCOPY

344

For any WRITE PERMISSION ADMIN column, even if the write token has
expired, the token is still considered valid as long as the same token is used to
open the specified file for write access.

Examples:

* Given a DATALINK value that was inserted into column COLA (defined
with WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE
and RECOVERY YES) in table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL',"'a comment')

Use the scalar function DLURLCOMPLETEWRITE to fetch the value:

SELECT DLURLCOMPLETEWRITE (COLA)
FROM TBLA
WHERE ...

It returns:
HTTP://DLFS.ALMADEN. IBM.COM/X/y/*%*%%x%*xx*x**x*3a.b

where *xxxxxxxxxxxxxx% represents the write token.

Use the above value to locate and update the content of the file. Issue the
following SQL UPDATE statement to back out the file changes and restore
to the previous committed version:

UPDATE TBLA
SET COLA = DLPREVIOUSCOPY('http://d1fs.almaden.ibm.com/x/y/*%¥xx%%x

kxR xER;a.b', 1)

WHERE ...

where **xxxxxxxxxxxxx% represents the same write token used to modify
the file referenced by the URL value. Note that if COLA is defined with
WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE,
the write token is not required in the above example.

* The value of the second argument (has-tokern) can be substituted by the
following CASE statement. Assume the URL value is contained in a
variable named url_file. Issue the following SQL UPDATE statement to back
out the file changes and restore to the previous committed version:

EXEC SQL UPDATE TBLA
SET COLA = DLPREVIOUSCOPY(:url file,
(CASE
WHEN LENGTH(:url file) = LENGTH(DLURLCOMPLETEONLY (COLA))
THEN 0
ELSE 1
END))
WHERE ..

SQL Reference, Volume 1



DLREPLACECONTENT

DLREPLACECONTENT

»»>—DLREPLACECONTENT— (—data-location-target—,—data-location-sourc

) >«
)

I—,—comment-string—l

The schema is SYSIBM.

The DLREPLACECONTENT function returns a DATALINK value. When the
function is on the right hand side of a SET clause in an UPDATE statement, or
is in a VALUES clause in an INSERT statement, the assignment of the
returned value results in replacing the content of a file by another file and
then creating a link to it. The actual file replacement process is done during
commit processing of the current transaction.

data-location-target
A VARCHAR(200) expression that specifies a varying-length character
string containing a complete URL value.

data-location-source
A VARCHAR expression that specifies the data location of a file in URL
format. As a result of an assignment in an UPDATE or an INSERT
statement, this file is renamed to the name of the file that is pointed to by
data-location-target; the ownership and permission attributes of the target
file are retained.

There is a restriction that data-location-source can only be one of the
following:

* A zero-length value
* ANULL value

* The value of data-location-target plus a suffix string. The suffix string can
be up to 20 characters in length. The characters of the suffix string must
belong to the URL character set. Moreover, the string cannot contain a
“\” character under the UNC scheme, or the “/” character under other
valid schemes (SQLSTATE 428D1).

comment-string
An optional VARCHAR value that contains a comment or additional
location information.

The result of the function is a DATALINK value. If any argument can be null,
the result can be null; if data-location-target is null, the result is the null value.

If data-location-source is null, a zero-length string, or exactly the same as
data-location-target, the effect of DLREPLACECONTENT is the same as
DLVALUE.

Example:

Chapter 3. Functions 345



346

DLREPLACECONTENT

* Replace the content of a linked file by another file. Given a DATALINK
value that was inserted into column PICT_FILE in table TBLA using the
following INSERT statement:

EXEC SQL INSERT INTO TBLA (PICT_ID, PICT_FILE)
VALUES (1000, DLVALUE('HTTP://HOSTA.COM/d1fs/image-data/pictl.gif'));

Replace the content of this file with another file by issuing the following
SQL UPDATE statement:

EXEC SQL UPDATE TBLA
SET PICT_FILE =

DLREPLACECONTENT ('HTTP://HOSTA.COM/d1fs/image-data/pictl.gif",

"HTTP://HOSTA.COM/d1fs/image-data/pictl.gif.new')
WHERE PICT_ID = 1000;

SQL Reference, Volume 1



DLURLCOMPLETE

DLURLCOMPLETE

»»>—DLURLCOMPLETE— (—datalink-expression—) >

The DLURLCOMPLETE function returns the data location attribute from a
DATALINK value with a link type of URL. When datalink-expression is a
DATALINK column defined with the attribute READ PERMISSION DB, the
value includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:

e Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','a comment')

the following function operating on that value:
DLURLCOMPLETE (COLA)

returns:
HTTP://DLFS.ALMADEN.IBM.COM/X/y/**%*xx%ksxxssxx*3a.b

where #**xxxxxxxxxxxx% represents the access token.

Chapter 3. Functions 347



DLURLCOMPLETEONLY

DLURLCOMPLETEONLY

348

»»>—DLURLCOMPLETEONLY— (—datalink-expression—) ><

The schema is SYSIBM.

The DLURLCOMPLETEONLY function returns the data location attribute
from a DATALINK value with a link type of URL. The value returned never
includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:

¢ Given a DATALINK value that was inserted into a DATALINK column
COLA (defined with READ PERMISSION DB) in table TBLA using the
scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL',"'a comment')

the following function operating on that value:
DLURLCOMPLETEONLY (COLA)

returns:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/a.b

SQL Reference, Volume 1



DLURLCOMPLETEWRITE

DLURLCOMPLETEWRITE

»»>—DLURLCOMPLETEWRITE—(—datalink-expression—) >

The schema is SYSIBM.

The DLURLCOMPLETEWRITE function returns the complete URL value from
a DATALINK value with a link type of URL. If the DATALINK value
produced from datalink-expression comes from a DATALINK column defined
with WRITE PERMISSION ADMIN, a write token is included in the return
value. The returned value can be used to locate and update the linked file.

If the DATALINK column is defined with another WRITE PERMISSION
option (not ADMIN) or NO LINK CONTROL, DLURLCOMPLETEWRITE
returns just the URL value without a write token. If the file reference is
derived from a DATALINK column defined with WRITE PERMISSION FS, a
token is not required to write to the file, because write permission is
controlled by the file system; if the file reference is derived from a DATALINK
column defined with WRITE PERMISSION BLOCKED, the file cannot be
written to at all.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:

* Given a DATALINK value that was inserted into a DATALINK column
COLA (defined with WRITE PERMISSION ADMIN) in table TBLA using
the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL',"'a comment")

the following function operating on that value:
DLURLCOMPLETEWRITE (COLA)

returns:
HTTP://DLFS.ALMADEN. IBM.COM/X/y/*%* %%k %sxssxk*x%3a.b

where #***xxxxxxxxxxx% represents the write token. If COLA is not defined
with WRITE PERMISSION ADMIN, the write token will not be present.

Chapter 3. Functions 349



DLURLPATH

DLURLPATH

»»>—DLURLPATH—(—datal ink-expression—) ><

The schema is SYSIBM.

The DLURLPATH function returns the path and file name necessary to access
a file within a given server from a DATALINK value with a linktype of URL.
When datalink-expression is a DATALINK column defined with the attribute
READ PERMISSION DB, the value includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL',"'a comment')

then the following function operating on that value:
DLURLPATH (COLA)

will return the value:

I X[y [ *xFxxxxxrxkrxkxx;a.b

(Where ettt represents the access token)

350 SQL Reference, Volume 1



DLURLPATHONLY

DLURLPATHONLY

»»>—DLURLPATHONLY— (—datal ink-expression—) >

The schema is SYSIBM.

The DLURLPATHONLY function returns the path and file name necessary to
access a file within a given server from a DATALINK value with a linktype of
URL. The value returned NEVER includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:

* Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b"','URL',"'a comment")

then the following function operating on that value:
DLURLPATHONLY (COLA)

will return the value:
/x/yla.b

Chapter 3. Functions 351



DLURLPATHWRITE

DLURLPATHWRITE

352

»»>—DLURLPATHWRITE— (—datal ink-expression—) ><

The schema is SYSIBM.

The DLURLPATHWRITE function returns the path and file name necessary to
access a file within a given server from a DATALINK value with a linktype of
URL. The value returned includes a write token if the DATALINK value
produced from datalink_expression comes from a DATALINK column defined
with WRITE PERMISSION ADMIN.

If the DATALINK column is defined with other WRITE PERMISSION options
(not ADMIN) or NO LINK CONTROL, DLURLPATHWRITE returns the path
and file name without a write token. If the file reference is derived from a
DATALINK column defined with WRITE PERMISSION FS, a token is not
required to write to the file, because write permission is controlled by the file
system; if the file reference is derived from a DATALINK column defined
with WRITE PERMISSION BLOCKED, the file cannot be written to at all.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes a comment, the result is a zero length
string.

Example:

¢ Given a DATALINK value that was inserted into a DATALINK column
COLA (defined with WRITE PERMISSION ADMIN) in table TBLA using
the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL',"'a comment')

the following function operating on that value:
DLURLPATHWRITE (COLA)

returns:

I X[y [ *xFxxxxxrxkrxkxx;3a.b

where **xxxxxxxxxxxxx* represents the write token. If COLA is not defined
with WRITE PERMISSION ADMIN, the write token will not be present.

SQL Reference, Volume 1



DLURLSCHEME

DLURLSCHEME

»»>—DLURLSCHEME— (—datal ink-expression—) >

The schema is SYSIBM.

The DLURLSCHEME function returns the scheme from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(20). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:

e Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','a comment')

then the following function operating on that value:
DLURLSCHEME (COLA)

will return the value:
HTTP

Chapter 3. Functions 353



DLURLSERVER

DLURLSERVER

»»>—DLURLSERVER— (—datal ink-expression—) ><

The schema is SYSIBM.

The DLURLSERVER function returns the file server from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL',"'a comment')

then the following function operating on that value:
DLURLSERVER (COLA)

will return the value:
DLFS.ALMADEN.IBM.COM

354  SQL Reference, Volume 1



DLVALUE

DLVALUE

»>—DLVALUE—(—data-location |_

| )————><

,—Llinktype-string |_ _|
,—comment-string

The schema is SYSIBM.

The DLVALUE function returns a DATALINK value. When the function is on
the right hand side of a SET clause in an UPDATE statement or is in a
VALUES clause in an INSERT statement, it usually also creates a link to a file.
However, if only a comment is specified (in which case the data-location is a
zero-length string), the DATALINK value is created with empty linkage
attributes so there is no file link.

data-location
If the link type is URL, then this is an expression that yields a varying
length character string containing a complete URL value.

linktype-string
An optional VARCHAR expression that specifies the link type of the
DATALINK value. The only valid value is "URL" (SQLSTATE 428D1).

comment-string
An optional VARCHAR(254) value that provides a comment or additional
location information. The length of data-location plus comment-string must
not exceed 200 bytes.

The result of the function is a DATALINK value. If any argument of the
DLVALUE function can be null, the result can be null; If the data-location is
null, the result is the null value.

When defining a DATALINK value using this function, consider the
maximum length of the target of the value. For example, if a column is
defined as DATALINK(200), then the maximum length of the data-location plus
the comment is 200 bytes.

Example:

* Insert a row into the table. The URL values for the first two links are
contained in the variables named url_article and url_snapshot. The variable
named url_snapshot_comment contains a comment to accompany the
snapshot link. There is, as yet, no link for the movie, only a comment in the
variable named url_movie_comment.

EXEC SQL
INSERT INTO HOCKEY_GOALS

VALUES('Maurice Richard',
'Montreal Canadien',

Chapter 3. Functions 355



DLVALUE

I?I’
'Boston Bruins,

'1952-04-24",

'"Winning goal in game 7 of Stanley Cup final',

DLVALUE(:ur]_artic] e),
DLVALUE(:url_snapshot, 'URL', :url_snapshot_comment),

DLVALUE('', 'URL', :url_movie_comment) );

356 SQL Reference, Volume 1



DOUBLE

DOUBLE

Numeric to Double:

> DOUBLE————
EFLOAT—
DOUBLE_PRECISION—

— (—numeric-expression—) >

Character String to Double:

»»>—DOUBLE—(—string-expression—) ><

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is

SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:

¢ number if the argument is a numeric expression

* character string representation of a number if the argument is a string
expression.

Numeric to Double

numeric-expression

The argument is an expression that returns a value of any built-in
numeric data type.

The result of the function is a double-precision floating-point
number. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the same number that would occur if the argument
were assigned to a double-precision floating-point column or
variable.

Character String to Double

string-expression

The argument can be of type CHAR or VARCHAR in the form of
a numeric constant. Leading and trailing blanks in argument are
ignored.

The result of the function is a double-precision floating-point
number. The result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the string was
considered a constant and assigned to a double-precision
floating-point column or variable.

Chapter 3. Functions 357



DOUBLE
Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. To eliminate the possibility of
out-of-range results, DOUBLE is applied to SALARY so that the division is
carried out in floating point:

SELECT EMPNO, DOUBLE (SALARY)/COMM

FROM EMPLOYEE
WHERE COMM > 0

358 SQL Reference, Volume 1



ENCRYPT

ENCRYPT

»»>—ENCRYPT. >

»—(—data-string-expressio ) >

I—,—password-string-expressic J
I—,—hint-string-express ion—I

The schema is SYSIBM.

The ENCRYPT function returns a value that is the result of encrypting
data-string-expression. The password used for encryption is either the
password-string-expression value or the ENCRYPTION PASSWORD value (as
assigned using the SET ENCRYPTION PASSWORD statement).

data-string-expression
An expression that returns a CHAR or VARCHAR value to be encrypted.
The length attribute for the data type of data-string-expression is limited to
32663 without a hint-string-expression argument and 32631 when the
hint-string-expression argument is specified (SQLSTATE 42815).

password-string-expression
An expression that returns a CHAR or VARCHAR value with at least 6
bytes and no more than 127 bytes (SQLSTATE 428FC). The value
represents the password used to encrypt the data-string-expression. If the
value of the password argument is null or not provided, the data will be
encrypted using the ENCRYPTION PASSWORD value, which must have
been set for the session (SQLSTATE 51039).

hint-string-expression
An expression that returns a CHAR or VARCHAR value up to 32 bytes
that will help data owners remember passwords (for example, ‘Ocean’ as
a hint to remember 'Pacific’). If a hint value is given, the hint is embedded
into the result and can be retrieved using the GETHINT function. If this
argument is null or not provided, no hint will be embedded in the result.

The result data type of the function is VARCHAR FOR BIT DATA.

The length attribute of the result is:

*  When the optional hint parameter is specified, the length attribute of the
non-encrypted data + 8 bytes + the number of bytes to the next 8 byte
boundary + 32 bytes for the hint length.

* With no hint parameter, the length attribute of the non-encrypted data + 8
bytes + the number of bytes to the next 8 byte boundary.

If the first argument can be null, the result can be null; if the first argument is
null, the result is the null value.

Chapter 3. Functions 359



ENCRYPT

Notice that the encrypted result is longer than the data-string-expression value.
Therefore, when assigning encrypted values, ensure that the target is declared
with sufficient size to contain the entire encrypted value.

Notes:
* Encryption Algorithm: The internal encryption algorithm used is RC2 block

cipher with padding, the 128-bit secret key is derived from the password
using a MD2 message digest.

Encryption Passwords and Data: It is the user’s responsibility to perform
password management. Once the data is encrypted only the password used
to encrypt it can be used to decrypt it (SQLSTATE 428FD). Be careful when
using CHAR variables to set password values as they may be padded with
blanks. The encrypted result may contain null terminator and other
non-printable characters.

Table Column Definition: When defining columns and types to contain
encrypted data, always calculate the length attribute as follows.

For encrypted data with no hint:

Maximum length of the non-encrypted data + 8 bytes + the number of
bytes to the next 8 byte boundary = encrypted data column length.

For encrypted data with an embedded hint:

Maximum length of the non-encrypted data + 8 bytes + the number of
bytes to the next 8 byte boundary + 32 bytes for the hint length =
encrypted data column length.

Any assignment or cast to a length shorter than the suggested data length
may result in failed decryption in the future and lost data. Blanks are valid
encrypted data values that may be truncated when stored in a column that
is too short.

Some sample column length calculations:

Maximum length of non-encrypted data 6 bytes
8 bytes 8 bytes
Number of bytes to the next 8 byte boundary 2 bytes
Encrypted data column Tength 16 bytes
Maximum Tength of non-encrypted data 32 bytes
8 bytes 8 bytes

Number of bytes to the next 8 byte boundary 8 bytes

Encrypted data column Tength 48 bytes

* Administration of encrypted data: Encrypted data can only be decrypted on

servers that support the decryption functions that correspond to the
ENCRYPT function. Hence, replication of columns with encrypted data
should only be done to servers that support the DECRYPT_BIN or
DECRYPT_CHAR function.

360 SQL Reference, Volume 1



ENCRYPT
Examples:

Example 1: This example uses the ENCRYPTION PASSWORD value to hold
the encryption password.

SET ENCRYPTION PASSWORD = 'Benl23';
INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832');

Example 2: This example explicitly passes the encryption password.
INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832','Benl123');

Example 3: The hint ‘Ocean’ is stored to help the user remember the
encryption password of "Pacific’.

INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832','Pacific','Ocean');

Related reference:
* ['DECRYPT_BIN and DECRYPT_CHAR” on page 332
* ["'GETHINT” on page 366|

Chapter 3. Functions 361



EVENT_MON_STATE

EVENT_MON_STATE

362

»»—EVENT_MON_STATE— (—string-expression—) ><

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event
monitor.

The argument is a string expression with a resulting type of CHAR or
VARCHAR and a value that is the name of an event monitor. If the named
event monitor does not exist in the SYSCAT.EVENTMONITORS catalog table,
SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:

* The following example selects all of the defined event monitors, and
indicates whether each is active or inactive:

SELECT EVMONNAME,
CASE
WHEN EVENT_MON_STATE (EVMONNAME)
WHEN EVENT_MON_STATE (EVMONNAME)
END
FROM SYSCAT.EVENTMONITORS

0 THEN 'Inactive'
1 THEN 'Active'

SQL Reference, Volume 1



EXP

EXP

»»>—EXP—(—expression—) >

The schema is SYSFUN.
Returns the exponential function of the argument.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 363



FLOAT

FLOAT

364

»»>—FLOAT— (—numeric-expression—)

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of a number.
FLOAT is a synonym for DOUBLE.

Related reference:
+ I'DOUBLE” on page 357

SQL Reference, Volume 1



FLOOR

FLOOR

»»>—F0OR— (—expression—) >

The schema is SYSIBM. (The SYSFUN version of the FLOOR function
continues to be available.)

Returns the largest integer value less than or equal to the argument.

The result of the function has the same data type and length attribute as the
argument except that the scale is 0 if the argument is DECIMAL. For example,
an argument with a data type of DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or the database is

configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

Chapter 3. Functions 365



GETHINT

GETHINT

»»—GETHINT— (—encrypted-data—) ><

The schema is SYSIBM.

The GETHINT function will return the password hint if one is found in the
encrypted-data. A password hint is a phrase that will help data owners
remember passwords (For example, ‘Ocean” as a hint to remember "Pacific’).

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR
BIT DATA value that is a complete, encrypted data string. The data string
must have been encrypted using the ENCRYPT function (SQLSTATE
428FE).

The result of the function is VARCHAR(32). The result can be null; if the hint
parameter was not added to the encrypted-data by the ENCRYPT function or
the first argument is null, the result is the null value.

Example:

In this example the hint ‘Ocean’ is stored to help the user remember the
encryption password "Pacific’.

INSERT INTO EMP (SSN) VALUES ENCRYPT('289-46-8832', 'Pacific','Ocean');
SELECT GETHINT(SSN)
FROM EMP;

The value returned is 'Ocean’.

Related reference:
+ I'DECRYPT_BIN and DECRYPT_CHAR” on page 332|
* I"'ENCRYPT” on page 359

366  SQL Reference, Volume 1



GENERATE_UNIQUE

GENERATE_UNIQUE

»»—GENERATE_UNIQUE—(—) >

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes
long (CHAR(13) FOR BIT DATA) that is unique compared to any other
execution of the same function. (The system clock is used to generate the
internal Universal Time, Coordinated (UTC) timestamp along with the
partition number on which the function executes. Adjustments that move the
actual system clock backward could result in duplicate values.) The function
is defined as not-deterministic.

There are no arguments to this function (the empty parentheses must be
specified).

The result of the function is a unique value that includes the internal form of
the Universal Time, Coordinated (UTC) and the partition number where the
function was processed. The result cannot be null.

The result of this function can be used to provide unique values in a table.
Each successive value will be greater than the previous value, providing a
sequence that can be used within a table. The value includes the partition
number where the function executed so that a table partitioned across
multiple partitions also has unique values in some sequence. The sequence is
based on the time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP
in that a unique value is generated for each row of a multiple row insert
statement or an insert statement with a fullselect.

The timestamp value that is part of the result of this function can be
determined using the TIMESTAMP scalar function with the result of
GENERATE_UNIQUE as an argument.

Examples:

* Create a table that includes a column that is unique for each row. Populate
this column using the GENERATE_UNIQUE function. Notice that the
UNIQUE_ID column has "FOR BIT DATA" specified to identify the column
as a bit data character string.

CREATE TABLE EMP_UPDATE
(UNIQUE_ID CHAR(13) FOR BIT DATA,

EMPNO CHAR(6),
TEXT VARCHAR(1000))

Chapter 3. Functions 367



GENERATE_UNIQUE

368

INSERT INTO EMP_UPDATE
VALUES (GENERATE_UNIQUE(), '000020', 'Update entry...'),
(GENERATE_UNIQUE(), '000050', 'Update entry...'")

This table will have a unique identifier for each row provided that the
UNIQUE_ID column is always set using GENERATE_UNIQUE. This can be
done by introducing a trigger on the table.
CREATE TRIGGER EMP_UPDATE_UNIQUE
NO CASCADE BEFORE INSERT ON EMP_UPDATE
REFERENCING NEW AS NEW_UPD

FOR EACH ROW MODE DB2SQL
SNEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued
without the first column as follows.
INSERT INTO EMP_UPDATE (EMPNO, TEXT)

VALUES ('000020', 'Update entry 1...'),
('000050', 'Update entry 2...")

The timestamp (in UTC) for when a row was added to EMP_UPDATE can
be returned using;:

SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT
FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to
record when a row is inserted.

SQL Reference, Volume 1



GRAPHIC

GRAPHIC

»»>—GRAPHIC—(—graphic-expression |_ J ) >
,—integer

The schema is SYSIBM.

The GRAPHIC function returns a fixed-length graphic string representation of:
* A graphic string, if the first argument is any type of graphic string
* A datetime value (Unicode database only), if the first argument is a date,
time, or timestamp.
graphic-expression
An expression that returns a value that is a graphic string.
integer
An integer value specifying the length attribute of the resulting GRAPHIC

data type. The value must be between 1 and 127. If integer is not specified,
the length of the result is the same as the length of the first argument.

The result of the function is a GRAPHIC. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Datetime to Graphic:

»>—GRAPHIC—(—datetime-expression |_ ) >
, IS0
USA
EUR:
JIS
LOCAL:

Datetime to Graphic

datetime-expression
An expression that is one of the following three data types

date  The result is the graphic string representation of the date
in the format specified by the second argument. The
length of the result is 10. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the graphic string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

Chapter 3. Functions 369



GRAPHIC

timestamp
The second argument is not applicable and must not be
specified (SQLSTATE 42815). The result is the graphic
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

370 SQL Reference, Volume 1



HASHEDVALUE

HASHEDVALUE

»>—HASHEDVALUE— (—column-name—) >

The schema is SYSIBM.

The HASHEDVALUE function returns the partitioning map index of the row
obtained by applying the partitioning function on the partitioning key value
of the row. For example, if used in a SELECT clause, it returns the partitioning
map index for each row of the table that was used to form the result of the
SELECT statement.

The partitioning map index returned on transition variables and tables is
derived from the current transition values of the partitioning key columns.
For example, in a before insert trigger, the function will return the projected
partitioning map index given the current values of the new transition
variables. However, the values of the partitioning key columns may be
modified by a subsequent before insert trigger. Thus, the final partitioning
map index of the row when it is inserted into the database may differ from
the projected value.

The argument must be the qualified or unqualified name of a column in a
table. The column can have any data type. (This function cannot be used as a
source function when creating a user-defined function. Because it accepts any
data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.) If column-name references a column of a
view the expression in the view for the column must reference a column of
the underlying base table and the view must be deletable. A nested or
common table expression follows the same rules as a view.

The specific row (and table) for which the partitioning map index is returned
by the HASHEDVALUE function is determined from the context of the SQL
statement that uses the function.

The data type of the result is INTEGER in the range 0 to 4095. For a table
with no partitioning key, the result is always 0. A null value is never returned.
Since row-level information is returned, the results are the same, regardless of
which column is specified for the table.

The HASHEDVALUE function cannot be used on replicated tables, within
check constraints, or in the definition of generated columns (SQLSTATE

42881).

For compatibility with versions earlier than Version 8, the function name
PARTITION can be substituted for HASHEDVALUE.

Chapter 3. Functions 371



HASHEDVALUE

Example:
* List the employee numbers (EMPNO) from the EMPLOYEE table for all
rows with a partitioning map index of 100.
SELECT EMPNO FROM EMPLOYEE
WHERE HASHEDVALUE (PHONENO) = 100
* Log the employee number and the projected partitioning map index of the
new row into a table called EMPINSERTLOG2 for any insertion of
employees by creating a before trigger on the table EMPLOYEE.
CREATE TRIGGER EMPINSLOGTRIG2
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOGZ
VALUES (NEWTABLE.EMPNO, HASHEDVALUE(NEWTABLE.EMPNO))

Related reference:
* “CREATE VIEW statement” in the SQL Reference, Volume 2

372  SQL Reference, Volume 1



HEX

HEX

»»>—HEX— (—expression—) >

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a
character string.

The argument can be an expression that is a value of any built-in data type
with a maximum length of 16 336 bytes.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first
byte of the argument, the next two represent the second byte of the argument,
and so forth. If the argument is a datetime value or a numeric value the result
is the hexadecimal representation of the internal form of the argument. The
hexadecimal representation that is returned may be different depending on
the application server where the function is executed. Cases where differences
would be evident include:

* Character string arguments when the HEX function is performed on an
ASCII client with an EBCDIC server or on an EBCDIC client with an ASCII
server.

* Numeric arguments (in some cases) when the HEX function is performed
where client and server systems have different byte orderings for numeric
values.

The type and length of the result vary based on the type and length of
character string arguments.

¢ Character string
— Fixed length not greater than 127

- Result is a character string of fixed length twice the defined length of
the argument.

— Fixed length greater than 127

- Result is a character string of varying length twice the defined length
of the argument.

— Varying length
- Result is a character string of varying length with maximum length
twice the defined maximum length of the argument.

Chapter 3. Functions 373



HEX

* Graphic string
— Fixed length not greater than 63
- Result is a character string of fixed length four times the defined
length of the argument.
* Fixed length greater than 63
— Result is a character string of varying length four times the defined
length of the argument.
* Varying length
— Result is a character string of varying length with maximum length four
times the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following
examples.

» Using the DEPARTMENT table set the host variable HEX_MGRNO
(char(12)) to the hexadecimal representation of the manager number
(MGRNO) for the ‘PLANNING’ department (DEPTNAME).

SELECT HEX(MGRNO)
INTO :HEX MGRNO

FROM DEPARTMENT
WHERE DEPTNAME = 'PLANNING'

HEX_MGRNO will be set to '303030303230" when using the sample table
(character value is "000020").

* Suppose COL_1 is a column with a data type of char(1) and a value of 'B".
The hexadecimal representation of the letter 'B' is X'42'. HEX(COL_1)
returns a two-character string '42".

* Suppose COL_3 is a column with a data type of decimal(6,2) and a value of
40.1. An eight-character string '0004010C" is the result of applying the HEX
function to the internal representation of the decimal value, 40.1.

374 SQL Reference, Volume 1



HOUR

HOUR

»»>—HOUR—(—expression—) >

The schema is SYSIBM.
The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¢ If the argument is a time, timestamp or valid string representation of a time
or timestamp:

— The result is the hour part of the value, which is an integer between 0
and 24.

e If the argument is a time duration or timestamp duration:

— The result is the hour part of the value, which is an integer between —99
and 99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the
afternoon.

SELECT * FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

Chapter 3. Functions 375



IDENTITY_VAL_LOCAL

IDENTITY_VAL_LOCAL

376

»»—IDENTITY_VAL_LOCAL—(—) >

The schema is SYSIBM.

The IDENTITY_VAL_LOCAL function is a non-deterministic function that
returns the most recently assigned value for an identity column, where the
assignment occurred as a result of a single row INSERT statement using a
VALUES clause. The function has no input parameters.

The result is a DECIMAL(31,0), regardless of the actual data type of the
corresponding identity column.

The value returned by the function is the value assigned to the identity
column of the table identified in the most recent single row INSERT
statement. The INSERT statement must contain a VALUES clause on a table
containing an identity column. The INSERT statement must also be issued at
the same level; that is, the value must available locally at the level it was
assigned, until it is replaced by the next assigned value. (A new level is
initiated each time a trigger or routine is invoked.)

The assigned value is either a value supplied by the user (if the identity
column is defined as GENERATED BY DEFAULT), or an identity value
generated by DB2.

The function returns a null value in the following situations:

* When a single row INSERT statement with a VALUES clause has not been
issued at the current processing level for a table containing an identity
column.

* When a COMMIT or ROLLBACK of a unit of work has occurred since the
most recent INSERT statement that assigned a value. (Unless automatic
commit is turned off, interfaces that automatically commit after each
statement will return a null value when the function is invoked in separate
statements.)

The result of the function is not affected by the following:

* A single row INSERT statement with a VALUES clause for a table without
an identity column.

* A multiple row INSERT statement with a VALUES clause.
* An INSERT statement with a fullselect.
* A ROLLBACK TO SAVEPOINT statement.

Notes:

SQL Reference, Volume 1



IDENTITY_VAL_LOCAL

Expressions in the VALUES clause of an INSERT statement are evaluated
prior to the assignments for the target columns of the INSERT statement.
Thus, an invocation of an IDENTITY_VAL_LOCAL function inside the
VALUES clause of an INSERT statement will use the most recently assigned
value for an identity column from a previous INSERT statement. The
function returns the null value if no previous single row INSERT statement
with a VALUES clause for a table containing an identity column has been
executed within the same level as the IDENTITY_VAL_LOCAL function.

The identity column value of the table for which the trigger is defined can
be determined within a trigger, by referencing the trigger transition variable
for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function from within
the trigger condition of an insert trigger is a null value.

It is possible that multiple before or after insert triggers exist for a table. In
this case, each trigger is processed separately, and identity values assigned
by one triggered action are not available to other triggered actions using the
IDENTITY_VAL_LOCAL function. This is true even though the multiple
triggered actions are conceptually defined at the same level.

It is not generally recommended to use the IDENTITY_VAL_LOCAL
function in the body of a before insert trigger. The result of invoking the
IDENTITY_VAL_LOCAL function from within the triggered action of a
before insert trigger is the null value. The value for the identity column of
the table for which the trigger is defined cannot be obtained by invoking
the IDENTITY_VAL_LOCAL function within the triggered action of a
before insert trigger. However, the value for the identity column can be
obtained in the triggered action, by referencing the trigger transition
variable for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function from within
the triggered action of an after insert trigger is the value assigned to an
identity column of the table identified in the most recent single row
INSERT statement invoked in the same triggered action that had a VALUES
clause for a table containing an identity column. (This applies to both FOR
EACH ROW and FOR EACH STATEMENT after insert triggers.) If a single
row INSERT statement with a VALUES clause for a table containing an
identity column was not executed within the same triggered action, prior to
the invocation of the IDENTITY_VAL_LOCAL function, then the function
returns a null value.

Since the results of the IDENTITY_VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function within the SELECT statement of a cursor can vary for each FETCH
statement.

The assigned value is the value actually assigned to the identity column
(that is, the value that would be returned on a subsequent SELECT
statement). This value is not necessarily the value provided in the VALUES

Chapter 3. Functions 377



IDENTITY_VAL_LOCAL

clause of the INSERT statement, or a value generated by DB2. The assigned
value could be a value specified in a SET transition variable statement,
within the body of a before insert trigger, for a trigger transition variable
associated with the identity column.

* The value returned by the function is unpredictable following a failed
single row INSERT with a VALUES clause into a table with an identity
column. The value may be the value that would have been returned from
the function had it been invoked prior to the failed INSERT, or it may be
the value that would have been assigned had the INSERT succeeded. The
actual value returned depends on the point of failure and is therefore
unpredictable.

Examples:

Example 1: Set the variable IVAR to the value assigned to the identity column
in the EMPLOYEE table. If this insert is the first into the EMPLOYEE table,
then IVAR would have a value of 1.
CREATE TABLE EMPLOYEE
(EMPNO  INTEGER GENERATED ALWAYS AS IDENTITY,
NAME  CHAR(30),

SALARY DECIMAL(5,2),
DEPTNO SMALLINT)

Example 2: An IDENTITY_VAL_LOCAL function invoked in an INSERT
statement returns the value associated with the previous single row INSERT
statement, with a VALUES clause for a table with an identity column. Assume
for this example that there are two tables, T1 and T2. Both T1 and T2 have an
identity column named C1. DB2 generates values in sequence, starting with 1,
for the C1 column in table T1, and values in sequence, starting with 10, for
the C1 column in table T2.

CREATE TABLE T1

(C1 INTEGER GENERATED ALWAYS AS IDENTITY,
C2 INTEGER)

CREATE TABLE T2
(C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY
(START WITH 10),
C2 INTEGER)
INSERT INTO T1 (C2) VALUES (5)
INSERT INTO T1 (C2) VALUES (6)

SELECT = FROM T1

which gives a result of:

378 SQL Reference, Volume 1



IDENTITY_VAL_LOCAL

and now, declaring the function for the variable IVAR:
VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2
in IVAR, because that was the value most recently assigned by DB2. The
following INSERT statement inserts a single row into T2, where column C2
gets a value of 2 from the IDENTITY_VAL_LOCAL function.

INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL())

SELECT *» FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(),15,0)

returning a result of:
C1 C2

Invoking the IDENTITY_VAL_LOCAL function after this insert results in a
value of 10, which is the value generated by DB2 for column C1 of T2.

In a nested environment involving a trigger, use the IDENTITY_VAL_LOCAL
function to retrieve the identity value assigned at a particular level, even
though there might have been identity values assigned at lower levels.
Assume that there are three tables, EMPLOYEE, EMP_ACT, and ACCT_LOG.
There is an after insert trigger defined on EMPLOYEE that results in
additional inserts into the EMP_ACT and ACCT_LOG tables.

CREATE TABLE EMPLOYEE
(EMPNO SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1000),
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT);

CREATE TABLE EMP_ACT
(ACNT_NUM SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1),
EMPNO SMALLINT);

CREATE TABLE ACCT_LOG
(ID SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 100),
ACNT_NUM SMALLINT,
EMPNO SMALLINT);

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL

Chapter 3. Functions 379



IDENTITY_VAL_LOCAL

380

BEGIN ATOMIC

INSERT INTO EMP_ACT (EMPNO)

VALUES (NEW_EMP.EMPNO);

INSERT INTO ACCT_LOG (ACNT_NUM EMPNO)

VALUES (IDENTITY_VAL_LOCAL(), NEW_EMP.EMPNO);
END

The first triggered INSERT statement inserts a row into the EMP_ACT table.
This INSERT statement uses a trigger transition variable for the EMPNO
column of the EMPLOYEE table, to indicate that the identity value for the
EMPNO column of the EMPLOYEE table is to be copied to the EMPNO
column of the EMP_ACT table. The IDENTITY_VAL_LOCAL function could
not be used to obtain the value assigned to the EMPNO column of the
EMPLOYEE table. This is because an INSERT statement has not been issued
at this level of the nesting, and as such, if the IDENTITY_VAL_LOCAL
function were invoked in the VALUES clause of the INSERT for EMP_ACT,
then it would return a null value. This INSERT statement for the EMP_ACT
table also results in the generation of a new identity column value for the
ACNT_NUM column.

A second triggered INSERT statement inserts a row into the ACCT_LOG table.
This statement invokes the IDENTITY_VAL_LOCAL function to indicate that
the identity value assigned to the ACNT_NUM column of the EMP_ACT table
in the previous INSERT statement in the triggered action is to be copied to the
ACNT _NUM column of the ACCT_LOG table. The EMPNO column is
assigned the same value as the EMPNO column of EMPLOYEE table.

From the invoking application (that is, the level at which the INSERT to
EMPLOYEE is issued), set the variable IVAR to the value assigned to the
EMPNO column of the EMPLOYEE table by the original INSERT statement.

INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO)
VALUES ('Rupert', 989.99, 50);

The contents of the three tables after processing the original INSERT statement
and all of the triggered actions are:

SELECT EMPNO, SUBSTR(NAME,10) AS NAME, SALARY, DEPTNO
FROM EMPLOYEE;

EMPNO NAME SALARY DEPTNO

1000 Rupert 989.99 50
SELECT ACNT_NUM, EMPNO
FROM EMP_ACT;

ACNT_NUM EMPNO

SQL Reference, Volume 1



IDENTITY_VAL_LOCAL

SELECT = FROM ACCT_LOG;

ID ACNT_NUM EMPNO

The result of the IDENTITY_VAL_LOCAL function is the most recently
assigned value for an identity column at the same nesting level. After
processing the original INSERT statement and all of the triggered actions, the
IDENTITY_VAL_LOCAL function returns a value of 1000, because this is the
value assigned to the EMPNO column of the EMPLOYEE table. The following
VALUES statement results in setting IVAR to 1000. The insert into the
EMP_ACT table (which occurred after the insert into the EMPLOYEE table
and at a lower nesting level) has no affect on what is returned by this
invocation of the IDENTITY_VAL_LOCAL function.

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

Related samples:

* “fnuse.out -- HOW TO USE BUILT-IN SQL FUNCTIONS (C)”
¢ “fnuse.sqc -- How to use built-in SQL functions (C)”

* “fnuse.out -- HOW TO USE FUNCTIONS (C++)"

* “fnuse.sqC -- How to use built-in SQL functions (C++)”

Chapter 3. Functions 381



INSERT

INSERT

»»—INSERT— (—expressionl—,—expression2—,—expression3—,—expression4—)——»=

The schema is SYSFUN.

Returns a string where expression3 bytes have been deleted from expressionl
beginning at expression2 and where expression4 has been inserted into
expression] beginning at expression2. If the length of the result string exceeds
the maximum for the return type, an error occurs (SQLSTATE 38552).

The first argument is a character string or a binary string type. The second
and third arguments must be a numeric value with a data type of SMALLINT
or INTEGER. If the first argument is a character string, then the fourth
argument must also be a character string. If the first argument is a binary
string, then the fourth argument must be a binary string. For a VARCHAR the
maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. For the first and fourth arguments, CHAR
is converted to VARCHAR and LONG VARCHAR to CLOB(1M), for second
and third arguments SMALLINT is converted to INTEGER for processing by
the function.

The result is based on the argument types as follows:

* VARCHAR(4000) if both the first and fourth arguments are VARCHAR (not
exceeding 4 000 bytes) or CHAR

* CLOB(1M) if either the first or fourth argument is CLOB or LONG
VARCHAR

* BLOB(1M) if both first and fourth arguments are BLOB.
The result can be null; if any argument is null, the result is the null value.

Example:

¢ Delete one character from the word 'DINING’ and insert "VID’, both
beginning at the third character.

VALUES CHAR(INSERT('DINING', 3, 1, 'VID'), 10)

This example returns the following:

DIVIDING

382 SQL Reference, Volume 1



INSERT

As mentioned, the output of the INSERT function is VARCHAR(4000). In
this example, the function CHAR has been used to limit the output of
INSERT to 10 bytes. The starting location of a particular string can be found
using the LOCATE function.

Related reference:
. |"LOCATE” on page 393|

Chapter 3. Functions 383



INTEGER

INTEGER

INTEGER ( numeric-expression ) ><
INT——I_ character-expression—
date-expression
time-expression

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number,
character string, date, or time in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
large integer column or variable.

date-expression
An expression that returns a value of the DATE data type. The result is an
INTEGER value representing the date as yyyymmadd.

time-expression
An expression that returns a value of the TIME data type. The result is an
INTEGER value representing the time as hhmmss.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:

* Using the EMPLOYEE table, select a list containing salary (SALARY)
divided by education level (EDLEVEL). Truncate any decimal in the

384  SQL Reference, Volume 1



INTEGER

calculation. The list should also contain the values used in the calculation
and employee number (EMPNO). The list should be in descending order of
the calculated value.

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

* Using the EMPLOYEE table, select the EMPNO column in integer form for
further processing in the application.

SELECT INTEGER(EMPNO) FROM EMPLOYEE

* Assume that the column BIRTHDATE (date) has an internal value
equivalent to "1964-07-20".

INTEGER(BIRTHDATE)

results in the value 19 640 720.

* Assume that the column STARTTIME (time) has an internal value
equivalent to "12:03:04".

INTEGER(STARTTIME)

results in the value 120 304.

Chapter 3. Functions 385



JULIAN_DAY

JULIAN_DAY

»»—JULIAN_DAY— (—expression—) ><

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1,4712
B.C. (the start of Julian date calendar) to the date value specified in the
argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

386  SQL Reference, Volume 1



LCASE or LOWER

LCASE or LOWER

LCASE (—string-expression—) >
LOWER:

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The LCASE or LOWER function returns a string in which all the SBCS
characters have been converted to lowercase characters (that is, the characters
A-Z will be translated to the characters a-z, and characters with diacritical
marks will be translated to their lower case equivalents if they exist. For
example, in code page 850, E maps to é). Since not all characters are
translated, LCASE(UCASE(string-expression)) does not necessarily return the
same result as LCASE(string-expression).

The argument must be an expression whose value is a CHAR or VARCHAR
data type.

The result of the function has the same data type and length attribute of the
argument. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

Notes:

This function has been extended to recognize the lowercase and uppercase
properties of a Unicode character. In a Unicode database, all Unicode
characters correctly convert to lowercase.

Example:

Ensure that the characters in the value of column JOB in the EMPLOYEE table
are returned in lowercase characters.

SELECT LCASE(JOB)
FROM EMPLOYEE WHERE EMPNO = '000020’;

The result is the value ‘'manager’.

Related reference:
 ["'LCASE (SYSFUN schema)” on page 388

Chapter 3. Functions 387



LCASE (SYSFUN schema)

LCASE (SYSFUN schema)

388

»»>—| CASE—(—expression—) ><

The schema is SYSFUN.

Returns a string in which all the characters A-Z have been converted to the
characters a-z (characters with diacritical marks are not converted). Note that
LCASE(UCASE(string)) will therefore not necessarily return the same result as
LCASE(string).

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes.

The result of the function is:

* VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)
or CHAR

* CLOB(1M) if the argument is CLOB or LONG VARCHAR

The result can be null; if the argument is null, the result is the null value.

SQL Reference, Volume 1



LEFT

LEFT

»>—| EFT—(—expressionl—,—expression2—) ><

The schema is SYSFUN.

Returns a string consisting of the leftmost expression2 bytes in expressionl. The
expression] value is effectively padded on the right with the necessary number
of blank characters so that the specified substring of expression1 always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument must be of data
type INTEGER or SMALLINT.

The result of the function is:

* VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)
or CHAR

* CLOB(1M) if the argument is CLOB or LONG VARCHAR
* BLOB(1M) if the argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Chapter 3. Functions 389



LENGTH

LENGTH

»»—| ENGTH— (—expression—) ><

The schema is SYSIBM.
The LENGTH function returns the length of a value.

The argument can be an expression that returns a value of any built-in data
type.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of
strings includes blanks but does not include the length control field of
varying-length strings. The length of a varying-length string is the actual
length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length
of all other values is the number of bytes used to represent the value:

* 2 for small integer

* 4 for large integer

* (p/2)+1 for decimal numbers with precision p
* The length of the string for binary strings

The length of the string for character strings
* 4 for single-precision floating-point

* 8 for double-precision floating-point

* 4 for date

* 3 for time

* 10 for timestamp

Examples:

* Assume the host variable ADDRESS is a varying length character string
with a value of '895 Don Mills Road'".

LENGTH ( : ADDRESS)

Returns the value 18.
* Assume that START_DATE is a column of type DATE.
LENGTH (START_DATE)

390 SQL Reference, Volume 1



LENGTH

Returns the value 4.
* This example returns the value 10.
LENGTH(CHAR(START_DATE, EUR))

Chapter 3. Functions 391



LN

LN

»»—| N—(—expression—) ><

The schema is SYSFUN.
Returns the natural logarithm of the argument (same as LOG).

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

392  SQL Reference, Volume 1



LOCATE

LOCATE

»>—| OCATE—(—expressionl—,—expression2

>«
<

l—,—express ion3’J

The schema is SYSFUN.

Returns the starting position of the first occurrence of expressionl within
expression2. If the optional expression3 is specified, it indicates the character
position in expression2 at which the search is to begin. If expressionl is not
found within expression2, the value 0 is returned.

If the first argument is a character string, then the second argument must be a
character string. For a VARCHAR the maximum length is 4 000 bytes and for
a CLOB the maximum length is 1 048 576 bytes. If the first argument is a
binary string, then the second argument must be a binary string with a
maximum length of 1 048 576 bytes. The third argument must be is INTEGER
or SMALLINT.

The result of the function is INTEGER. The result can be null; if any argument
is null, the result is the null value.

Example:
* Find the location of the letter 'N” (first occurrence) in the word "DINING’.
VALUES LOCATE ('N', 'DINING')

This example returns the following:

Chapter 3. Functions 393



LOG

LOG

»»—| 0G— (—expression—) ><

The schema is SYSFUN.
Returns the natural logarithm of the argument (same as LN).

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

394  SQL Reference, Volume 1



LOG10

LOG10

»>—| 0G10—(—expression—) >

The schema is SYSFUN.
Returns the base 10 logarithm of the argument.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 395



LONG_VARCHAR

LONG_VARCHAR

»»—L ONG_VARCHAR— (—character-string-expression—) >

The schema is SYSIBM.
The LONG_VARCHAR function returns a LONG VARCHAR representation of
a character string data type.

character-string-expression
An expression that returns a value that is a character string with a
maximum length of 32 700 bytes.

The result of the function is a LONG VARCHAR. If the argument can be null,
the result can be null; if the argument is null, the result is the null value.

396 SQL Reference, Volume 1



LONG_VARGRAPHIC

LONG_VARGRAPHIC

»»—L ONG_VARGRAPHIC— (—graphic-expression—) ><

The schema is SYSIBM.
The LONG_VARGRAPHIC function returns a LONG VARGRAPHIC
representation of a double-byte character string.

graphic-expression
An expression that returns a value that is a graphic string with a maximum
length of 16 350 double byte characters.

The result of the function is a LONG VARGRAPHIC. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 397



LTRIM

LTRIM

»»—| TRIM— (—string-expression—) ><

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The LTRIM function removes blanks from the beginning of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data

type.

* If the argument is a graphic string in a DBCS or EUC database, then the
leading double byte blanks are removed.

* If the argument is a graphic string in a Unicode database, then the leading
UCS-2 blanks are removed.

* Otherwise, the leading single byte blanks are removed.

The result data type of the function is:
* VARCHAR if the data type of string-expression is VARCHAR or CHAR

* VARGRAPHIC if the data type of string-expression is VARGRAPHIC or
GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:

Assume that host variable HELLO is defined as CHAR(9) and has a value of ’
Hello’.

VALUES LTRIM(:HELLO)
The result is "Hello’.

Related reference:

398 SQL Reference, Volume 1



LTRIM

 ['LTRIM (SYSFUN schema)” on page 400]

Chapter 3. Functions 399



LTRIM (SYSFUN schema)

LTRIM (SYSFUN schema)

»»—| TRIM— (—expression—) ><

The schema is SYSFUN.

Returns the characters of the argument with leading blanks removed.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1048 576 bytes.

The result of the function is:

* VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)
or CHAR

* CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

400 SQL Reference, Volume 1



MICROSECOND

MICROSECOND

»»>—MICROSECOND— (—expression—) >

The schema is SYSIBM.
The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration or a valid character
string representation of a timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¢ If the argument is a timestamp or a valid string representation of a
timestamp:
— The integer ranges from 0 through 999 999.

e If the argument is a duration:
— The result reflects the microsecond part of the value which is an integer

between —999 999 through 999 999. A nonzero result has the same sign as
the argument.

Example:

¢ Assume a table TABLEA contains two columns, TS1 and TS2, of type
TIMESTAMP. Select all rows in which the microseconds portion of TS1 is
not zero and the seconds portion of TS1 and TS2 are identical.
SELECT ~ FROM TABLEA
WHERE MICROSECOND(TS1) <> 0

AND
SECOND(TS1) = SECOND(TS2)

Chapter 3. Functions 401



MIDNIGHT_SECONDS

MIDNIGHT_SECONDS

402

»»—MIDNIGHT_SECONDS—(—expression—) ><

The schema is SYSFUN.

Returns an integer value in the range 0 to 86 400 representing the number of
seconds between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string
representation of a time or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Examples:

* Find the number of seconds between midnight and 00:10:10, and midnight
and 13:10:10.

VALUES (MIDNIGHT_SECONDS('00:10:10'), MIDNIGHT_SECONDS('13:10:10'))
This example returns the following:

Since a minute is 60 seconds, there are 610 seconds between midnight and
the specified time. The same follows for the second example. There are 3600
seconds in an hour, and 60 seconds in a minute, resulting in 47410 seconds
between the specified time and midnight.

* Find the number of seconds between midnight and 24:00:00, and midnight
and 00:00:00.

VALUES (MIDNIGHT _SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00'))
This example returns the following:

Note that these two values represent the same point in time, but return
different MIDNIGHT_SECONDS values.

SQL Reference, Volume 1



MINUTE

MINUTE

»»>—MINUTE—(—expression—) >

The schema is SYSIBM.
The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¢ If the argument is a time, timestamp or valid string representation of a time
or timestamp:
— The result is the minute part of the value, which is an integer between 0
and 59.
e If the argument is a time duration or timestamp duration:

— The result is the minute part of the value, which is an integer between
-99 and 99. A nonzero result has the same sign as the argument.

Example:

* Using the CL_SCHED sample table, select all classes with a duration less
than 50 minutes.
SELECT * FROM CL_SCHED
WHERE HOUR(ENDING - STARTING) = 0

AND
MINUTE(ENDING - STARTING) < 50

Chapter 3. Functions 403



MOD

MOD

»»—MOD— (—expression—,—expression—) <

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument.
The result is negative only if first argument is negative.

The result of the function is:
* SMALLINT if both arguments are SMALLINT

* INTEGER if one argument is INTEGER and the other is INTEGER or
SMALLINT

* BIGINT if one argument is BIGINT and the other argument is BIGINT,
INTEGER or SMALLINT.

The result can be null; if any argument is null, the result is the null value.

404 SQL Reference, Volume 1



MONTH

MONTH

»»>—MONTH— (—expression—) >

The schema is SYSIBM.
The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

* If the argument is a date, timestamp, or a valid string representation of a
date or timestamp:

— The result is the month part of the value, which is an integer between 1
and 12.

* If the argument is a date duration or timestamp duration:

— The result is the month part of the value, which is an integer between
-99 and 99. A nonzero result has the same sign as the argument.

Example:

* Select all rows from the EMPLOYEE table for people who were born
(BIRTHDATE) in DECEMBER.

SELECT * FROM EMPLOYEE
WHERE MONTH(BIRTHDATE) = 12

Chapter 3. Functions 405



MONTHNAME

MONTHNAME

»»>—MONTHNAME— (—expression—) ><

The schema is SYSFUN.

Returns a mixed case character string containing the name of month (e.g.
January) for the month portion of the argument, based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

406 SQL Reference, Volume 1



MQPUBLISH

MQPUBLISH

»»—MQPUBLISH—(

| msg-data >

|—pubZ isher-service—, |_ _|
service-policy—,

> ) >

L I

,—topic
L 1)
,—correl-id

Notes:

1 The correl-id cannot be specified unless a service and a policy are also
specified.

The schema is DB2MQ.

The MQPUBLISH function publishes data to MQSeries. This function requires
the installation of either MQSeries Publish/Subscribe or MQSeries Integrator.
For more details, visit http://www.ibm.com/software/MQSeries.

The MQPUBLISH function publishes the data contained in msg-data to the
MQSeries publisher specified in publisher-service, and using the quality of
service policy defined by service-policy. An optional topic for the message can
be specified, and an optional user-defined message correlation identifier may
also be specified. The function returns a value of "1 if successful or a ‘0" if
unsuccessful.

publisher-service
A string containing the logical MQSeries destination where the message is
to be sent. If specified, the publisher-service must refer to a publisher
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
publisher-service is not specified, the DB2.DEFAULT.PUBLISHER will be
used. The maximum size of publisher-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in
handling of this message. If specified, the service-policy must refer to a
Policy defined in the AMT. XML repository file. A Service Policy defines a
set of quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for

Chapter 3. Functions 407



MQPUBLISH

further details. If service-policy is not specified, the default
DB2.DEFAULT.POLICY will be used. The maximum size of service-policy is
48 bytes.

msg-data
A string expression containing the data to be sent via MQSeries. The
maximum size if the string of type VARCHAR is 4000 bytes. If the string
is a CLOB, it can be up to 1MB in size.

topic
A string expression containing the topic for the message publication. If no
topic is specified, none will be associated with the message. The
maximum size of topic is 40 bytes. Multiple topics can be specified in one
string (up to 40 characters long). Each topic must be separated by a colon.
For example, "t1:t2:the third topic” indicates that the message is associated
with all three topics: t1, t2, and "the third topic”.

correl-id
An optional string expression containing a correlation identifier to be
associated with this message. The correl-id is often specified in request and
reply scenarios to associate requests with replies. If not specified, no
correlation ID will be added to the message. The maximum size of
correl-id is 24 bytes.

Examples

Example 1: This example publishes the string "Testing 123" to the default
publisher service (DB2.DEFAULT.PUBLISHER) using the default policy
(DB2.DEFAULT.POLICY). No correlation identifier or topic is specified for the
message.

VALUES MQPUBLISH('Testing 123')

Example 2: This example publishes the string "Testing 345" to the publisher
service "MYPUBLISHER" under the topic "TESTS". The default policy is used
and no correlation identifier is specified.

VALUES MQPUBLISH('MYPUBLISHER','Testing 345', 'TESTS')

Example 3: This example publishes the string "Testing 678" to the publisher
service "MYPUBLISHER" using the policy "MYPOLICY"” with a correlation
identifier of "TEST1". The message is published with topic "TESTS".

VALUES MQPUBLISH('MYPUBLISHER','MYPOLICY','Testing 678','TESTS','TEST1')

Example 4: This example publishes the string "Testing 901" to the publisher
service "MYPUBLISHER" under the topic "TESTS" using the default policy
(DB2.DEFAULT.POLICY) and no correlation identifier.

VALUES MQPUBLISH('Testing 901','TESTS')

408 SQL Reference, Volume 1



MQPUBLISH

All examples return the value "1” if successful.

Chapter 3. Functions 409



MQREAD

MQREAD

»>—MQREAD— (

»><
| <

|—receive-servicc
l—,—service-policy—l

The schema is MQDB?2.

The MQREAD function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy defined in
service-policy. Executing this operation does not remove the message from the
queue associated with receive-service, but instead returns the message at the
head of the queue. The result of the function is VARCHAR(4000). If no
messages are available to be returned, the result is the null value.

receive-service
A string containing the logical MQSeries destination from where the
message is to be received. If specified, the receive-service must refer to a
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from where a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2. DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling
this message. If specified, the service-policy must refer to a Policy defined
in the AMT. XML repository file. A Service Policy defines a set of quality
of service options that should be applied to this messaging operation.
These options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2. DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

Examples:

Example 1: This example reads the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREAD()

Example 2: This example reads the message at the head of the queue specified
by the service "MYSERVICE" using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREAD('MYSERVICE')

410 SQL Reference, Volume 1



MQREAD

Example 3: This example reads the message at the head of the queue specified
by the service "MYSERVICE”, and using the policy "MYPOLICY".

VALUES MQREAD('MYSERVICE', 'MYPOLICY')
All of these examples return the contents of the message as a

VARCHAR(4000) if successful. If no messages are available, the result is the
null value.

Chapter 3. Functions 411



MQREADCLOB

MQREADCLOB

412

»»—MQREADCLOB— (

»><
| <

l—recez' ve-service
l—,—service—pol icy—l

The schema is DB2MQ.

The MQREADCLOB function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy defined in
service-policy. Executing this operation does not remove the message from the
queue associated with receive-service, but instead returns the message at the
head of the queue. The return value is a CLOB of 1MB maximum length,
containing the message. If no messages are available to be returned, a NULL
is returned.

receive-service
A string containing the logical MQSeries destination from where the
message is to be received. If specified, the receive-service must refer to a
Service Point defined in the AMT.XML repository file. A service point is a
logical end-point from where a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling
this message. If specified, the service-policy must refer to a Policy defined
in the AMT.XML repository file. A Service Policy defines a set of quality
of service options that should be applied to this messaging operation.
These options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

Examples:

Example 1: This example reads the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREADCLOB()

Example 2: This example reads the message at the head of the queue specified
by the service "MYSERVICE" using the default policy
(DB2.DEFAULT.POLICY).

SQL Reference, Volume 1



MQREADCLOB
VALUES MQREADCLOB('MYSERVICE')

Example 3: This example reads the message at the head of the queue specified
by the service "MYSERVICE", and using the policy "MYPOLICY".

VALUES MQREADCLOB('MYSERVICE', 'MYPOLICY')

All of these examples return the contents of the message as a CLOB with a
maximum size of 1MB, if successful. If no messages are available, then a
NULL is returned.

Chapter 3. Functions 413



MQRECEIVE

MQRECEIVE

»»—MQRECEIVE—(

)——>«

|—receive-servicc | |

I—,—service—pol icy
L,—correl— idJ

The schema is MQDB?2.

The MQRECEIVE function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy service-policy.
Performing this operation removes the message from the queue associated
with receive-service. If the correl-id is specified, then the first message with a
matching correlation identifier will be returned. If correl-id is not specified,
then the message at the head of the queue will be returned. The result of the
function is VARCHAR(4000). If no messages are available to be returned, the
result is the null value.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a Service
Point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, the DB2.DEFAULT.SERVICE is used. The
maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in the
handling of this message. If specified, service-policy must refer to a policy
defined in the AMT XML repository file. (A service policy defines a set of
quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details.) If service-policy is not specified, the default
DB2.DEFAULT.POLICY is used. The maximum size of service-policy is 48
bytes.

correl-id
A string containing an optional correlation identifier to be associated with
this message. The correl-id is often specified in request and reply scenarios
to associate requests with replies. If not specified, no correlation id will be
specified. The maximum size of correl-id is 24 bytes.

Examples:

414 SQL Reference, Volume 1



MQRECEIVE

Example 1: This example receives the message at the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default
policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVE()

Example 2: This example receives the message at the head of the queue
specified by the service "MYSERVICE" using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVE('MYSERVICE')

Example 3: This example receives the message at the head of the queue
specified by the service "MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVE('MYSERVICE','MYPOLICY')

Example 4: This example receives the first message with a correlation id that
matches "1234" from the head of the queue specified by the service
"MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVE('MYSERVICE','MYPOLICY','1234")

All these examples return the contents of the message as a VARCHAR(4000) if
successful. If no messages are available, a NULL will be returned.

Chapter 3. Functions 415



MQRECEIVECLOB

MQRECEIVECLOB

»>—MQRECEIVECLOB >

>—(

)

Lreceive-servicc |

I—,—service—pol icy |_ _|
,—correl-id-

The schema is DB2MQ.

The MQRECEIVECLOB function returns a message from the MQSeries
location specified by receive-service, using the quality of service policy
service-policy. Performing this operation removes the message from the queue
associated with receive-service. If the correl-id is specified, then the first message
with a matching correlation identifier will be returned. If correl-id is not
specified, then the message at the head of the queue will be returned. The
return value is a CLOB with a maximum length of 1MB containing the
message. If no messages are available to be returned, a NULL is returned.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a Service
Point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service points
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, the DB2.DEFAULT.SERVICE is used. The
maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in the
handling of this message. If specified, the service-policy must refer to a
policy defined in the AMT.XML repository file. (A service policy defines a
set of quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details.) If service-policy is not specified, the default
DB2.DEFAULT.POLICY is used. The maximum size of service-policy is 48
bytes.

correl-id
A string containing an optional correlation identifier to be associated with
this message. The correl-id is often specified in request and reply scenarios
to associate requests with replies. If not specified, no correlation id will be
used. The maximum size of correl-id is 24 bytes.

416 SQL Reference, Volume 1



MQRECEIVECLOB
Examples:

Example 1: This example receives the message at the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default
policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB()

Example 2: This example receives the message at the head of the queue
specified by the service "MYSERVICE" using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB('MYSERVICE')

Example 3: This example receives the message at the head of the queue
specified by the service "MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVECLOB('MYSERVICE','MYPOLICY')

Example 4: This example receives the first message with a correlation ID that
matches "1234” from the head of the queue specified by the service
"MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVECLOB('MYSERVICE',MYPOLICY','1234")
All these examples return the contents of the message as a CLOB with a

maximum size of 1MB, if successful. If no messages are available, a NULL
will be returned.

Chapter 3. Functions 417



MQSEND

MQSEND

»>—MQSEND—(

| msg-data: >

|—send-service—,
l—service-policy—,—l

) ><

L (1)
,—correl-id

Notes:

1 The correl-id cannot be specified unless a service and a policy are also
specified.

The schema is DB2MQ.

The MQSEND function sends the data contained in msg-data to the MQSeries
location specified by send-service, using the quality of service policy defined by
service-policy. An optional user defined message correlation identifier may be
specified by correl-id. The function returns a value of ‘1" if successful or a '0” if
unsuccessful.

msg-data
A string expression containing the data to be sent via MQSeries. The
maximum size is 4000 bytes if the data is of type VARCHAR, and 1MB if
the data is of type CLOB.

send-service
A string containing the logical MQSeries destination where the message is
to be sent. If specified, the send-service refers to a service point defined in
the AMT.XML repository file. A service point is a logical end-point from
which a message may be sent or received. Service point definitions
include the name of the MQSeries Queue Manager and Queue. See the
MQSeries Application Messaging Interface manual for further details. If
send-service is not specified, the value of DB2. DEFAULT.SERVICE is used.
The maximum size of send-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in handling of
this message. If specified, the service-policy must refer to a service policy
defined in the AMT XML repository file. A Service Policy defines a set of
quality of service options that should be applied to this messaging
operation. These options include message priority and message
persistence. See the MQSeries Application Messaging Interface manual for
further details. If service-policy is not specified, a default value of
DB2.DEFAULT.POLICY will be used. The maximum size of service-policy is
48 bytes.

418 SQL Reference, Volume 1



MQSEND

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation ID will be
sent. The maximum size of correl-id is 24 bytes.

Examples:

Example 1: This example sends the string "Testing 123" to the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY),
with no correlation identifier.

VALUES MQSEND('Testing 123')

Example 2: This example sends the string "Testing 345" to the service
"MYSERVICE", using the policy "MYPOLICY", with no correlation identifier.

VALUES MQSEND('MYSERVICE','MYPOLICY','Testing 345"')

Example 3: This example sends the string "Testing 678" to the service
"MYSERVICE", using the policy "MYPOLICY", with correlation identifier
"TEST3".

VALUES MQSEND('MYSERVICE', 'MYPOLICY','Testing 678", 'TEST3")
Example 4: This example sends the string "Testing 901" to the service

"MYSERVICE", using the default policy (DB2.DEFAULT.POLICY), and no
correlation identifier.

VALUES MQSEND('MYSERVICE','Testing 901')

All examples return a scalar value of 1" if successful.

Chapter 3. Functions 419



MQSUBSCRIBE

MQSUBSCRIBE

»»—MQSUBSCRIBE—(

topic—)———»«

|—subscriber-service—, |_ _|
service-policy—,

The schema is MQDB?2.

The MQSUBSCRIBE function is used to register interest in MQSeries messages
published on a specified topic. The subscriber-service specifies a logical
destination for messages that match the specified topic. Messages that match
topic will be placed on the queue defined by subscriber-service and can be read
or received through a subsequent call to MOQREAD, MQRECEIVE,
MQREADALL, or MQRECEIVEALL. This function requires the installation
and configuration of an MQSeries based publish and subscribe system, such
as MQSeries Integrator or MQSeries Publish/Subscribe. For more details, visit
http://www.ibm.com/software/MQSeries.

The function returns a value of "1” if successful or a ’0” if unsuccessful.
Successfully executing this function will cause the publish and subscribe
server to forward messages matching the topic to the service point defined by
subscriber-service.

subscriber-service
A string containing the logical MQSeries subscription point to where
messages matching fopic will be sent. If specified, the subscriber-service
must refer to a Subscribers Service Point defined in the AMT.XML
repository file. Service points definitions include the name of the
MQSeries Queue Manager and Queue. See the MQSeries Application
Messaging Interface manual for further details. If subscriber-service is not
specified, then the DB2. DEFAULT.SUBSCRIBER will be used instead. The
maximum size of subscriber-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy to be used in
handling the message. If specified, the service-policy must refer to a Policy
defined in the AMT. XML repository file. A Service Policy defines a set of
quality of service options to be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2. DEFAULT.POLICY will
be used instead. The maximum size of service-policy is 48 bytes.

topic
A string defining the types of messages to receive. Only messages

published with the specified topics will be received by this subscription.
Multiple subscriptions may coexist. The maximum size of topic is 40

420 SQL Reference, Volume 1



MQSUBSCRIBE

bytes. Multiple topics can be specified in one string (up to 40 bytes long).
Each topic must be separated by a colon. For example, "t1:t2:the third
topic” indicates that the message is associated with all three topics: t1, t2,
and "the third topic”.

Examples:

Example 1: This example registers an interest in messages containing the topic
"Weather”. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the subscriber and the default service-policy
(DB2.DEFAULT.POLICY) specifies the quality of service.

VALUES MQSUBSCRIBE('Weather')
Example 2: This example demonstrates a subscriber registering interest in

messages containing "Stocks”. The subscriber registers as
"PORTFOLIO-UPDATES" with policy "BASIC-POLICY".

VALUES MQSUBSCRIBE ('PORTFOLIO-UPDATES', 'BASIC-POLICY','Stocks"')

All examples return a scalar value of "1” if successful.

Chapter 3. Functions 421



MQUNSUBSCRIBE

MQUNSUBSCRIBE

422

»»—MQUNSUBSCRIBE—(

I topic—)———»<

|—subscriber-service—, |_ _|
service-policy—,

The schema is MQDB?2.

The MQUNSUBSCRIBE function is used to unregister an existing message
subscription. The subscriber-service, service-policy, and topic are used to identify
which subscription is canceled. This function requires the installation and
configuration of an MQSeries based publish and subscribe system, such as
MQSeries Integrator or MQSeries Publish/Subscribe. For more details, visit
http://www.ibm.com/software/MQSeries.

The function returns a value of "1” if successful or a '0” if unsuccessful. The
result of successfully executing this function is that the publish and subscribe
server will remove the subscription defined by the given parameters.
Messages with the specified topic will no longer be sent to the logical
destination defined by subscriber-service.

subscriber-service
If specified, the subscriber-service must refer to a Subscriber Service Point
defined in the AMT.XML repository file. Service point definitions include
the name of the MQSeries Queue Manager and Queue. See the MQSeries
Application Messaging Interface manual for further details. If
subscriber-service is not specified, then the DB2.DEFAULT.SUBSCRIBER
value is used. The maximum size of subscriber-service is 48 bytes.

service-policy
If specified, the service-policy must refer to a Policy defined in the
AMT.XML repository file. A Service Policy defines a set of quality of
service options to be applied to this messaging operation. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

topic
A string specifying the subject of messages that are not to be received. The
maximum size of topic is 40 bytes. Multiple topics can be specified in one
string (up to 40 bytes long). Each topic must be separated by a colon. For
example, "t1:t2:the third topic” indicates that the message is associated
with all three topics: t1, t2, and "the third topic”.

Examples:

SQL Reference, Volume 1



MQUNSUBSCRIBE

Example 1: This example cancels an interest in messages containing the topic
"Weather”. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the unsubscriber and the default service-policy
(DB2.DEFAULT.POLICY) specifies the quality of service.

VALUES MQUNSUBSCRIBE('Weather')

Example 2: This example demonstrates a subscriber canceling an interest in
messages containing "Stocks”. The subscriber is registered as
"PORTFOLIO-UPDATES"” with policy "BASIC-POLICY".

VALUES MQUNSUBSCRIBE ('PORTFOLIO-UPDATES', 'BASIC-POLICY','Stocks')

These examples return a scalar value of ‘1" if successful and a scalar value of
’0” if unsuccessful.

Chapter 3. Functions 423



MULTIPLY_ALT

MULTIPLY_ALT

»»—MULTIPLY_ALT—(—exact_numeric_expression—,—exact_numeric_expression—)———>»<

The schema is SYSIBM.

The MULTIPLY_ALT scalar function returns the product of the two arguments
as a decimal value. It is provided as an alternative to the multiplication

operator, especially when the sum of the precisions of the arguments exceeds
31.

The arguments can be any built-in exact numeric data type (DECIMAL,
BIGINT, INTEGER, or SMALLINT).

The result of the function is a DECIMAL. The precision and scale of the result
are determined as follows, using the symbols p and s to denote the precision
and scale of the first argument, and the symbols p' and s' to denote the
precision and scale of the second argument.

The precision is MIN(31, p + p')

The scale is:

— 0 if the scale of both arguments is 0

- MINQ@L, s + 5") if p + p' is less than or equal to 31

- MAX(MIN@, s +5"),31-(p-s+p' -s))if p+p' is greater than 31.

The result can be null if at least one argument can be null, or if the database
is configured with DFT_SQLMATHWARN set to YES; the result is the null
value if one of the arguments is null.

The MULTIPLY_ALT function is a preferable choice to the multiplication
operator when performing decimal arithmetic where a scale of at least 3 is
required and the sum of the precisions exceeds 31. In these cases, the internal
computation is performed so that overflows are avoided. The final result is
then assigned to the result data type, using truncation where necessary to
match the scale. Note that overflow of the final result is still possible when
the scale is 3.

The following is a sample comparing the result types using MULTIPLY_ALT
and the multiplication operator.

Type of argument 1 | Type of argument 2 | Result using Result using
MULTIPLY_ALT multiplication
operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

424  SQL Reference, Volume 1



MULTIPLY_ALT

Type of argument 1 | Type of argument 2 | Result using Result using

MULTIPLY_ALT multiplication

operator

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)
DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)
DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)
DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)
DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)
Example:

Multiply two values where the data type of the first argument is
DECIMAL(26,3) and the data type of the second argument is DECIMAL(9,8).
The data type of the result is DECIMAL(31,7).

values multiply alt(98765432109876543210987.654,5.43210987)

536504678578875294857887.5277415

Note that the complete product of these two numbers is
536504678578875294857887 .52774154498, but the last 4 digits are truncated to
match the scale of the result data type. Using the multiplication operator with
the same values will cause an arithmetic overflow, since the result data type is
DECIMAL(31,11) and the result value has 24 digits left of the decimal, but the
result data type only supports 20 digits.

425

Chapter 3. Functions



NULLIF

NULLIF

»»>—NULLIF—(—expression—,—expression—) >

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal,
otherwise it returns the value of the first argument.

The arguments must be comparable. They can be of either a built-in (other
than a long string or DATALINK) or distinct data type (other than based on a
long string or DATALINK). (This function cannot be used as a source function
when creating a user-defined function. Because this function accepts any
compatible data types as arguments, it is not necessary to create additional
signatures to support user-defined distinct types.) The attributes of the result
are the attributes of the first argument.

The result of using NULLIF(el,e2) is the same as using the expression
CASE WHEN el=e2 THEN NULL ELSE el END

Note that when el=e2 evaluates to unknown (because one or both arguments
is NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

Example:

¢ Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data
types with the values 4500.00, 500.00, and 5000.00 respectively:

NULLIF (:PROFIT + :CASH , :LOSSES )
Returns a null value.

Related reference:

* [Assignments and comparisons” on page 117

426 SQL Reference, Volume 1



POSSTR

POSSTR

»»—POSSTR— (—source-string—,—search-string—) ><

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of
one string (called the search-string) within another string (called the
source-string). Numbers for the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be
null, the result can be null; if either of the arguments is null, the result is the
null value.

source-string
An expression that specifies the source string in which the search is to
take place.
The expression can be specified by any one of:
* a constant
* a special register
* a host variable (including a locator variable or a file reference variable)
* a scalar function
* a large object locator
* a column name
* an expression concatenating any of the above
search-string
An expression that specifies the string that is to be searched for.
The expression can be specified by any one of:
* a constant
* a special register
* a host variable
* a scalar function whose operands are any of the above
* an expression concatenating any of the above

with the restrictions that:

* No element in the expression can be of type LONG VARCHAR, CLOB,
LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

* The actual length of search-string cannot be more than 4 000 bytes.

Chapter 3. Functions 427



POSSTR

Both search-string and source-string have zero or more contiguous positions. If
the strings are character or binary strings, a position is a byte. If the strings
are graphic strings, a position is a graphic (DBCS) character.

The POSSTR function accepts mixed data strings. However, POSSTR operates
on a strict byte-count basis, oblivious to changes between single and
multi-byte characters.

The following rules apply:

* The data types of source-string and search-string must be compatible,
otherwise an error is raised (SQLSTATE 42884).

— If source-string is a character string, then search-string must be a character
string, but not a CLOB or LONG VARCHAR, with an actual length of
32 672 bytes or less.

— If source-string is a graphic string, then search-string must be a graphic
string, but not a DBCLOB or LONG VARGRAPHIC, with an actual
length of 16 336 double-byte characters or less.

— If source-string is a binary string, then search-string must be a binary
string with an actual length of 32 672 bytes or less.

e If search-string has a length of zero, the result returned by the function is 1.
* Otherwise:

— If source-string has a length of zero, the result returned by the function is
Zero.
— Otherwise:
- If the value of search-string is equal to an identical length substring of
contiguous positions from the value of source-string, then the result

returned by the function is the starting position of the first such
substring within the source-string value.

- Otherwise, the result returned by the function is 0.

Example

* Select RECEIVED and SUBJECT columns as well as the starting position of
the words "GOOD BEER’ within the NOTE_TEXT column for all entries in
the IN_TRAY table that contain these words.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')

FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0

428 SQL Reference, Volume 1



POWER

POWER

»»>—POWER— (—expressionl—,—expression2—) ><

The schema is SYSFUN.
Returns the value of expressionl to the power of expression?2.

The arguments can be of any built-in numeric data type. DECIMAL and
REAL arguments are converted to a double-precision floating-point number.

The result of the function is:
¢ INTEGER if both arguments are INTEGER or SMALLINT

* BIGINT if one argument is BIGINT and the other argument is BIGINT,
INTEGER or SMALLINT
* DOUBLE otherwise.

The result can be null; if any argument is null, the result is the null value.

Chapter 3. Functions 429



QUARTER

QUARTER

»»>—QUARTER— (—expression—) ><

The schema is SYSFUN.

Returns an integer value in the range 1 to 4 representing the quarter of the
year for the date specified in the argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

430 SQL Reference, Volume 1



RADIANS

RADIANS

»»>—RADIANS—(—expression—) >

The schema is SYSFUN.

Returns the number of radians converted from argument which is expressed
in degrees.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 431



RAISE_ERROR

RAISE_ERROR

432

»»—RAISE_ERROR—(—sqlstate—,—diagnostic-string—) ><

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to
return an error with the specified SQLSTATE, SQLCODE -438 and
diagnostic-string. The RAISE_ERROR function always returns NULL with an
undefined data type.

sqlstate
A character string containing exactly 5 characters. It must be of type
CHAR defined with a length of 5 or type VARCHAR defined with a
length of 5 or greater. The sqlstate value must follow the rules for
application-defined SQLSTATESs as follows:

* Each character must be from the set of digits ('0” through "9’) or
non-accented upper case letters ("A” through 'Z’)

* The SQLSTATE class (first two characters) cannot be “00’, ‘01" or "02’
since these are not error classes.

» If the SQLSTATE class (first two characters) starts with the character 0’
through 6" or A’ through 'H’, then the subclass (last three characters)
must start with a letter in the range ‘I’ through "7’

» If the SQLSTATE class (first two characters) starts with the character '7’,
’8’,’9” or "I’ though "Z’, then the subclass (last three characters) can be
any of ‘0" through '9” or “A’ through "Z’.

If the SQLSTATE does not conform to these rules an error occurs
(SQLSTATE 428B3).

diagnostic-string
An expression of type CHAR or VARCHAR that returns a character string
of up to 70 bytes that describes the error condition. If the string is longer
than 70 bytes, it will be truncated.

To use this function in a context where the rules for result data types do not
apply (such as alone in a select list), a cast specification must be used to give
the null returned value a data type. A CASE expression is where the
RAISE_ERROR function will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and
Diploma. If an education level is greater than 20, raise an error.

SQL Reference, Volume 1



RAISE_ERROR

SELECT EMPNO,
CASE WHEN EDUCLVL < 16 THEN 'Diploma’
WHEN EDUCLVL < 18 THEN 'Graduate'
WHEN EDUCLVL < 21 THEN 'Post Graduate'
ELSE RAISE_ERROR('70001',
"EDUCLVL has a value greater than 20')

END
FROM EMPLOYEE

Chapter 3. Functions 433



RAND

RAND

»»—RAND— (

»><
<

|—expressionJ

The schema is SYSFUN.

Returns a random floating point value between 0 and 1 using the argument as
the optional seed value. The function is defined as not-deterministic.

An argument is not required, but if it is specified it can be either INTEGER or
SMALLINT.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

434 SQL Reference, Volume 1



REAL

REAL

»»>—REAL— (—numeric-expression—) >

The schema is SYSIBM.

The REAL function returns a single-precision floating-point representation of a
number.

The argument is an expression that returns a value of any built-in numeric
data type.

The result of the function is a single-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the argument were
assigned to a single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. The result is desired in
single-precision floating point. Therefore, REAL is applied to SALARY so that
the division is carried out in floating point (actually double-precision) and
then REAL is applied to the complete expression to return the result in
single-precision floating point.

SELECT EMPNO, REAL(REAL(SALARY)/COMM)

FROM EMPLOYEE
WHERE COMM > 0

Chapter 3. Functions 435



REC2XML

REC2XML

»»—REC2XML— (—decimal-constant—,—format-string—,—row-tag-string >

—

»—Y—,—column-name ) ><

The schema is SYSIBM.

The REC2XML function returns a string formatted with XML tags and
containing column names and column data.

decimal-constant
The expansion factor for replacing column data characters. The decimal
value must be greater than 0.0 and less than or equal to 6.0. (SQLSTATE
42820).

The decimal-constant value is used to calculate the result length of the
function. For every column with a character data type, the length attribute
of the column is multiplied by this expansion factor before it is added in
to the result length.

To specify no expansion, use a value of 1.0. Specifying a value less than
1.0 reduces the calculated result length. If the actual length of the result
string is greater than the calculated result length of the function, then an
error is raised (SQLSTATE 22001).

format-string
The string constant that specifies which format the function is to use
during execution.

The format-string is case-sensitive, so the following values must be
specified in uppercase to be recognized.

COLATTVAL or COLATTVAL_XML
These formats return a string with columns as attribute values.

»»—<—row-tag-string— >

»—Y < column-name—=—"column-name "—[>—co Lumn-value—</—column—>
null="true"—/>

436 SQL Reference, Volume 1



REC2XML

»—</—row-tag-string—: >

Column names may or may not be valid XML attribute values. For
column names which are not valid XML attribute values, character
replacement is performed on the column name before it is included in the
result string.

Column values may or may not be valid XML element names. If the
format-string COLATTVAL is specified, then for the column names which
are not valid XML element values, character replacement is performed on
the column value before it is included in the result string. If the
format-string COLATTVAL_XML is specified, then character replacement is
not performed on column values (although character replacement is still
performed on column names).

row-tag-string
A string constant that specifies the tag used for each row. If an empty
string is specified, then a value of 'row’ is assumed.

If a string of one or more blank characters is specified, then no beginning
row-tag-string or ending row-tag-string (including the angle bracket
delimiters) will appear in the result string.

column-name
A qualified or unqualified name of a table column. The column must have
one of the following data types (SQLSTATE 42815):

* numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE)

* character string (CHAR, VARCHAR; a character string with a subtype
of BIT DATA is not allowed)

* datetime (DATE, TIME, TIMESTAMP)
* a user-defined type based on one of the above types

The same column name cannot be specified more than once (SQLSTATE
42734).

The result of the function is VARCHAR. The maximum length is 32 672 bytes
(SQLSTATE 54006).

Consider the following invocation:
REC2XML (dc, fs, rt, c;5 Cpy «v.y Cp)

If the value of "fs” is either "COLATTVAL" or "COLATTVAL_XML", then the
result is the same as this expression:

'<' CONCAT rt CONCAT '>' CONCAT y, CONCAT y,
CONCAT ... CONCAT y, CONCAT '</' CONCAT rt CONCAT '>'

Chapter 3. Functions 437



REC2XML

438

where y,, is equivalent to:

‘<column name="' CONCAT xvc, CONCAT vn

and vn is equivalent to:
'">' CONCAT r, CONCAT '</column>'

if the column is not null, and

L nu]]=lltruell/>l

if the column value is null.

Xvc, is equivalent to a string representation of the column name of c,, where

any characters appearing in [Table 18 on page 439|are replaced with the

corresponding representation. This ensures that the resulting string is a valid

XML attribute or element value token.

The r,, is equivalent to a string representation as indicated in [Table 1

Table 17. Column Values String Result

Data type of c,

T

n

CHAR, VARCHAR

The value is a string. If the format-string
does not end in the characters "_XML",
then each character in ¢, is replaced with
the corresponding replacement
representation from [Table 18 on page 439}
as indicated. The length attribute is: dc *
the length attribute of c,,.

SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, REAL, DOUBLE

The value is LTRIM(RTRIM(CHAR(c,)))).
The length attribute is the result length of
CHAR(c,). The decimal character is
always the period (’.") character.

DATE

The value is CHAR(c,,ISO). The length
attribute is the result length of
CHAR(c,,ISO).

TIME

The value is CHAR(c,,JIS). The length
attribute is the result length of
CHAR(c,,JIS)

TIMESTAMP

The value is CHAR(c,). The length
attribute is the result length of CHAR(c,,).

Character replacement:

Depending on the value specified for the format-string, certain characters in
column names and column values will be replaced to ensure that the column

SQL Reference, Volume 1




REC2XML

names form valid XML attribute values and the column values form valid
XML element values.

Table 18. Character Replacements for XML Attribute Values and Element Values

Character Replacement
< &lt;

> &gt;

! &quot;

& &amp;

! &apos;
Examples:

Note: REC2XML does not insert new line characters in the output. All

example output is formatted for the sake of readability.

Using the DEPARTMENT table in the sample database, format the

department table row, except the DEPTNAME and LOCATION columns,

for department 'D01” into an XML string. Since the data does not contain

any of the characters which require replacement, the expansion factor will

be 1.0 (no expansion). Also note that the MGRNO value is null for this row.
SELECT REC2XML (1.0, 'COLATTVAL', '', DEPTNO, MGRNO, ADMRDEPT)

FROM DEPARTMENT
WHERE DEPTNO = 'DO1'

This example returns the following VARCHAR(117) string:

<row>

<column name="DEPTNO">DO1</column>

<column name="MGRNO" null="true"/>

<column name="ADMRDEPT">A00</column>

</row>
A 5-day university schedule introduces a class named '&43<FIE’ to a table
called CL_SCHED, with a new format for the CLASS_CODE column. Using
the REC2XML function, this example formats an XML string with this new
class data, except for the class end time.

The length attribute for the REC2XML call (see below) with an expansion
factor of 1.0 would be 128 (11 for the ‘<row>" and '</row>" overhead, 21
for the column names, 75 for the '<column name=’, '>’, '</column>" and
double quotes, 7 for the CLASS_CODE data, 6 for the DAY data, and 8 for
the STARTING data). Since the ‘&’ and ‘<’ characters will be replaced, an
expansion factor of 1.0 will not be sufficient. The length attribute of the

function will need to support an increase from 7 to 14 characters for the
new format CLASS_CODE data.

Chapter 3. Functions 439



REC2XML

However, since it is known that the DAY value will never be more than 1
digit long, an unused extra 5 units of length are added to the total.
Therefore, the expansion only needs to handle an increase of 2. Since
CLASS_CODE is the only character string column in the argument list, this
is the only column data to which the expansion factor applies. To get an
increase of 2 for the length, an expansion factor of 9/7 (approximately
1.2857) would be needed. An expansion factor of 1.3 will be used.

SELECT REC2XML (1.3, 'COLATTVAL', 'record', CLASS_CODE, DAY, STARTING)

FROM CL_SCHED
WHERE CLASS_CODE = '&43<FIE'

This example returns the following VARCHAR(167) string:

<record>

<column name="CLASS_CODE">&amp;43<FIE&1t;/column>

<column name="DAY">5</column>

<column name="STARTING">06:45:00</column>

</record>
Assume that new rows have been added to the EMP_RESUME table in the
sample database. The new rows store the resumes as strings of valid XML.
The COLATTVAL_XML format-string is used so character replacement will
not be carried out. None of the resumes are more than 3500 characters in
length. The following query is used to select the XML version of the
resumes from the EMP_RESUME table and format it into an XML
document fragment.

SELECT REC2XML (1.0, 'COLATTVAL_XML', 'row', EMPNO, RESUME_XML)

FROM (SELECT EMPNO, CAST(RESUME AS VARCHAR(3500)) AS RESUME_XML
FROM EMP_RESUME

WHERE RESUME_FORMAT = 'XML')
AS EMP_RESUME_XML

This example returns a row for each employee who has a resume in XML
format. Each returned row will be a string with the following format:
<row>
<column name="EMPNO">{employee number}</column>

<column name="RESUME_XML">{resume in XML}</column>
</row>

Where "{employee number}” is the actual EMPNO value for the column
and "{resume in XML}" is the actual XML fragment string value that is the
resume.

440 SQL Reference, Volume 1



REPEAT

REPEAT

»»>—REPEAT— (—expression—,—expression—) ><

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the
number of times specified by the second argument.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be SMALLINT
or INTEGER.

The result of the function is:

* VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000
bytes) or CHAR

* CLOB(1M) if the first argument is CLOB or LONG VARCHAR
* BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
* List the phrase 'REPEAT THIS' five times.
VALUES CHAR(REPEAT('REPEAT THIS', 5), 60)

This example return the following:

REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS
As mentioned, the output of the REPEAT function is VARCHAR(4000). For

this example, the CHAR function has been used to limit the output of
REPEAT to 60 bytes.

Chapter 3. Functions 441



REPLACE

REPLACE

»»—REPLACE— (—expressionl—,—expression2—,—expression3—) >

The schema is SYSFUN.
Replaces all occurrences of expression2 in expressionl with expression3.

The first argument can be of any built-in character string or binary string
type. For a VARCHAR the maximum length is 4 000 bytes and for a CLOB or
a binary string the maximum length is 1 048 576 bytes. CHAR is converted to
VARCHAR and LONG VARCHAR is converted to CLOB(1M). The second
and third arguments are identical to the first argument.

The result of the function is:

* VARCHAR(4000) if the first, second and third arguments are VARCHAR or
CHAR

* CLOB(1M) if the first, second and third arguments are CLOB or LONG
VARCHAR

* BLOB(1M) if the first, second and third arguments are BLOB.
The result can be null; if any argument is null, the result is the null value.

Example:
* Replace all occurrence of the letter ‘N’ in the word "DINING” with "VID'.
VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 10)

This example returns the following:

DIVIDIVIDG

As mentioned, the output of the REPLACE function is VARCHAR(4000).
For this example, the CHAR function has been used to limit the output of
REPLACE to 10 bytes.

442  SQL Reference, Volume 1



RIGHT

RIGHT

»»>—RIGHT— (—expressionl—,—expression2—) ><

Returns a string consisting of the rightmost expression2 bytes in expressionl.
The expressionl value is effectively padded on the right with the necessary
number of blank characters so that the specified substring of expressionl
always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be INTEGER or
SMALLINT.

The result of the function is:

* VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000
bytes) or CHAR

* CLOB(1M) if the first argument is CLOB or LONG VARCHAR
* BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Chapter 3. Functions 443



ROUND

ROUND

»»—ROUND— (—expressionl—,—expression2—) >

The schema is SYSIBM. (The SYSFUN version of the ROUND function
continues to be available.)

The ROUND function returns expressionl rounded to expression2 places to the
right of the decimal point if expression2 is positive, or to the left of the decimal
point if expression2 is zero or negative.

If expressionl is positive, a digit value of 5 or greater is an indication to round
to the next higher positive number. For example, ROUND(3.5,0) = 4. If
expression] is negative, a digit value of 5 or greater is an indication to round
to the next lower negative number. For example, ROUND(-3.5,0) = -4.

expressionl
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a small or large integer. When the value of
expression2 is not negative, it specifies rounding to that number of places
to the right of the decimal separator. When the value of expression2 is
negative, it specifies rounding to the absolute value of expression2 places
to the left of the decimal separator.

If expression2 is not negative, expressionl is rounded to the absolute value
of expression2 number of places to the right of the decimal point. If the
value of expression2 is greater than the scale of expressionl then the value is
unchanged except that the result value has a precision that is larger by 1.
For example, ROUND(748.58,5) = 748.58 where the precision is now 6 and
the scale remains 2.

If expression2 is negative, expressionl is rounded to the absolute value of
expression2+1 number of places to the left of the decimal point.

If the absolute value of a negative expression?2 is larger than the number of
digits to the left of the decimal point, the result is 0. For example,
ROUND(748.58,-4) = 0.

The data type and length attribute of the result are the same as the data type
and length attribute of the first argument, except that the precision is
increased by one if the expressionl is DECIMAL and the precision is less than
3L

For example, an argument with a data type of DECIMAL(5,2) results in
DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) results in
DECIMAL(31,2). The scale is the same as the scale of the first argument.

444  SQL Reference, Volume 1



ROUND

If either argument can be null or the database is configured with
DFT_SQLMATHWARN set to YES, the result can be null. If either argument is
null, the result is the null value.

Examples:

Calculate the value of 873.726, rounded to 2, 1, 0, -1, -2, -3, and -4 decimal
places, respectively.

VALUES (
ROUND (873.726, 2),
ROUND(873.726, 1),
ROUND (873.726, 0),
ROUND (873.726,-1),
ROUND (873.726,-2),
ROUND (873.726,-3),
ROUND (873.726,-4) )

This example returns:
1 2 3 4 5 6 7

873.730  873.700 874.000 870.000 900.000 1000.000 0.000

Calculate using both positive and negative numbers.

VALUES (
ROUND(3.5, 0),
ROUND(3.1, 0),
ROUNDROUND(-3.1, 0),
ROUND(-3.5,0) )

This example returns:
1 2 3 4

4.0 3.0 -3.0 -4.0

Chapter 3. Functions 445



RTRIM

RTRIM

»»—RTRIM— (—string-expression—) ><

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available with support for LONG VARCHAR and CLOB arguments.)

The RTRIM function removes blanks from the end of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data

type.

* If the argument is a graphic string in a DBCS or EUC database, then the
trailing double byte blanks are removed.

e If the argument is a graphic string in a Unicode database, then the trailing
UCS-2 blanks are removed.

* Otherwise, the trailing single byte blanks are removed.

The result data type of the function is:
* VARCHAR if the data type of string-expression is VARCHAR or CHAR

* VARGRAPHIC if the data type of string-expression is VARGRAPHIC or
GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a
value of "Hello’.

VALUES RTRIM(:HELLO)
The result is "Hello’.

Related reference:
+ I'RTRIM (SYSFUN schema)” on page 447|

446 SQL Reference, Volume 1



RTRIM (SYSFUN schema)

RTRIM (SYSFUN schema)

»»>—RTRIM— (—expression—) >

The schema is SYSFUN.

Returns the characters of the argument with trailing blanks removed.

The argument can be of any built-in character string data types. For a
VARCHAR the maximum length is 4 000 bytes and for a CLOB the maximum
length is 1 048 576 bytes.

The result of the function is:

* VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)
or CHAR

¢ CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null

Chapter 3. Functions 447



SECOND

SECOND

»»>—SECOND— (—expression—) ><

The schema is SYSIBM.
The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

* If the argument is a time, timestamp or valid string representation of a time
or timestamp:

— The result is the seconds part of the value, which is an integer between 0
and 59.

* If the argument is a time duration or timestamp duration:

— The result is the seconds part of the value, which is an integer between
-99 and 99. A nonzero result has the same sign as the argument.

Examples:

* Assume that the host variable TIME_DUR (decimal(6,0)) has the value
153045.

SECOND (: TIME_DUR)

Returns the value 45.

* Assume that the column RECEIVED (timestamp) has an internal value
equivalent to 1988-12-25-17.12.30.000000.

SECOND (RECEIVED)

Returns the value 30.

448 SQL Reference, Volume 1



SIGN

SIGN

»»>—SIGN—(—expression—) >

Returns an indicator of the sign of the argument. If the argument is less than
zero, —1 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.

The argument can be of any built-in numeric data type. DECIMAL and REAL
values are converted to double-precision floating-point numbers for
processing by the function.

The result of the function is:

¢ SMALLINT if the argument is SMALLINT
* INTEGER if the argument is INTEGER

* BIGINT if the argument is BIGINT

* DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 449



SIN

SIN

450

»»>—SIN—(—expression—) ><

The schema is SYSIBM. (The SYSFUN version of the SIN function continues to
be available.)

Returns the sine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric data type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

SQL Reference, Volume 1



SINH

SINH

»»>—SINH—(—expression—) >

The schema is SYSIBM.

Returns the hyperbolic sine of the argument, where the argument is an angle
expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 451



SMALLINT

SMALLINT

»—SMALLINT—(—[numeric—expression ) ><
chamcter-expressionJ

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number
or character string in the form of a small integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a small integer column or
variable. If the whole part of the argument is not within the range of
small integers, an error occurs. The decimal part of the argument is
truncated if present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). However, the
value of the constant must be in the range of small integers (SQLSTATE
22003). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
small integer column or variable.

The result of the function is a small integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

452  SQL Reference, Volume 1



SOUNDEX

SOUNDEX

»»>—SOUNDEX— (—expression—) >

The schema is SYSFUN.

Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR
not exceeding 4 000 bytes.

The result of the function is CHAR(4). The result can be null; if the argument
is null, the result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is
known but the precise spelling is not. It makes assumptions about the way
that letters and combinations of letters sound that can help to search out
words with similar sounds. The comparison can be done directly or by
passing the strings as arguments to the DIFFERENCE function .

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the
employee with a surname that sounds like "Loucesy’.

SELECT EMPNO, LASTNAME FROM EMPLOYEE
WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

This example returns the following:
EMPNO  LASTNAME

000110 LUCCHESSI

Related reference:
+ ["'DIFFERENCE” on page 336

Chapter 3. Functions 453



SPACE

SPACE

»»—SPACE— (—expression—) ><

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the
second argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the
argument is null, the result is the null value.

454  SQL Reference, Volume 1



SQRT

SQRT

»»>—SQRT—(—expression—) >

The schema is SYSFUN.
Returns the square root of the argument.

The argument can be any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

Chapter 3. Functions 455



SUBSTR

SUBSTR

»»—SUBSTR— (—string—,—start |_ ) ><
,—ZengthJ

The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string
represented in the code page of its first argument. If it is a binary string, the
result of the function is a binary string. If it is a graphic string, the result of
the function is a graphic string represented in the code page of its first
argument. If the first argument is a host variable, the code page of the result
is the database code page. If any argument of the SUBSTR function can be
null, the result can be null; if any argument is null, the result is the null value.

string
An expression that specifies the string from which the result is derived.

If string is either a character string or a binary string, a substring of string
is zero or more contiguous bytes of string. If string is a graphic string, a
substring of string is zero or more contiguous double-byte characters of
string.

start
An expression that specifies the position of the first byte of the result for a
character string or a binary string or the position of the first character of
the result for a graphic string. start must be an integer between 1 and the
length or maximum length of string, depending on whether string is
fixed-length or varying-length (SQLSTATE 22011, if out of range). It must
be specified as number of bytes in the context of the database code page
and not the application code page.

length
An expression that specifies the length of the result. If specified, length
must be a binary integer in the range 0 to 1, where n equals (the length
attribute of string) — start + 1 (SQLSTATE 22011, if out of range).

If length is explicitly specified, string is effectively padded on the right
with the necessary number of blank characters (single-byte for character
strings; double-byte for graphic strings) or hexadecimal zero characters
(for BLOB strings) so that the specified substring of string always exists.
The default for length is the number of bytes from the byte specified by
the start to the last byte of string in the case of character string or binary
string or the number of double-byte characters from the character
specified by the start to the last character of string in the case of a graphic
string. However, if string is a varying-length string with a length less than
start, the default is zero and the result is the empty string. It must be
specified as number of bytes in the context of the database code page and

456 SQL Reference, Volume 1



SUBSTR

not the application code page. (For example, the column NAME with a
data type of VARCHAR(18) and a value of MCKNIGHT" will yield an
empty string with SUBSTR(NAME, 10)).

able 19|shows that the result type and length of the SUBSTR function depend
on the type and attributes of its inputs.

Table 19. Data Type and Length of SUBSTR Result

String Argument Data
Type

Length Argument

Result Data Type

CHAR(A) constant (/<255) CHAR(])

CHAR(A) not specified but start argument isa | CHAR(A-start+1)
constant

CHAR(A) not a constant VARCHAR(A)

VARCHAR(A) constant (/<255) CHAR(])

VARCHAR(A) constant (254<1<32673) VARCHAR()

VARCHAR(A) not a constant or not specified VARCHAR(A)

LONG VARCHAR constant (/<255) CHAR(])

LONG VARCHAR constant (254<[<4001) VARCHAR()

LONG VARCHAR

constant (/>4000)

LONG VARCHAR

LONG VARCHAR

not a constant or not specified

LONG VARCHAR

CLOB(A) constant (/) CLOB())

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (/<128) GRAPHIC(])

GRAPHIC(A) not specified but start argument is a | GRAPHIC(A-start+1)
constant

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (/<128) GRAPHIC(])

VARGRAPHIC(A) constant (127<1<16337) VARGRAPHIC(I)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

Chapter 3. Functions 457



SUBSTR

Table 19. Data Type and Length of SUBSTR Result (continued)

String Argument Data
Type

Length Argument

Result Data Type

LONG VARGRAPHIC | constant (I<128) GRAPHIC(])
LONG VARGRAPHIC | constant (127<I<2001) VARGRAPHIC())
LONG VARGRAPHIC | constant (/>2000) LONG VARGRAPHIC

LONG VARGRAPHIC

not a constant or not specified

LONG VARGRAPHIC

DBCLOB(A) constant (/) DBCLOB())
DBCLOB(A) not a constant or not specified DBCLOB(A)
BLOB(A) constant (/) BLOB(/)
BLOB(A) not a constant or not specified BLOB(A)

If string is a fixed-length string, omission of length is an implicit specification
of LENGTH(string) - start + 1. If string is a varying-length string, omission of
length is an implicit specification of zero or LENGTH(string) - start + 1,

whichever is greater.

Examples:

* Assume the host variable NAME (VARCHAR(50)) has a value of 'BLUE
JAY’ and the host variable SURNAME_POS (int) has a value of 6.

SUBSTR(:NAME, :SURNAME_POS)

Returns the value 'TAY'
SUBSTR(:NAME, :SURNAME_POS,1)

Returns the value 'T'.
* Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word "OPERATION’.

SELECT * FROM PROJECT
WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words
such as "OPERATIONS'.

458 SQL Reference, Volume 1



SUBSTR

Notes:

1. In dynamic SQL, string, start, and length may be represented by a
parameter marker (?). If a parameter marker is used for string, the data
type of the operand will be VARCHAR, and the operand will be nullable.

2. Though not explicitly stated in the result definitions above, it follows from
these semantics that if string is a mixed single- and multi-byte character
string, the result may contain fragments of multi-byte characters,
depending upon the values of start and length. That is, the result could
possibly begin with the second byte of a double-byte character, and/or
end with the first byte of a double-byte character. The SUBSTR function
does not detect such fragments, nor provides any special processing
should they occur.

Chapter 3. Functions 459



TABLE_NAME

TABLE_NAME

460

»»—TABLE_NAME— (—objectname

»><
<

|—,—objectschemaJ

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the unqualified name of the starting point is
returned. The resulting name may be of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing an unqualified name. The result name could
represent one of the following:

table The value for objectname was either a table name (the input value is
returned) or an alias name that resolved to the table whose name is
returned.

view The value for objectname was either a view name (the input value is
returned) or an alias name that resolved to the view whose name is
returned.

undefined object

The value for objectname was either an undefined object (the input
value is returned) or an alias name that resolved to the undefined
object whose name is returned.

Therefore, if a non-null value is given to this function, a value is always
returned, even if no object with the result name exists.

SQL Reference, Volume 1



TABLE_SCHEMA

TABLE_SCHEMA

»»—TABLE_SCHEMA— (—objectname

>«
<

L,—obj ectschemaJ

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the schema name of the starting point is
returned. The resulting schema name may be of a table, view, or undefined
object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing a schema name. The result schema could
represent the schema name for one of the following:

table The value for objectname was either a table name (the input or default
value of objectschema is returned) or an alias name that resolved to a
table for which the schema name is returned.

view The value for objectname was either a view name (the input or default
value of objectschema is returned) or an alias name that resolved to a
view for which the schema name is returned.

undefined object

The value for objectname was either an undefined object (the input or
default value of objectschema is returned) or an alias name that
resolved to an undefined object for which the schema name is
returned.

Chapter 3. Functions 461



TABLE_SCHEMA

Therefore, if a non-null objectname value is given to this function, a value is
always returned, even if the object name with the result schema name does
not exist. For example, TABLE_SCHEMA('DEPT', 'PEOPLE') returns PEOPLE ' if
the catalog entry is not found.

Examples:

* PBIRD tries to select the statistics for a given table from SYSCAT.TABLES
using an alias PBIRD.A1 defined on the table HEDGES.T1.
SELECT NPAGES, CARD FROM SYSCAT.TABLES

WHERE TABNAME = TABLE_NAME ('Al')
AND TABSCHEMA = TABLE_SCHEMA ('Al')

The requested statistics for HEDGES.T1 are retrieved from the catalog.

* Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES
using HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not
known whether HEDGES.X1 is an alias or a table.

SELECT NPAGES, CARD FROM SYSCAT.TABLES

WHERE TABNAME = TABLE_NAME ('X1','HEDGES')
AND TABSCHEMA = TABLE_SCHEMA ('X1','HEDGES')

Assuming that HEDGES.X1 is a table, the requested statistics for
HEDGES.X1 are retrieved from the catalog.

* Select the statistics for a given table from SYSCAT.TABLES using an alias
PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('A2','PBIRD')
AND TABSCHEMA = TABLE_SCHEMA ('A2',PBIRD')

The statement returns 0 records as no matching entry is found in
SYSCAT.TABLES where TABNAME = 'T2" and TABSCHEMA = "HEDGES'.

* Select the qualified name of each entry in SYSCAT.TABLES along with the
final referenced name for any alias entry.
SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,
TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,

TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME
FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and
the final referenced name (after alias has been resolved) for any alias
entries. For all non-alias entries, BASE_TABNAME and
BASE_TABSCHEMA are null so the REAL_SCHEMA and REAL_NAME
columns will contain nulls.

462 SQL Reference, Volume 1



TAN

TAN

»»>—TAN—(—expression—) >

The schema is SYSIBM. (The SYSFUN version of the TAN function continues
to be available.)

Returns the tangent of the argument, where the argument is an angle
expressed in radians.

The argument can be any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

Chapter 3. Functions 463



TANH

TANH
»»>—TANH— (—expression—) ><
The schema is SYSIBM.
Returns the hyperbolic tangent of the argument, where the argument is an
angle expressed in radians.
The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.
The result of the function is a double-precision floating-point number. The
result can be null if the argument can be null or the database is configured
with DFT_SQLMATHWARN set to YES; the result is the null value if the
argument is null.

464 SQL Reference, Volume 1



TIME

TIME

»>—TIME—(—expression—) >

The schema is SYSIBM.
The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG
VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string
representation of a time or a timestamp.

The result of the function is a time. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
* If the argument is a time:
— The result is that time.
¢ If the argument is a timestamp:
— The result is the time part of the timestamp.
¢ If the argument is a string:

— The result is the time represented by the string.

Example:

* Select all notes from the IN_TRAY sample table that were received at least
one hour later in the day (any day) than the current time.

SELECT = FROM IN_TRAY
WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

Chapter 3. Functions 465



TIMESTAMP

TIMESTAMP

»»>—TIMESTAMP— (—expression

»><
<

|—, express ionJ

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp from a value or a pair of
values.

Only Unicode databases support an argument that is a graphic string
representation of a date, a time, or a timestamp.

The rules for the arguments depend on whether the second argument is
specified.
* If only one argument is specified:

— It must be a timestamp, a valid string representation of a timestamp, or a
string of length 14 that is not a CLOB, LONG VARCHAR, DBCLOB, or
LONG VARGRAPHIC.

A string of length 14 must be a string of digits that represents a valid
date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is
the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

* If both arguments are specified:

— The first argument must be a date or a valid string representation of a
date and the second argument must be a time or a valid string
representation of a time.

The result of the function is a timestamp. If either argument can be null, the
result can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:
* If both arguments are specified:

— The result is a timestamp with the date specified by the first argument
and the time specified by the second argument. The microsecond part of
the timestamp is zero.

* If only one argument is specified and it is a timestamp:
— The result is that timestamp.
* If only one argument is specified and it is a string:

— The result is the timestamp represented by that string. If the argument is
a string of length 14, the timestamp has a microsecond part of zero.

466 SQL Reference, Volume 1



TIMESTAMP

Example:

* Assume the column START_DATE (date) has a value equivalent to
1988-12-25, and the column START_TIME (time) has a value equivalent to
17.12.30.

TIMESTAMP (START _DATE, START TIME)

Returns the value "1988-12-25-17.12.30.000000".

Chapter 3. Functions 467



TIMESTAMP_FORMAT

TIMESTAMP_FORMAT

468

»»—TIMESTAMP_FORMAT—(—string-expression—, format-string—) ><

The schema is SYSIBM.

The TIMESTAMP_FORMAT function returns a timestamp from a character
string that has been interpreted using a character template.

string-expression
A character expression representing a timestamp value in the format
specified by format-string. (If string-expression is an untyped parameter
marker, the type is assumed to be VARCHAR with a maximum length of
254.) The string expression returns a CHAR or a VARCHAR value whose
maximum length is not greater than 254 (SQLSTATE 42815). Leading and
trailing blanks are removed from string-expression, and the resulting
substring is interpreted as a timestamp using the format specified by
format-string. Leading zeros can be omitted from any timestamp
components except the year. Blanks can be used in place of leading zeros
for these components. For example, with a format string of 'YYYY-MM-DD
HH24:MI:SS', each of the following strings is an acceptable specification
for 9 a.m. on January 1, 2000:

'2000-1-01 09:00:00" (single digit for month)
'2000- 1-01 09:00:00' (single digit - preceded by a blank -

for month)
'2000-1-1 09:00:00" (single digits for month and day)
'2000-01-01 9:00:00' (single digit for hour)
'2000-01-01 09:0:0' (single digits for minutes and seconds)

'2000- 1- 1 09: 0: 0' (single digit - preceded by a blank -
for month, day, minutes, and seconds)
'2000-01-01 09:00:00' (maximum number of digits for each element)

format-string
A character constant that contains a template for how the string
expression is to be interpreted as a timestamp value. The length of the
format string must not be greater than 254 (SQLSTATE 42815). Leading
and trailing blanks are removed from format-string, and the resulting
substring must be a valid template for a timestamp value (SQLSTATE
42815). The content of format-string can be specified in mixed case.

Valid format strings are:
"YYYY-MM-DD HH24:MI:SS'

where YYYY represents a 4-digit year value; MM represents a 2-digit
month value (01-12; January=01); DD represents a 2-digit day of the
month value (01-31); HH24 represents a 2-digit hour of the day value

SQL Reference, Volume 1



TIMESTAMP_FORMAT

(00-24; If the hour is 24, the minutes and seconds values are zero.); MI
represents a 2-digit minute value (00-59); and SS represents a 2-digit
seconds value (00-59).

The result of the function is a timestamp. If the first argument can be null, the
result can be null; if the first argument is null, the result is the null value.

Example:

* Insert a row into the in_tray table with a receiving timestamp that is equal
to one second before the beginning of the year 2000 (December 31, 1999 at
23:59:59).

INSERT INTO in_tray (received)

VALUES (TIMESTAMP_FORMAT('1999-12-31 23:59:59',
'YYYY-MM-DD HH24:MI:SS'))

Chapter 3. Functions 469



TIMESTAMP_ISO

TIMESTAMP_ISO

»»—TIMESTAMP_ISO—(—expression—) ><

The schema is SYSFUN.

Returns a timestamp value based on date, time or timestamp argument. If the
argument is a date, it inserts zero for all the time elements. If the argument is
a time, it inserts the value of CURRENT DATE for the date elements and zero
for the fractional time element.

The argument must be a date, time or timestamp, or a valid character string
representation of a date, time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is TIMESTAMP. The result can be null; if the
argument is null, the result is the null value.

470 SQL Reference, Volume 1



TIMESTAMPDIFF

TIMESTAMPDIFF

»»>—TIMESTAMPDIFF— (—expression—,—expression—) ><

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first
argument, based on the difference between two timestamps.

The first argument can be either INTEGER or SMALLINT. Valid values of
interval (the first argument) are:

1 Fractions of a second
2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters
256 Years

The second argument is the result of subtracting two timestamps and
converting the result to CHAR(22).

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

The following assumptions may be used in estimating a difference:
* There are 365 days in a year.

* There are 30 days in a month.

* There are 24 hours in a day.

¢ There are 60 minutes in an hour.

* There are 60 seconds in a minute.

These assumptions are used when converting the information in the second
argument, which is a timestamp duration, to the interval type specified in the
first argument. The returned estimate may vary by a number of days. For
example, if the number of days (interval 16) is requested for the difference
between "1997-03-01-00.00.00" and "1997-02-01-00.00.00’, the result is 30. This is

Chapter 3. Functions 471



TIMESTAMPDIFF

because the difference between the timestamps is 1 month, and the
assumption of 30 days in a month applies.

Example:

The following example returns 4277, the number of minutes between two
timestamps:

TIMESTAMPDIFF (4,CHAR(TIMESTAMP('2001-09-29-11.25.42.483219') -
TIMESTAMP ('2001-09-26-12.07.58.065497")))

472  SQL Reference, Volume 1



TO CHAR

TO_CHAR

»»—T0_CHAR— (—t imestamp-expression—, format-string—) ><

The schema is SYSIBM.

The TO_CHAR function returns a character representation of a timestamp that
has been formatted using a character template.

TO_CHAR is a synonym for VARCHAR_FORMAT.

Related reference:
* ['VARCHAR_FORMAT” on page 487

Chapter 3. Functions 473



TO_DATE

TO_DATE

»»—T0_DATE—(—string-expression—, format-string—) ><

The schema is SYSIBM.

The TO_DATE function returns a timestamp from a character string that has
been interpreted using a character template.

TO_DATE is a synonym for TIMESTAMP_FORMAT.

Related reference:
. I"TIMESTAMP_FORMAT” on page 468|

474  SQL Reference, Volume 1



TRANSLATE

TRANSLATE

character string expression:

»»>—TRANSLATE—(—char-string-exp >

L,—to-string—exp—,—from—string-exp |_

L,—pad-char—
graphic string expression:
»»>—TRANSLATE—(—graphic-string-exp—,—to-string-exp—,—from-string-exp——»
I )

,—pad-char—

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in
a string expression may have been translated into other characters.

The result of the function has the same data type and code page as the first
argument. If the first argument is a host variable, the code page of the result
is the database code page. The length attribute of the result is the same as that
of the first argument. If any specified expression can be NULL, the result can
be NULL. If any specified expression is NULL, the result will be NULL.

char-string-exp or graphic-string-exp
A string to be translated.

to-string-exp
Is a string of characters to which certain characters in the char-string-exp
will be translated.

If the to-string-exp is not present, and the data type is not graphic, all
characters in char-string-exp will be in monocase; that is, the characters a-z
will be translated to the characters A-Z, and characters with diacritical
marks will be translated to their uppercase equivalents, if they exist. For
example, in code page 850, é maps to E, but § is not mapped, because
code page 850 does not include Y.

from-string-exp
Is a string of characters which, if found in the char-string-exp, will be
translated to the corresponding character in the to-string-exp. If the

Chapter 3. Functions 475



TRANSLATE

from-string-exp contains duplicate characters, the first one found will be
used, and the duplicates will be ignored. If the to-string-exp is longer than
the from-string-exp, the surplus characters will be ignored. If the
to-string-exp is present, the from-string-exp must also be present.

pad-char-exp
Is a single character that will be used to pad the to-string-exp if the
to-string-exp is shorter than the from-string-exp. The pad-char-exp must have
a length attribute of one, or an error is returned. If not present, it will be
taken to be a single-byte blank.

The arguments may be either strings of data type CHAR or VARCHAR, or
graphic strings of data type GRAPHIC or VARGRAPHIC. They may not have
data type LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or
DBCLOB.

With graphic-string-exp, only the pad-char-exp is optional (if not provided, it
will be taken to be the double-byte blank), and each argument, including the
pad character, must be of graphic data type.

The result is the string that occurs after translating all the characters in the
char-string-exp or graphic-string-exp that occur in the from-string-exp to the
corresponding character in the to-string-exp or, if no corresponding character
exists, to the pad character specified by the pad-char-exp.

The code page of the result of TRANSLATE is the same as the code page of
the first operand. As of Version 8, if the first operand is a host variable, the
code page of the result is the database code page. Each of the other operands
is converted to the result code page unless it or the first operand is defined as
FOR BIT DATA (in which case there is no conversion).

If the arguments are of data type CHAR or VARCHAR, the corresponding
characters of the to-string-exp and the from-string-exp must have the same
number of bytes. For example, it is not valid to translate a single-byte
character to a multi-byte character or vice versa. An error will result if an
attempt is made to do this. The pad-char-exp must not be the first byte of a
valid multi-byte character, or SQLSTATE 42815 is returned. If the pad-char-exp
is not present, it will be taken to be a single-byte blank.

If only the char-string-exp is specified, single-byte characters will be
monocased and multi-byte characters will remain unchanged.

Examples:
* Assume the host variable SITE (VARCHAR(30)) has a value of "Hanauma

7

Bay’.
TRANSLATE (:SITE)

476  SQL Reference, Volume 1



TRANSLATE

Returns the value ' HANAUMA BAY’.
TRANSLATE(:SITE 'j','B")

Returns the value "Hanauma jay’.
TRANSLATE(:SITE,'ei','aa"')

Returns the value "Heneume Bey’.
TRANSLATE(:SITE,'bA','Bay','%")

Returns the value " HAnAumA bA%’.
TRANSLATE(:SITE,'r','Bu')

Returns the value "Hana ma ray’.

Chapter 3. Functions 477



TRUNCATE or TRUNC

TRUNCATE or TRUNC

TRUNCATE: (—expressionl—,—expression2—) >
TRUNG—

The schema is SYSIBM. (The SYSFUN version of the TRUNCATE or TRUNC
function continues to be available.)

Returns expressionl truncated to expression2 places to the right of the decimal
point if expression2 is positive, or to the left of the decimal point if expression2
is zero or negative.

expressionl
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a small or a large integer. The absolute value
of the integer specifies the number of places to the right of the decimal
point for the result if expression2 is not negative, or to left of the decimal
point if expression2 is negative.

If the absolute value of expression2 is larger than the number of digits to
the left of the decimal point, the result is 0. For example:

TRUNCATE(748.58,-4) = 0

The data type and length attribute of the result are the same as the data type
and length attribute of the first argument.

The result can be null if the argument can be null or the database is
configured with DFT_SQLMATHWARN set to YES; the result is the null value
if the argument is null.

Examples:

* Using the EMPLOYEE table, calculate the average monthly salary for the
highest paid employee. Truncate the result two places to the right of the
decimal point.

SELECT TRUNCATE (MAX(SALARY)/12,2)
FROM EMPLOYEE;

Because the highest paid employee earns $52750.00 per year, the example
returns 4395.83.

* Display the number 873.726 truncated 2, 1, 0, -1, and -2 decimal places,
respectively.

VALUES (
TRUNC(873.726,2),
TRUNC(873.726,1),

478  SQL Reference, Volume 1



TRUNCATE or TRUNC

TRUNC(873.726,0),
TRUNC(873.726,-1),
TRUNC(873.726,-2),
TRUNC(873.726,-3) );

This example returns 873.720, 873.700, 873.000, 870.000, 800.000, and 0.000.

Chapter 3. Functions 479



TYPE_ID

TYPE_ID

»»—TYPE_ID—(—expression—) ><

The schema is SYSIBM.

The TYPE_ID function returns the internal type identifier of the dynamic data
type of the expression.

The argument must be a user-defined structured type. (This function cannot
be used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.)

The data type of the result of the function is INTEGER. If expression can be
null, the result can be null; if expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases.
The value may be different, even though the type schema and type name of
the dynamic data type are the same. When coding for portability, use the
TYPE_SCHEMA and TYPE_NAME functions to determine the type schema
and type name.

Examples:

* A table hierarchy exists having root table EMPLOYEE of type EMP and
subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the internal type
identifier of the row that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE->NAME,

TYPE_ID(DEREF (WHO_RESPONSIBLE))
FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

480 SQL Reference, Volume 1



TYPE_NAME

TYPE_NAME

»»—TYPE_NAME—(—expression—) >

The schema is SYSIBM.

The TYPE_NAME function returns the unqualified name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. (This function cannot
be used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.)

The data type of the result of the function is VARCHAR(18). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_SCHEMA function to determine the schema name of the type
name returned by TYPE_NAME.

Examples:

* A table hierarchy exists having root table EMPLOYEE of type EMP and
subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the type of the row
that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE->NAME,
TYPE_NAME (DEREF (WHO_RESPONSIBLE)),

TYPE_SCHEMA (DEREF (WHO_RESPONSIBLE))
FROM ACTIVITIES

The DEREEF function is used to return the object corresponding to the row.

Chapter 3. Functions 481



TYPE_SCHEMA

TYPE_SCHEMA

»»—TYPE_SCHEMA— (—expression—) ><

The schema is SYSIBM.

The TYPE_SCHEMA function returns the schema name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. This function cannot be
used as a source function when creating a user-defined function. Because it
accepts any structured data type as an argument, it is not necessary to create
additional signatures to support different user-defined types.

The data type of the result of the function is VARCHAR(128). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_NAME function to determine the type name associated with
the schema name returned by TYPE_SCHEMA.

Related reference:
+ I'TYPE_NAME” on page 48|

482 SQL Reference, Volume 1



UCASE or UPPER

UCASE or UPPER

UCASE]—(—expr*ession—) >
UPPER

The schema is SYSIBM. (The SYSFUN version of this function continues to be
available for upward compatibility. See Version 5 documentation for a
description.)

The UCASE or UPPER function is identical to the TRANSLATE function
except that only the first argument (char-string-exp) is specified.

Notes:
This function has been extended to recognize the lowercase and uppercase
properties of a Unicode character. In a Unicode database, all Unicode

characters correctly convert to uppercase.

Related reference:
« 'TRANSLATE” on page 475

Chapter 3. Functions 483



VALUE

VALUE

484

»»—VALUE—(—expression——, expressi onl)

The schema is SYSIBM.
The VALUE function returns the first argument that is not null.
VALUE is a synonym for COALESCE.

Related reference:
* ["COALESCE” on page 311|

SQL Reference, Volume 1



VARCHAR

VARCHAR

Character to Varchar:

»»>—VARCHAR— (—character-string-expression |_ _| ) >«
,—integer

Datetime to Varchar:

»»>—VARCHAR—(—datet ime-expression—) >

Graphic to Varchar:

»»>—VARCHAR— (—graphic-string-expression |_ _| ) ><
,—integer

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string
representation of:

* A character string, if the first argument is any type of character string

* A graphic string (Unicode databases only), if the first argument is any type
of graphic string

* A datetime value, if the argument is a date, time, or timestamp.

Character to Varchar

character-string-expression
An expression whose value must be of a character-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
32 672 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Datetime to Varchar

datetime-expression
An expression whose value must be of a date, time, or timestamp data

type.

Graphic to Varchar

Chapter 3. Functions 485



VARCHAR

graphic-string-expression
An expression whose value must be of a graphic-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
16 336 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Example:

* Using the EMPLOYEE table, set the host variable JOB_DESC
(VARCHAR(8)) to the VARCHAR equivalent of the job description (JOB
defined as CHAR(8)) for employee Dolores Quintana.

SELECT VARCHAR(JOB)
INTO :JOB_DESC
FROM EMPLOYEE
WHERE LASTNAME = 'QUINTANA'

486 SQL Reference, Volume 1



VARCHAR_FORMAT

VARCHAR_FORMAT

»»—VARCHAR_FORMAT— (—t imestamp-expression—, format-string—) ><

The schema is SYSIBM.

The VARCHAR_FORMAT function returns a character representation of a
timestamp that has been formatted using a character template.

timestamp-expression
An expression that results in a timestamp. The argument must be a
timestamp or a string representation of a timestamp that is neither a
CLOB nor a LONG VARCHAR. (If string-expression is an untyped
parameter marker, the type is assumed to be TIMESTAMP.) The string
expression returns a CHAR or a VARCHAR value whose maximum
length is not greater than 254 (SQLSTATE 42815). Leading and trailing
blanks are removed from string-expression, and the resulting substring is
interpreted as a timestamp using the format specified by format-string.
Leading zeros can be omitted from any timestamp components except the
year. Blanks can be used in place of leading zeros for these components.
For example, with a format string of 'YYYY-MM-DD HH24:MI:SS', each of
the following strings is an acceptable specification for 9 a.m. on January 1,
2000:

'2000-1-01 09:00:00' (single digit for month)
'2000- 1-01 09:00:00' (single digit - preceded by a blank - for month)

'2000-1-1 09:00:00" (single digits for month and day)
'2000-01-01 9:00:00" (single digit for hour)
'2000-01-01 09:0:0' (single digits for minutes and seconds)

'2000- 1- 1 09: 0: 0 (single digit - preceded by a blank - for month,
day, minutes, and seconds)
'2000-01-01 09:00:00" (maximum number of digits for each element)

format-string
A character constant that contains a template for how the result is to be
formatted. The length of the format string must not be greater than 254
(SQLSTATE 42815). Leading and trailing blanks are removed from
format-string, and the resulting substring must be a valid template for a
timestamp value (SQLSTATE 42815). The content of format-string can be
specified in mixed case.

Valid format strings are:
"YYYY-MM-DD HH24:MI:SS'

where YYYY represents a 4-digit year value; MM represents a 2-digit
month value (01-12; January=01); DD represents a 2-digit day of the
month value (01-31); HH24 represents a 2-digit hour of the day value

Chapter 3. Functions 487



VARCHAR_FORMAT

488

(00-24; If the hour is 24, the minutes and seconds values are zero.); MI
represents a 2-digit minute value (00-59); and SS represents a 2-digit
seconds value (00-59).

The result of the function is a varying-length character string containing a

formatted timestamp expression. The format string also determines the length
attribute and the actual length of the result. If format-string is "YYYY-MM-DD
HH24:MI:SS’, the length attribute is 19. The result is 19 characters of the form:

YYYY-MM-DD HH:MI:SS

For example, with format 'YYYY-MM-DD HH24:MI:SS' and a time and date of 10
a.m. on January 1, 2000, the following is returned:

'2000-01-01 10:00:00"

Even though the values for month and day only require a single digit, in this
example, each significant digit is preceded with a leading zero. And, even
though the minutes and seconds values are both zero, the maximum number
of digits are used for each, and '00" is returned for each of these parts in the
result.

If the first argument can be null, the result can be null; if the first argument is
null, the result is the null value. The CCSID of the result is the SBCS CCSID
of the system.

Example:

* Display the table names and creation timestamps for all of the system tables
whose name starts with "‘SYSU".
SELECT VARCHAR(name, 20) AS TABLE_NAME,
VARCHAR_FORMAT (ctime, 'YYYY-MM-DD HH24:MI:SS') AS CREATION_TIME

FROM SYSCAT.TABLES
WHERE name LIKE 'SYSU%'

This example returns the following:

TABLE_NAME CREATION_TIME
SYSUSERAUTH 2000-05-19 08:18:56
SYSUSEROPTIONS 2000-05-19 08:18:56

SQL Reference, Volume 1



VARGRAPHIC

VARGRAPHIC

Character to Vargraphic:

»»>—VARGRAPHIC—(—character-string-expression—) ><

Datetime to Vargraphic:

»>—VARGRAPHIC—(—datet ime-expression—) ><

Graphic to Vargraphic:

»»>—VARGRAPHIC—(—graphic-string-expression |_ _| ) >4
,—integer

The schema is SYSIBM.

The VARGRAPHIC function returns a varying-length graphic string
representation of:

* A character string, converting single-byte characters to double-byte
characters, if the first argument is any type of character string
* A graphic string, if the first argument is any type of graphic string

* A datetime value (Unicode databases only), if the argument is a date, time,
or timestamp.

The result of the function is a varying length graphic string (VARGRAPHIC
data type). If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Character to Vargraphic

character-string-expression
An expression whose value must be of a character string data type other
than LONG VARCHAR or CLOB, and whose maximum length must not
be greater than 16 336 bytes.

The length attribute of the result is equal to the length attribute of the
argument.

Let S denote the value of the character-string-expression. Each single-byte
character in S is converted to its equivalent double-byte representation or to
the double-byte substitution character in the result; each double-byte character
in S is mapped ’as-is’. If the first byte of a double-byte character appears as

Chapter 3. Functions 489



VARGRAPHIC

490

the last byte of S, it is converted into the double-byte substitution character.
The sequential order of the characters in S is preserved.

The following are additional considerations for the conversion.

* For a Unicode database, this function converts the character string from the
code page of the operand to UCS-2. Every character of the operand,
including double-byte characters, is converted. If the second argument is
given, it specifies the desired length of the resulting string (in UCS-2
characters).

* The conversion to double-byte code points by the VARGRAPHIC function
is based on the code page of the operand.

* Double-byte characters of the operand are not converted. All other
characters are converted to their corresponding double-byte equivalent. If
there is no corresponding double-byte equivalent, the double-byte
substitution character for the code page is used.

* No warning or error code is generated if one or more double-byte
substitution characters are returned in the result.

Datetime to Vargraphic

datetime-expression
An expression whose value must be of the DATE, TIME, or TIMESTAMP
data type.

Graphic to Vargraphic

graphic-string-expression
An expression that returns a value that is a graphic string.

integer
The length attribute for the resulting varying length graphic string. The
value must be between 0 and 16 336. If this argument is not specified, the
length of the result is the same as the length of the argument.

If the length of the graphic-string-expression is greater than the length attribute
of the result, truncation is performed and a warning is returned (SQLSTATE
01004), unless the truncated characters were all blanks and the
graphic-string-expression was not a long string (LONG VARGRAPHIC or
DBCLOB).

Related reference:

* [Appendix P, “Japanese and traditional-Chinese extended UNIX code (EUC)|
considerations” on page 883

SQL Reference, Volume 1



WEEK

WEEK

»>—WEEK—(—expression—) ><
Returns the week of the year of the argument as an integer value in range
1-54. The week starts with Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG

VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Chapter 3. Functions 491



WEEK_ISO

WEEK_ISO

»»—WEEK_ISO—(—expression—) ><

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in the range
1-53. The week starts with Monday and always includes 7 days. Week 1 is the
tirst week of the year to contain a Thursday, which is equivalent to the first
week containing January 4. It is therefore possible to have up to 3 days at the
beginning of a year appear in the last week of the previous year. Conversely,
up to 3 days at the end of a year may appear in the first week of the next
year.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:

The following list shows examples of the result of WEEK_ISO and
DAYOFWEEK_ISO.

DATE WEEK_ISO DAYOFWEEK_ISO
1997-12-28 52 7
1997-12-31 1 3
1998-01-01 1 4
1999-01-01 53 5
1999-01-04 1 1
1999-12-31 52 5
2000-01-01 52 6
2000-01-03 1 1

492  SQL Reference, Volume 1



YEAR

YEAR

»>—YEAR—(—expression—) >

The schema is SYSIBM.
The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

¢ If the argument is a date, timestamp, or valid string representation of a date
or timestamp:

— The result is the year part of the value, which is an integer between 1
and 9 999.

* If the argument is a date duration or timestamp duration:

— The result is the year part of the value, which is an integer between
-9999 and 9 999. A nonzero result has the same sign as the argument.

Examples:
¢ Select all the projects in the PROJECT table that are scheduled to start
(PRSTDATE) and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJECT
WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

* Select all the projects in the PROJECT table that are scheduled to take less
than one year to complete.

SELECT * FROM PROJECT
WHERE YEAR(PRENDATE - PRSTDATE) <1

Chapter 3. Functions 493



Table functions

Table functions

A table function can be used only in the FROM clause of a statement. Table
functions return columns of a table, resembling a table created through a
simple CREATE TABLE statement. Table functions can be qualified with a
schema name.

494  SQL Reference, Volume 1



MQREADALL

MQREADALL

»»—MQREADALL—(

) <
|—receive-servicc | Lnum-rowsJ
l—,—service—policy—l

The schema is MQDB?2.

The MQREADALL function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
does not remove the messages from the queue associated with receive-service.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned. The table returned contains the following columns:

MSG - a VARCHAR(4000) column containing the contents of the MQSeries
message.

CORRELID - a VARCHAR(24) column holding a correlation ID used to
relate messages.

TOPIC - a VARCHAR(40) column holding the topic that the message was
published with, if available.

QNAME - a VARCHAR(48) column holding the queue name where the
message was received.

MSGID - a CHAR(24) column holding the assigned MQSeries unique
identifier for this message.

MSGFORMAT - a VARCHAR(8) column holding the format of the message,
as defined by MQSeries. Typical strings have a MQSTR format.

receive-service

A string containing the logical MQSeries destination from which the
message is read. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy

A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT.XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the

Chapter 3. Functions 495



MQREADALL

MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2. DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

nUm-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT *
FROM table (MQREADALL()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQREADALL('MYSERVICE')) T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of "1234” are
returned. All columns are returned.

SELECT *

FROM table (MQREADALL()) T
WHERE T.CORRELID = '1234'

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT *
FROM table (MQREADALL(10)) T

496 SQL Reference, Volume 1



MQREADALLCLOB

MQREADALLCLOB

»»—MQREADALLCLOB—(

)——>«
Lreceive-servicc l Lnum-rowsJ
I—,—service—pol icy—l

The schema is DB2MQ.

The MQREADALLCLOB function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
does not remove the messages from the queue associated with receive-service.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned. The table returned contains the following columns:

MSG - a CLOB column containing the contents of the MQSeries message.
CORRELID - a VARCHAR(24) column holding a correlation ID used to
relate messages.

TOPIC - a VARCHAR(40) column holding the topic that the message was
published with, if available.

QNAME - a VARCHAR(48) column holding the queue name where the
message was received.

MSGID - a CHAR(24) column holding the assigned MQSeries unique
identifier for this message.

MSGFORMAT - a VARCHAR(8) column holding the format of the message,
as defined by MQSeries. Typical strings have an MQSTR format.

receive-service

A string containing the logical MQSeries destination from which the
message is read. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface for further details. If
receive-service is not specified, then the DB2.DEFAULT.SERVICE will be
used. The maximum size of receive-service is 48 bytes.

service-policy

A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If

Chapter 3. Functions 497



MQREADALLCLOB

498

service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

num-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT =
FROM table (MQREADALLCLOB()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQREADALLCLOB('MYSERVICE')) T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of "1234” are
returned. All columns are returned.

SELECT *

FROM table (MQREADALLCLOB()) T
WHERE T.CORRELID = '1234'

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT =
FROM table (MQREADALLCLOB(10)) T

SQL Reference, Volume 1



MQRECEIVEALL

MQRECEIVEALL

»»>—MQRECEIVEALL—( >
|—receive-servicc | |

I—,—service-pol icy
|—,—correl—idJ

> ) >«

menum-rows—l

The schema is MQDB2.

The MQRECEIVEALL function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
removes the messages from the queue associated with receive-service.

If a correl-id is specified, then only those messages with a matching correlation
identifier will be returned. If correl-id is not specified, then the message at the
head of the queue will be returned.

If num-rows is specified, then a maximum of num-rows messages will be

returned. If num-rows is not specified, then all available messages are returned.

The table returned contains the following columns:

* MSG - a VARCHAR(4000) column containing the contents of the MQSeries
message.

¢ CORRELID - a VARCHAR(24) column holding a correlation ID used to
relate messages.

* TOPIC - a VARCHAR(40) column holding the topic that the message was
published with, if available.

* QNAME - a VARCHAR(48) column holding the queue name where the
message was received.

¢ MSGID - a CHAR(24) column holding the assigned MQSeries unique
identifier for this message.

¢ MSGFORMAT - a VARCHAR(8) column holding the format of the message,
as defined by MQSeries. Typical strings have a MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface manual for further

Chapter 3. Functions 499



MQRECEIVEALL

details. If receive-service is not specified, then the DB2. DEFAULT.SERVICE
will be used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT. XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is
specified. The maximum size of correl-id is 24 bytes.

NUM-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT =
FROM table (MQRECEIVEALL()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALL('MYSERVICE')) T

Example 3: This example receives all of the message from the head of the
queue specified by the service "MYSERVICE", using the policy "MYPOLICY".
Only messages with a CORRELID of '1234" are returned. Only the MSG and
CORRELID columns are returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALL('MYSERVICE','MYPOLICY','1234')) T

500 SQL Reference, Volume 1



MQRECEIVEALL

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT =
FROM table (MQRECEIVEALL(10)) T

Chapter 3. Functions 501



MQRECEIVEALLCLOB

MQRECEIVEALLCLOB
»>—MQRECEIVEALLCLOB—( >
] Lreceive-servicc | | nurn-rowsJ
I—,—service—polic, | |_’_|
l—,—correl— id—|
>—) ><

The schema is DB2MQ.

The MQRECEIVEALLCLOB function returns a table containing the messages
and message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation
removes the messages from the queue associated with receive-service.

If a correl-id is specified, then only those messages with a matching correlation
identifier will be returned. If correl-id is not specified, then the message at the
head of the queue will be returned.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages are returned.
The table returned contains the following columns:

* MSG - a CLOB column containing the contents of the MQSeries message.

* CORRELID - a VARCHAR(24) column holding a correlation ID used to
relate messages.

* TOPIC - a VARCHAR(40) column holding the topic that the message was
published with, if available.

* QONAME - a VARCHAR(48) column holding the queue name where the
message was received.

* MSGID - a CHAR(24) column holding the assigned MQSeries unique
identifier for this message.

* MSGFORMAT - a VARCHAR(8) column holding the format of the message,
as defined by MQSeries. Typical strings have an MQSTR format.

receive-service
A string containing the logical MQSeries destination from which the
message is received. If specified, the receive-service must refer to a service
point defined in the AMT.XML repository file. A service point is a logical
end-point from which a message is sent or received. Service point
definitions include the name of the MQSeries Queue Manager and Queue.
See the MQSeries Application Messaging Interface manual for further

502 SQL Reference, Volume 1



MQRECEIVEALLCLOB

details. If receive-service is not specified, then the DB2. DEFAULT.SERVICE
will be used. The maximum size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries AMI Service Policy used in the handling
of this message. If specified, the service-policy refers to a Policy defined in
the AMT XML repository file. A service policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. See the
MQSeries Application Messaging Interface manual for further details. If
service-policy is not specified, then the default DB2.DEFAULT.POLICY will
be used. The maximum size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is
specified. The maximum size of correl-id is 24 bytes.

NUM-rows
A positive integer containing the maximum number of messages to be
returned by the function.

Examples:

Example 1: This example receives all the messages from the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.

SELECT *
FROM table (MQRECEIVEALLCLOB()) T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALLCLOB('MYSERVICE')) T

Example 3: This example receives all of the message from the head of the
queue specified by the service "MYSERVICE", using the policy "MYPOLICY".
Only messages with a CORRELID of '1234” are returned. Only the MSG and
CORRELID columns are returned.

SELECT T.MSG, T.CORRELID
FROM table (MQRECEIVEALLCLOB('MYSERVICE','MYPOLICY','1234')) T

Chapter 3. Functions 503



MQRECEIVEALLCLOB

Example 4: This example receives the first 10 messages from the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY). All columns are returned.

SELECT =
FROM table (MQRECEIVEALLCLOB(10)) T

504 SQL Reference, Volume 1



SNAPSHOT_AGENT

SNAPSHOT_AGENT

»»—SNAPSHOT_AGENT—(—VARCHAR(255), INT—) >

The schema is SYSPROC.

The SNAPSHOT_AGENT function returns information about agents from an
application snapshot.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 20. Column names and data types of the table returned by the
SNAPSHOT_AGENT table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
AGENT_PID BIGINT

Related reference:

* “Snapshot monitor logical data groups and data elements” in the Systemn
Monitor Guide and Reference

Chapter 3. Functions 505



SNAPSHOT_APPL

SNAPSHOT_APPL

506

»»—SNAPSHOT_APPL—(—VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_APPL function returns general information from an
application snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:

* A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
UOW_LOG_SPACE_USED BIGINT
ROWS_READ BIGINT
ROWS_WRITTEN BIGINT
POOL_DATA_L_READS BIGINT
POOL_DATA_P_READS BIGINT
POOL_DATA_WRITES BIGINT
POOL_INDEX_L_READS BIGINT

SQL Reference, Volume 1



SNAPSHOT_APPL

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type
POOL_INDEX_P_READS BIGINT
POOL_INDEX_WRITES BIGINT
POOL_READ_TIME BIGINT
POOL_WRITE_TIME BIGINT
DIRECT_READS BIGINT
DIRECT_WRITES BIGINT
DIRECT_READ_REQS BIGINT
DIRECT_WRITE_REQS BIGINT
DIRECT_READ_TIME BIGINT
DIRECT_WRITE_TIME BIGINT
POOL_DATA_TO_ESTORE BIGINT
POOL_INDEX_TO_ESTORE BIGINT
POOL_INDEX_FROM_ESTORE BIGINT
POOL_DATA_FROM_ESTORE BIGINT
UNREAD_PREFETCH_PAGES BIGINT
LOCKS_HELD BIGINT
LOCK_WAITS BIGINT
LOCK_WAIT_TIME BIGINT
LOCK_ESCALS BIGINT
X_LOCK_ESCALS BIGINT
DEADLOCKS BIGINT
TOTAL_SORTS BIGINT
TOTAL_SORT_TIME BIGINT
SORT_OVERFLOWS BIGINT
COMMIT_SQL_STMTS BIGINT
ROLLBACK_SQL_STMTS BIGINT
DYNAMIC_SQL_STMTS BIGINT
STATIC_SQL_STMTS BIGINT
FAILED_SQL_STMTS BIGINT
SELECT_SQL_STMTS BIGINT
DDL_SQL_STMTS BIGINT

Chapter 3. Functions

507



SNAPSHOT_APPL

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type
UID_SQL_STMTS BIGINT
INT_AUTO_REBINDS BIGINT
INT_ROWS_DELETED BIGINT
INT_ROWS_UPDATED BIGINT
INT_COMMITS BIGINT
INT_ROLLBACKS BIGINT
INT_DEADLOCK_ROLLBACKS BIGINT
ROWS_DELETED BIGINT
ROWS_INSERTED BIGINT
ROWS_UPDATED BIGINT
ROWS_SELECTED BIGINT
BINDS_PRECOMPILES BIGINT
OPEN_REM_CURS BIGINT
OPEN_REM_CURS_BLK BIGINT
REJ_CURS_BLK BIGINT
ACC_CURS_BLK BIGINT
SQL_REQS_SINCE_COMMIT BIGINT
LOCK_TIMEOUTS BIGINT
INT_ROWS_INSERTED BIGINT
OPEN_LOC_CURS BIGINT
OPEN_LOC_CURS_BLK BIGINT
PKG_CACHE_LOOKUPS BIGINT
PKG_CACHE_INSERTS BIGINT
CAT_CACHE_LOOKUPS BIGINT
CAT_CACHE_INSERTS BIGINT
CAT_CACHE_OVERFLOWS BIGINT
CAT_CACHE_HEAP_FULL BIGINT
NUM_AGENTS BIGINT
AGENTS_STOLEN BIGINT
ASSOCIATED_AGENTS_TOP BIGINT
APPL_PRIORITY BIGINT

508 SQL Reference, Volume 1



SNAPSHOT_APPL

Table 21. Column names and data types of the table returned by the
SNAPSHOT_APPL table function (continued)

Column name Data type
APPL_PRIORITY_TYPE BIGINT
PREFETCH_WAIT_TIME BIGINT
APPL_SECTION_LOOKUPS BIGINT
APPL_SECTION_INSERTS BIGINT
LOCKS_WAITING BIGINT
TOTAL_HASH_JOINS BIGINT
TOTAL_HASH_LOOPS BIGINT
HASH_JOIN_OVERFLOWS BIGINT
HASH_JOIN_SMALL_OVERFLOWS BIGINT
APPL_IDLE_TIME BIGINT
UOW_LOCK_WAIT_TIME BIGINT
UOW_COMP_STATUS BIGINT
AGENT_USR_CPU_TIME_S BIGINT
AGENT_USR_CPU_TIME_MS BIGINT
AGENT_SYS_CPU_TIME_S BIGINT
AGENT_SYS_CPU_TIME_MS BIGINT
APPL_CON_TIME TIMESTAMP
CONN_COMPLETE_TIME TIMESTAMP
LAST_RESET TIMESTAMP
UOW_START_TIME TIMESTAMP
UOW_STOP_TIME TIMESTAMP
PREV_UOW_STOP_TIME TIMESTAMP
UOW_ELAPSED_TIME_S BIGINT
UOW_ELAPSED_TIME_MS BIGINT
ELAPSED_EXEC_TIME_S BIGINT
ELAPSED_EXEC_TIME_MS BIGINT

INBOUND_COMM_ADDRESS

VARCHAR(SQLM_COMM_ADDR_SZ)

Related reference:

¢ “Snapshot monitor logical data groups and data elements” in the Systemn

Monitor Guide and Reference

Chapter 3. Functions

509



SNAPSHOT_APPL_INFO

SNAPSHOT_APPL_INFO

»»—SNAPSHOT_APPL_INFO—(—INT, VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_APPL_INFO function returns general information from an
application snapshot.

The arguments must be:
* A valid snapshot API request type, as defined in sqllib\ function\sqlmon.h.

* A valid database name in the same instance as the currently connected
database when calling this UDE. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

For the save to file option, if both the database name and the partition
number are NULLs, the result of the snapshot will be returned only if a
snapshot of the same request type has previously been taken through the
SYSPROC.SNAPSHOT_FILEW stored procedure; otherwise, a new snapshot
will be taken for the currently connected database and the current partition
number (as though the partition number had been set to -1).

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 22. Column names and data types of the table returned by the
SNAPSHOT_APPL_INFO table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
APPL_STATUS BIGINT
CODEPAGE_ID BIGINT
NUM_ASSOC_AGENTS BIGINT
COORD_PARTITION_NUM SMALLINT
AUTHORITY_LVL BIGINT
CLIENT_PID BIGINT

510 SQL Reference, Volume 1



SNAPSHOT_APPL_INFO

Table 22. Column names and data types of the table returned by the
SNAPSHOT_APPL_INFO table function (continued)

Column name Data type
COORD_AGENT_PID BIGINT
STATUS_CHANGE_TIME TIMESTAMP
CLIENT_PLATFORM SMALLINT
CLIENT_PROTOCOL SMALLINT
COUNTRY_CODE SMALLINT
APPL_NAME VARCHAR(255)
APPL_ID VARCHAR(32)
SEQUENCE_NO VARCHAR(4)
AUTH_ID VARCHAR(30)
CLIENT_NNAME VARCHAR(20)
CLIENT_PRDID VARCHAR(20)
INPUT_DB_ALIAS VARCHAR(20)
CLIENT_DB_ALIAS VARCHAR(20)
DB_NAME VARCHAR(8)
DB_PATH VARCHAR(256)
EXECUTION_ID VARCHAR(20)
CORR_TOKEN VARCHAR(32)
TPMON_CLIENT_USERID VARCHAR(20)
TPMON_CLIENT_WKSTN VARCHAR(20)
TPMON_CLIENT_APP VARCHAR(20)
TPMON_ACC_STR VARCHAR(100)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the Systemn
Monitor Guide and Reference

Chapter 3. Functions

511



SNAPSHOT_BP

SNAPSHOT_BP

»»—SNAPSHOT_BP— (—VARCHAR (255) , INT—) ><

The schema is SYSPROC.
The SNAPSHOT_BP function returns information from a buffer pool snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDE. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR BUFFERPOOLS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_BUFFERPOOLS, and
iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 23. Column names and data types of the table returned by the SNAPSHOT_BP
table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
POOL_DATA_L_READS BIGINT
POOL_DATA_P_READS BIGINT
POOL_DATA_WRITES BIGINT
POOL_INDEX_L_READS BIGINT
POOL_INDEX_P_READS BIGINT
POOL_INDEX_WRITES BIGINT
POOL_READ_TIME BIGINT
POOL_WRITE_TIME BIGINT
POOL_ASYNC_DATA_READS BIGINT

512 SQL Reference, Volume 1



SNAPSHOT_BP

Table 23. Column names and data types of the table returned by the SNAPSHOT_BP

table function (continued)

Column name Data type
POOL_ASYNC_DATA_WRITES BIGINT
POOL_ASYNC_INDEX_WRITES BIGINT
POOL_ASYNC_READ_TIME BIGINT
POOL_ASYNC_WRITE_TIME BIGINT
POOL_ASYNC_DATA_READ_REQS BIGINT
DIRECT_READS BIGINT
DIRECT_WRITES BIGINT
DIRECT_READ_REQS BIGINT
DIRECT_WRITE_REQS BIGINT
DIRECT_READ_TIME BIGINT
DIRECT_WRITE_TIME BIGINT
POOL_ASYNC_INDEX_READS BIGINT
POOL_DATA_TO_ESTORE BIGINT
POOL_INDEX_TO_ESTORE BIGINT
POOL_INDEX_FROM_ESTORE BIGINT
POOL_DATA_FROM_ESTORE BIGINT
UNREAD_PREFETCH_PAGES BIGINT
FILES_CLOSED BIGINT

BP_NAME VARCHAR(SQLM_IDENT_SZ)
DB_NAME VARCHAR(SQL_DBNAME_SZ)
DB_PATH VARCHAR(SQLM_DBPATH_SZ)

INPUT_DB_ALIAS

VARCHAR(SQL_DBNAME_SZ)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System

Monitor Guide and Reference

Chapter 3. Functions

513



SNAPSHOT_CONTAINER

SNAPSHOT_CONTAINER

»»—SNAPSHOT_CONTAINER— (—VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_CONTAINER function returns container configuration
information from a tablespace snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and
iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 24. Column names and data types of the table returned by the
SNAPSHOT_CONTAINER table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
TABLESPACE_ID BIGINT
TABLESPACE_NAME VARCHAR(128)
CONTAINER_ID BIGINT
CONTAINER_NAME VARCHAR(255)
CONTAINER_TYPE SMALLINT
TOTAL_PAGES BIGINT
USABLE_PAGES BIGINT
ACCESSIBLE BIGINT

514 SQL Reference, Volume 1



SNAPSHOT_CONTAINER

Table 24. Column names and data types of the table returned by the
SNAPSHOT_CONTAINER table function (continued)

Column name Data type

STRIPE_SET BIGINT

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

Chapter 3. Functions 515



SNAPSHOT_DATABASE

SNAPSHOT_DATABASE

»»—SNAPSHOT_DATABASE—(—VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_DATABASE function returns information from a database
snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:

e A GET SNAPSHOT FOR DATABASE ... WRITE TO FILE command, or
* A db2GetSnapshot API with SQLMA_DBASE, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
SEC_LOG_USED_TOP BIGINT
TOT_LOG_USED_TOP BIGINT
TOTAL_LOG_USED BIGINT
TOTAL_LOG_AVAILABLE BIGINT
ROWS_READ BIGINT
POOL_DATA_L_READS BIGINT
POOL_DATA_P_READS BIGINT
POOL_DATA_WRITES BIGINT
POOL_INDEX_L_READS BIGINT

516 SQL Reference, Volume 1



SNAPSHOT_DATABASE

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type
POOL_INDEX_P_READS BIGINT
POOL_INDEX_WRITES BIGINT
POOL_READ_TIME BIGINT
POOL_WRITE_TIME BIGINT
POOL_ASYNC_INDEX_READS BIGINT
POOL_DATA_TO_ESTORE BIGINT
POOL_INDEX_TO_ESTORE BIGINT
POOL_INDEX_FROM_ESTORE BIGINT
POOL_DATA_FROM_ESTORE BIGINT
POOL_ASYNC_DATA_READS BIGINT
POOL_ASYNC_DATA_WRITES BIGINT
POOL_ASYNC_INDEX_WRITES BIGINT
POOL_ASYNC_READ_TIME BIGINT
POOL_ASYNC_WRITE_TIME BIGINT
POOL_ASYNC_DATA_READ_REQS BIGINT
DIRECT_READS BIGINT
DIRECT_WRITES BIGINT
DIRECT_READ_REQS BIGINT
DIRECT_WRITE_REQS BIGINT
DIRECT_READ_TIME BIGINT
DIRECT_WRITE_TIME BIGINT
UNREAD_PREFETCH_PAGES BIGINT
FILES_CLOSED BIGINT
POOL_LSN_GAP_CLNS BIGINT
POOL_DRTY_PG_STEAL_CLNS BIGINT
POOL_DRTY_PG_THRSH_CLNS BIGINT
LOCKS_HELD BIGINT
LOCK_WAITS BIGINT
LOCK_WAIT_TIME BIGINT
LOCK_LIST_IN_USE BIGINT
DEADLOCKS BIGINT

Chapter 3. Functions 517



SNAPSHOT_DATABASE

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type
LOCK_ESCALS BIGINT
X_LOCK_ESCALS BIGINT
LOCKS_WAITING BIGINT
SORT_HEAP_ALLOCATED BIGINT
TOTAL_SORTS BIGINT
TOTAL_SORT_TIME BIGINT
SORT_OVERFLOWS BIGINT
ACTIVE_SORTS BIGINT
COMMIT_SQL_STMTS BIGINT
ROLLBACK_SQL_STMTS BIGINT
DYNAMIC_SQL_STMTS BIGINT
STATIC_SQL_STMTS BIGINT
FAILED_SQL_STMTS BIGINT
SELECT_SQL_STMTS BIGINT
DDL_SQL_STMTS BIGINT
UID_SQL_STMTS BIGINT
INT_AUTO_REBINDS BIGINT
INT_ROWS_DELETED BIGINT
INT_ROWS_UPDATED BIGINT
INT_COMMITS BIGINT
INT_ROLLBACKS BIGINT
INT_DEADLOCK_ROLLBACKS BIGINT
ROWS_DELETED BIGINT
ROWS_INSERTED BIGINT
ROWS_UPDATED BIGINT
ROWS_SELECTED BIGINT
BINDS_PRECOMPILES BIGINT
TOTAL_CONS BIGINT
APPLS_CUR_CONS BIGINT
APPLS_IN_DB2 BIGINT
SEC_LOGS_ALLOCATED BIGINT

518 SQL Reference, Volume 1



SNAPSHOT_DATABASE

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type
DB_STATUS BIGINT
LOCK_TIMEOUTS BIGINT
CONNECTIONS_TOP BIGINT
DB_HEAP_TOP BIGINT
INT_ROWS_INSERTED BIGINT
LOG_READS BIGINT
LOG_WRITES BIGINT
PKG_CACHE_LOOKUPS BIGINT
PKG_CACHE_INSERTS BIGINT
CAT_CACHE_LOOKUPS BIGINT
CAT_CACHE_INSERTS BIGINT
CAT_CACHE_OVERFLOWS BIGINT
CAT_CACHE_HEAP_FULL BIGINT
CATALOG_PARTITION SMALLINT
TOTAL_SEC_CONS BIGINT
NUM_ASSOC_AGENTS BIGINT
AGENTS_TOP BIGINT
COORD_AGENTS_TOP BIGINT
PREFETCH_WAIT_TIME BIGINT
APPL_SECTION_LOOKUPS BIGINT
APPL_SECTION_INSERTS BIGINT
TOTAL_HASH_JOINS BIGINT
TOTAL_HASH_LOOPS BIGINT
HASH_JOIN_OVERFLOWS BIGINT
HASH_JOIN_SMALL_OVERFLOWS BIGINT
PKG_CACHE_NUM_OVERFLOWS BIGINT
PKG_CACHE_SIZE_TOP BIGINT
DB_CONN_TIME TIMESTAMP
SQLM_ELM_LAST_RESET TIMESTAMP
SQLM_ELM_LAST_BACKUP TIMESTAMP
APPL_CON_TIME TIMESTAMP

Chapter 3. Functions

519



SNAPSHOT_DATABASE

520

Table 25. Column names and data types of the table returned by the
SNAPSHOT_DATABASE table function (continued)

Column name Data type

DB_LOCATION INTEGER

SERVER_PLATFORM INTEGER
APPL_ID_OLDEST_XACT BIGINT
CATALOG_PARTITION_NAME VARCHAR(SQL_NNAME_SZ)
INPUT_DB_ALIAS VARCHAR(SQL_DBNAME_SZ)
DB_NAME VARCHAR(SQL_DBNAME_SZ)
DB_PATH VARCHAR(SQLM_DBPATH_SZ)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SQL Reference, Volume 1



SNAPSHOT_DBM

SNAPSHOT_DBM

»»>—SNAPSHOT_DBM— (—INT—) >

The schema is SYSPROC.

The SNAPSHOT_DBM function returns information from a snapshot of the
DB2 database manager.

The argument must be a valid partition number. Specify -1 for the current
partition, -2 for all partitions. If NULL is specified, -1 is set implicitly.

If NULL is specified, the snapshot will be taken only if a file has not
previously been created by either:

* A GET SNAPSHOT FOR DBM ... WRITE TO FILE command, or
* A db2GetSnapshot API with SQLMA_DB2, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 26. Column names and data types of the table returned by the SNAPSHOT_DBM
table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
SORT_HEAP_ALLOCATED BIGINT
POST_THRESHOLD_SORTS BIGINT
PIPED_SORTS_REQUESTED BIGINT
PIPED_SORTS_ACCEPTED BIGINT
REM_CONS_IN BIGINT
REM_CONS_IN_EXEC BIGINT
LOCAL_CONS BIGINT
LOCAL_CONS_IN_EXEC BIGINT
CON_LOCAL_DBASES BIGINT
AGENTS_REGISTERED BIGINT
AGENTS_WAITING_ON_TOKEN BIGINT
DB2_STATUS BIGINT
AGENTS_REGISTERED_TOP BIGINT

Chapter 3. Functions 521



SNAPSHOT_DBM

Table 26. Column names and data types of the table returned by the SNAPSHOT_DBM
table function (continued)

Column name Data type
AGENTS_WAITING_TOP BIGINT
COMM_PRIVATE_MEM BIGINT
IDLE_AGENTS BIGINT
AGENTS_FROM_POOL BIGINT
AGENTS_CREATED_EMPTY_POOL BIGINT
COORD_AGENTS_TOP BIGINT
MAX_AGENT_OVERFLOWS BIGINT
AGENTS_STOLEN BIGINT
GW_TOTAL_CONS BIGINT
GW_CUR_CONS BIGINT
GW_CONS_WAIT_HOST BIGINT
GW_CONS_WAIT_CLIENT BIGINT
POST_THRESHOLD_HASH_JOINS BIGINT
INACTIVE_GW_AGENTS BIGINT
NUM_GW_CONN_SWITCHES BIGINT
DB2START_TIME TIMESTAMP
LAST_RESET TIMESTAMP

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

522 SQL Reference, Volume 1



SNAPSHOT_DYN_SQL

SNAPSHOT_DYN_SQL

»»>—SNAPSHOT_DYN_SQL— (—VARCHAR(255), INT—) >

The schema is SYSPROC.

The SNAPSHOT_DYN_SQL function returns information from a dynamic SQL
snapshot. It replaces the SQLCACHE_SNAPSHOT function, which is still
available for compatibility reasons.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:

* A GET SNAPSHOT FOR LOCKS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_LOCKS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 27. Column names and data types of the table returned by the
SNAPSHOT_DYN_SQL table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
ROWS_READ BIGINT
ROWS_WRITTEN BIGINT
NUM_EXECUTIONS BIGINT
NUM_COMPILATIONS BIGINT
PREP_TIME_WORST BIGINT
PREP_TIME_BEST BIGINT
INT_ROWS_DELETED BIGINT
INT_ROWS_INSERTED BIGINT

Chapter 3. Functions 523



SNAPSHOT_DYN_SQL

Table 27. Column names and data types of the table returned by the
SNAPSHOT_DYN_SQL table function (continued)

Column name Data type
INT_ROWS_UPDATED BIGINT
STMT_SORTS BIGINT
TOTAL_EXEC_TIME BIGINT
TOTAL_SYS_CPU_TIME BIGINT
TOTAL_USR_CPU_TIME BIGINT
STMT_TEXT CLOB(65536)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

524  SQL Reference, Volume 1



SNAPSHOT_FCM

SNAPSHOT_FCM

»»>—SNAPSHOT_FCM— (—INT—)

The schema is SYSPROC.

The SNAPSHOT_FCM function returns database manager level information
regarding the fast communication manager (FCM).

The function returns a table as shown below.

Table 28. Column names and data types of the table returned by the SNAPSHOT_FCM

table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
BUFF_FREE BIGINT
BUFF_FREE_BOTTOM BIGINT
MA_FREE BIGINT
MA_FREE_BOTTOM BIGINT
CE_FREE BIGINT
CE_FREE_BOTTOM BIGINT
RB_FREE BIGINT
RB_FREE_BOTTOM BIGINT
PARTITION_NUMBER SMALLINT

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System

Monitor Guide and Reference

Chapter 3. Functions 525



SNAPSHOT_FCMPARTITION

SNAPSHOT_FCMPARTITION

»»—SNAPSHOT_FCMPARTITION—(—INT—) >

The schema is SYSPROC.

The SNAPSHOT_FCMPARTITION function returns information from a
snapshot of the fast communication manager in the database manager.

The argument must be a valid partition number. Specify -1 for the current
partition, -2 for all partitions. If NULL is specified, -1 is set implicitly.

If NULL is specified, the snapshot will be taken only if a file has not
previously been created by either:

* A GET SNAPSHOT FOR DBM ... WRITE TO FILE command, or
* A db2GetSnapshot API with SQLMA_DB2, and iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 29. Column names and data types of the table returned by the
SNAPSHOT_FCMPARTITION table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
CONNECTION_STATUS BIGINT
TOTAL_BUFFERS_SENT BIGINT
TOTAL_BUFFERS_RCVD BIGINT
PARTITION_NUMBER SMALLINT

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System

Monitor Guide and Reference

526  SQL Reference, Volume 1



SNAPSHOT_LOCK

SNAPSHOT_LOCK

»»—SNAPSHOT_LOCK— (—VARCHAR(255), INT—) >

The schema is SYSPROC.
The SNAPSHOT_LOCK function returns information from a lock snapshot.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDFE. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR LOCKS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_LOCKS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 30. Column names and data types of the table returned by the
SNAPSHOT_LOCK table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
TABLE_FILE_ID BIGINT
LOCK_OBJECT_TYPE BIGINT
LOCK_MODE BIGINT
LOCK_STATUS BIGINT
LOCK_OBJECT_NAME BIGINT
PARTITION_NUMBER SMALLINT
LOCK_ESCALATION SMALLINT

Chapter 3. Functions 527



SNAPSHOT_LOCK

Table 30. Column names and data types of the table returned by the
SNAPSHOT_LOCK table function (continued)

Column name Data type

TABLE_NAME VARCHAR(SQL_MAX_TABLE_NAME_
LEN)

TABLE_SCHEMA VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

TABLESPACE_NAME VARCHAR(SQLB_MAX_TBS_NAME_SZ)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

528 SQL Reference, Volume 1



SNAPSHOT_LOCKWAIT

SNAPSHOT_LOCKWAIT

»»—SNAPSHOT_LOCKWAIT—(—VARCHAR(255), INT—) >

The schema is SYSPROC.

The SNAPSHOT_LOCKWAIT function returns lock waits information from an
application snapshot.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:

* A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 31. Column names and data types of the table returned by the
SNAPSHOT_LOCKWAIT table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
SUBSECTION_NUMBER BIGINT
LOCK_MODE BIGINT
LOCK_OBJECT_TYPE BIGINT
AGENT_ID_HOLDING_LK BIGINT
LOCK_WAIT_START_TIME TIMESTAMP
LOCK_MODE_REQUESTED BIGINT
PARTITION_NUMBER SMALLINT

Chapter 3. Functions 529



SNAPSHOT_LOCKWAIT

530

Table 31. Column names and data types of the table returned by the
SNAPSHOT_LOCKWAIT table function (continued)

Column name

Data type

LOCK_ESCALLATION

SMALLINT

TABLE_NAME

VARCHAR(SQL_MAX_TABLE_NAME_
LEN)

TABLE_SCHEMA

VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

TABLESPACE_NAME

VARCHAR(SQLB_MAX_TBS_NAME_SZ)

APPL_ID_HOLDING_LK

VARCHAR(SQLM_APPLID_SZ)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System

Monitor Guide and Reference

SQL Reference, Volume 1



SNAPSHOT QUIESCERS

SNAPSHOT_QUIESCERS

»»>—SNAPSHOT_QUIESCERS—(—VARCHAR(255), INT—) >

The schema is SYSPROC.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDFE. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.
The function returns a table as shown below.

Table 32. Column names and data types of the table returned by the
SNAPSHOT_QUIESCERS table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
TABLESPACE_NAME VARCHAR(128)
QUIESCER_TBS_ID BIGINT
QUIESCER_OBJ_ID BIGINT
QUIESCER_AUTH_ID BIGINT
QUIESCER_AGENT_ID BIGINT
QUIESCER_STATE BIGINT

Related reference:

¢ “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

Chapter 3. Functions 531



SNAPSHOT_RANGES

SNAPSHOT_RANGES

532

»»—SNAPSHOT_RANGES— (—VARCHAR(255) , INT—) ><

The schema is SYSPROC.

The SNAPSHOT_RANGES function returns information from a range
snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.
The function returns a table as shown below.

Table 33. Column names and data types of the table returned by the
SNAPSHOT_RANGES table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
TABLESPACE_ID BIGINT
TABLESPACE_NAME VARCHAR(128)
RANGE_NUMBER BIGINT
RANGE_STRIPE_SET_NUMBER BIGINT
RANGE_OFFSET BIGINT
RANGE_MAX_PAGE BIGINT
RANGE_MAX_EXTENT BIGINT
RANGE_START_STRIPE BIGINT
RANGE_END_STRIPE BIGINT
RANGE_ADJUSTMENT BIGINT
RANGE_NUM_CONTAINER BIGINT
RANGE_CONTAINER_ID BIGINT

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

SQL Reference, Volume 1



SNAPSHOT_STATEMENT

SNAPSHOT_STATEMENT

»»—SNAPSHOT_STATEMENT—(—VARCHAR(255), INT—) >

The schema is SYSPROC.

The SNAPSHOT_STATEMENT function returns information about statements
from an application snapshot.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 34. Column names and data types of the table returned by the
SNAPSHOT_STATEMENT table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
AGENT_ID BIGINT
ROWS_READ BIGINT
ROWS_WRITTEN BIGINT
NUM_AGENTS BIGINT
AGENTS_TOP BIGINT
STMT_TYPE BIGINT
STMT_OPERATION BIGINT
SECTION_NUMBER BIGINT

Chapter 3. Functions 533



SNAPSHOT_STATEMENT

Table 34. Column names and data types of the table returned by the
SNAPSHOT_STATEMENT table function (continued)

Column name Data type

QUERY_COST_ESTIMATE BIGINT

QUERY_CARD_ESTIMATE BIGINT

DEGREE_PARALLELISM BIGINT

STMT_SORTS BIGINT

TOTAL_SORT_TIME BIGINT

SORT_OVERFLOWS BIGINT

INT_ROWS_DELETED BIGINT

INT_ROWS_UPDATED BIGINT

INT_ROWS_INSERTED BIGINT

FETCH_COUNT BIGINT

STMT_START TIMESTAMP

STMT_STOP TIMESTAMP

STMT_USR_CPU_TIME_S BIGINT

STMT_USR_CPU_TIME_MS BIGINT

STMT_SYS_CPU_TIME_S BIGINT

STMT_SYS_CPU_TIME_MS BIGINT

STMT_ELAPSED_TIME_S BIGINT

STMT_ELAPSED_TIME_MS BIGINT

BLOCKING_CURSOR SMALLINT

STMT_PARTITION_NUMBER SMALLINT

CURSOR_NAME VARCHAR(SQL_MAX_CURSOR_NAME_
LEN)

CREATOR VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

PACKAGE_NAME VARCHAR(SQLM_IDENT_SZ)

STMT_TEXT CLOB(65536)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

534 SQL Reference, Volume 1



SNAPSHOT_SUBSECT

SNAPSHOT_SUBSECT

»>—SNAPSHOT_SUBSECT— (—VARCHAR(255), INT—) >

The schema is SYSPROC.

The SNAPSHOT_SUBSECT function returns information about subsections of
access plans from an application snapshot.

The arguments must be:

* A valid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR APPLICATIONS ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_APPLS, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 35. Column names and data types of the table returned by the
SNAPSHOT_SUBSECT table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
STMT_TEXT CLOB(65536)
SS_EXEC_TIME BIGINT
TQ_TOT_SEND_SPILLS BIGINT
TQ_CUR_SEND_SPILLS BIGINT
TQ_MAX_SEND_SPILLS BIGINT
TQ_ROWS_READ BIGINT
TQ_ROWS_WRITTEN BIGINT
ROWS_READ BIGINT

Chapter 3. Functions 535



SNAPSHOT_SUBSECT

Table 35. Column names and data types of the table returned by the
SNAPSHOT_SUBSECT table function (continued)

Column name Data type
ROWS_WRITTEN BIGINT
SS_USR_CPU_TIME BIGINT
SS_SYS_CPU_TIME BIGINT
SS_NUMBER INTEGER
SS_STATUS INTEGER
SS_PARTITION_NUMBER SMALLINT
TQ_PARTITION_WAITED_FOR SMALLINT
TQ_WAIT_FOR_ANY INTEGER
TQ_ID_WAITING_ON INTEGER

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System
Monitor Guide and Reference

536 SQL Reference, Volume 1



SNAPSHOT_SWITCHES

SNAPSHOT_SWITCHES

»»—SNAPSHOT_SWITCHES—(—INT—)

The schema is SYSPROC.

The SNAPSHOT_SWITCHES function returns information about the database
snapshot switch state. The function returns a table as shown below.

Table 36. Column names and data types of the table returned by the

SNAPSHOT_SWITCHES table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
UOW_SW_STATE SMALLINT
UOW_SW_TIME TIMESTAMP
STATEMENT_SW_STATE SMALLINT
STATEMENT_SW_TIME TIMESTAMP
TABLE_SW_STATE SMALLINT
TABLE_SW_TIME TIMESTAMP
BUFFPOOL_SW_STATE SMALLINT
BUFFPOOL_SW_TIME TIMESTAMP
LOCK_SW_STATE SMALLINT
LOCK_SW_TIME TIMESTAMP
SORT_SW_STATE SMALLINT
SORT_SW_TIME TIMESTAMP
PARTITION_NUMBER SMALLINT

Related reference:

¢ “Snapshot monitor logical data groups and data elements” in the Systern

Monitor Guide and Reference

Chapter 3. Functions 537



SNAPSHOT_TABLE

SNAPSHOT_TABLE

538

»»—SNAPSHOT_TABLE—(—VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_TABLE function returns activity information from a table
snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR TABLES ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_TABLES, and iStoreResult set
to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 37. Column names and data types of the table returned by the
SNAPSHOT_TABLE table function

Column name Data type

SNAPSHOT_TIMESTAMP TIMESTAMP

ROWS_WRITTEN BIGINT

ROWS_READ BIGINT

OVERFLOW_ACCESSES BIGINT

TABLE_FILE_ID BIGINT

TABLE_TYPE BIGINT

PAGE_REORGS BIGINT

TABLE_NAME VARCHAR(SQL_MAX_TABLE_NAME _
LEN)

SQL Reference, Volume 1



SNAPSHOT_TABLE

Table 37. Column names and data types of the table returned by the
SNAPSHOT_TABLE table function (continued)

Column name Data type
TABLE_SCHEMA VARCHAR(SQL_MAX_SCHEMA_NAME_
LEN)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the Systemn
Monitor Guide and Reference

Chapter 3. Functions 539



SNAPSHOT_TBS

SNAPSHOT_TBS

»»—SNAPSHOT_TBS— (—VARCHAR(255) , INT—) ><

The schema is SYSPROC.

The SNAPSHOT_TBS function returns activity information from a table space
snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and
iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 38. Column names and data types of the table returned by the SNAPSHOT_TBS
table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
POOL_DATA_L_READS BIGINT
POOL_DATA_P_READS BIGINT
POOL_ASYNC_DATA_READS BIGINT
POOL_DATA_WRITES BIGINT
POOL_ASYNC_DATA_WRITES BIGINT
POOL_INDEX_L_READS BIGINT
POOL_INDEX_P_READS BIGINT
POOL_INDEX_WRITES BIGINT

540 SQL Reference, Volume 1



SNAPSHOT_TBS

Table 38. Column names and data types of the table returned by the SNAPSHOT_TBS

table function (continued)

Column name Data type
POOL_ASYNC_INDEX_WRITES BIGINT
POOL_READ_TIME BIGINT
POOL_WRITE_TIME BIGINT
POOL_ASYNC_READ_TIME BIGINT
POOL_ASYNC_WRITE_TIME BIGINT
POOL_ASYNC_DATA_READ_REQS BIGINT
DIRECT_READS BIGINT
DIRECT_WRITES BIGINT
DIRECT_READ_REQS BIGINT
DIRECT_WRITE_REQS BIGINT
DIRECT_READ_TIME BIGINT
DIRECT_WRITE_TIME BIGINT
UNREAD_PREFETCH_PAGES BIGINT
POOL_ASYNC_INDEX_READS BIGINT
POOL_DATA_TO_ESTORE BIGINT
POOL_INDEX_TO_ESTORE BIGINT
POOL_INDEX_FROM_ESTORE BIGINT
POOL_DATA_FROM_ESTORE BIGINT
FILES_CLOSED BIGINT

TABLESPACE_NAME

VARCHAR(SQLB_MAX_TBS_NAME_SZ)

Related reference:

* “Snapshot monitor logical data groups and data elements” in the System

Monitor Guide and Reference

Chapter 3. Functions

541



SNAPSHOT TBS_CFG

SNAPSHOT_TBS_CFG

»»—SNAPSHOT_TBS_CFG— (—VARCHAR(255), INT—) ><

The schema is SYSPROC.

The SNAPSHOT_TBS_CFG function returns configuration information from a
table space snapshot.

The arguments must be:

* Avalid database name in the same instance as the currently connected
database when calling this UDF. Specify NULL to take the snapshot from
the currently connected database.

* A valid partition number. Specify -1 for the current partition, -2 for all
partitions. If NULL is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file
has not previously been created by either:
* A GET SNAPSHOT FOR TABLESPACE ... WRITE TO FILE command, or

* A db2GetSnapshot API with SQLMA_DBASE_TABLESPACES, and
iStoreResult set to TRUE.

Writing snapshots to files is only valid with an existing connection. The
snapshot UDF must then be used within the same session. The file is removed
after the connection is closed.

The function returns a table as shown below.

Table 39. Column names and data types of the table returned by the
SNAPSHOT_TBS_CFG table function

Column name Data type
SNAPSHOT_TIMESTAMP TIMESTAMP
TABLESPACE_ID BIGINT
TABLESPACE_NAME VARCHAR(128)
TABLESPACE_TYPE SMALLINT
TABLESPACE_STATE BIGINT
NUM_QUIESCERS BIGINT
STATE_CHANGE_OBJ_ID BIGINT
STATE_CHANGE_TB