Review: Set Operation and Subset

• Intersection: \(A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \)

• Union: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \)

• Cartesian Product (also called product): \(A \times B = \{ (x, y) \mid x \in A, y \in B \} \)

• The set of all subsets of \(A \): \(P(A) \). \(|P(A)|=2^{\mid A \mid}\)

• The set of all subsets of \(A \) of size \(k \): \(P_k(A) \). \(|P_k(A)|=C(\mid A \mid, k)\)
Learning Outcomes

• By the end of this lesson, you should be able to
 – Understand function concept and use its different notations correctly.
 – Understand the different types of functions, tell which function type(s) a real function belongs to.
 – Use function diagram to help understanding and the judgment.
Why do we need to learn them?

• Function plays a fundamental role in nearly all of Mathematics.

• In Computer Science
 – In almost all programming languages, we use function for a certain task, e.g., weatherForcast(location).
 – There is a special programming paradigm called functional programming.
More Notations of Set

• The set of the first n positive integers, \{1, 2, \ldots, n\} : n.

• Linear order the elements of a set A using a list: $(a_1, a_2, \ldots, a_{|A|})$ or $a_1, a_2, \ldots, a_{|A|}$.

• By default, the ordering on a set of numbers is the numerical ordering. For example, the ordering on n is $1, 2, 3, \ldots, n$.
Definition 1: Function

• If A and B are sets, a function from A to B is a rule that tells how to find a unique $b \in B$ for each $a \in A$.

• $f : A \rightarrow B$ means f is a function from A to B.

• We call the set A the domain of f and the set B the range/codomain of f.

• To specify a function completely, you must give its domain, range and rule.
More Notations of Function

• Definition 2 (*One-line notation*): when A is ordered by $a_1, a_2, \ldots, a_{|A|}$, a function can be written in one-line notation: $(f(a_1), f(a_2), \ldots, f(a_{|A|}))$

• The set of all functions from A to B: B^A

 – $f : A \rightarrow B$ equals $f \in B^A$.

 – from one-line notation, each function is an element of Cartesian product of $|A|$ number of set B: $B \times B \times \ldots \times B$.

 – total function number from A to B is the size of the product: $|B|^{|A|}$.
Function Examples

- \(P = \{a, b, c\} \), \(g : P \rightarrow 4 \), \(g(a) = 3 \), \(g(b) = 1 \) and \(g(c) = 4 \)
 - function name: \(g \)
 - domain: \(\{a, b, c\} \)
 - range: \(\{1, 2, 3, 4\} \)

- Equivalent expression: \(g : 4^{\{a, b, c\}} \), ordering: \(a, b, c \), \(g = (3, 1, 4) \)

- How many functions we can have with the same domain and range? \(|4^{|\{a,b,c\}|}| = 4^3 \)
Diagram of Function

- $P = \{a,b,c,d\}$, $g: P \rightarrow 4$, $g(a)=3$, $g(b)=1$, $g(c)=4$ and $g(d)=1$.
Definition 3 : Types of Functions

- Let \(f : A \rightarrow B \) be a function.
 - \(f \) is a **surjection**: for every \(b \in B \), there is an \(a \in A \) such that \(f(a) = b \). It also means \(f \) reaches each value in its range at least once.
 - \(f \) is an **injection** (one-to-one function): \(f(x) = f(y) \) implies \(x = y \). It also means \(f \) reaches each value in its range at most once.
 - \(f \) is a **bijection**: \(f \) is both an injection and a surjection.
Example 3: Types of Functions

- let $A = \{1, 2, 3\}$ and $B = \{a, b\}$ be the domain, and range of the function $f = (a, b, a)$
 - surjection; not injection
- function g with domain B and range A given by $g(a) = 3$ and $g(b) = 1$
 - injection; not surjection
- the function h with domain B and range $C = \{1, 3\}$ given by $h(a) = 3$ and $h(b) = 1$
 - bijection
Definition 3: Types of Functions (2)

- **Permutation**
 - For a function to itself, such as \(f : A \rightarrow A \), if this function is a bijection, it is called a *permutation*.
 - All bijections from \(A \) to \(A \) are called *permutations* of \(A \).
 - For set \(A \), its permutation number is \(|A|!\).

- **Inverse function**: if \(f : A \rightarrow B \) is a bijection, we can have a new function called the *inverse* of \(f \), written as \(f^{-1} \), which reverses what \(f \) does.
 - \(f^{-1} : B \rightarrow A \) and \(f^{-1}(b) \) is that unique \(a \in A \) such that \(f(a) = b \).
 - \(f(f^{-1}(b)) = b \) and \(f^{-1}(f(a)) = a \).
Example of Permutation and Inverse Function

- let $A = \{1, 2, 3\}$, list permutations of A.
 - $(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2),(3,2,1)$

- The function h with domain $B = \{a, b\}$ and range $C = \{1, 3\}$ given by $h(a) = 3$ and $h(b) = 1$. Specify its inverse function if there is one.
 - Because h is a bijection, it has inverse function.
 - h^{-1} has domain $C = \{1, 3\}$ and range $B = \{a, b\}$, and $h^{-1}(3) = a$ and $h^{-1}(1) = b$.

Example 4: Functions as Relations

- Let A and B be sets. A *relation* from A to B is a subset of $A \times B$.

 If $A = 3$ and $B = 4$, then $R = \{(1,4),(1,2),(3,3),(2,3)\}$ is a relation from A to B.

- *functional relation*: If the relation R satisfies the condition that, for all $x \in A$ there is a unique $y \in B$ such that $(x, y) \in R$, then the relation R is called a functional relation.

- A functional relation defines a function.
Example 5 : Two-line Notation

• The first line lists the domain elements, and the second line lists the values of these domain elements.

• For \(X=\{x_1, x_2, \ldots, x_n\} \), \(Y=\{y_1, y_2, \ldots, y_n\} \), function \(f: f(x_1)=y_1, f(x_2)=y_2, \ldots, f(x_n)=y_n \)

\[
f = \begin{pmatrix}
x_1 & x_2 & \ldots & x_n \\
y_1 & y_2 & \ldots & y_n
\end{pmatrix}
\]

• Some range elements might not be shown in this notation because the cardinality/size of \(Y \) can be greater than that of \(X \).
Example 5: Two-line Notation (2)

• The function f with domain and range \{a, b, c, d\} given in 2-line form by
 \[
 f = \begin{pmatrix}
 a & b & c & d \\
 b & c & a & d
 \end{pmatrix}
 \]

• What are the types of this function?
 – surjection, injection, bijection

• Is it a permutation?
 – yes, because the domain and the range are the same set.

• Does it have an inverse function? Write the function if it has.
 – It has an inverse function.
 \[
 f^{-1} = \begin{pmatrix}
 b & c & a & d \\
 a & b & c & d
 \end{pmatrix}
 \]
Homework and Pre-Reading Assignment

• Homework:
 – Exercise 1.1, 1.2, 1.3, 1.4, in page Fn-6 to Fn-7

• For next class, please read Section 2 (Fn-7 to Fn-10).
 – Try to understand function composition through examples.
 – Try to understand operations of permutation through examples.