
Paul Hubbard
April 23, 2003

Design of the NEESgrid
data acquisition system

DAQ Driver NSDS World

Your system NEES-POP Your users

NEES-POP

NSDS

Driver

DAQ system

Server

daemon

DAQ

code

Clients / Users

Library code

Experiment

Architecture
and dataflow

• Assume that sites have or will build their
own customized DAQ system

• We will not provide a turnkey solution;
we do provide a reference
implementation in LabVIEW

• Our code should drop into yours with
minimal effort: small modules

• Minimize impact on the existing system

Design Principles

• DAQ code should not know or notice if
network is up or down

• Auto reconnect logic is our problem, not
yours

• Small buffers in the driver

• Simple protocol that’s easy to emulate

• Code included does so: DI-194 DAQ,
fake_daq

• Include examples and testing code

Design Principles 2

• NSDS - NEESgrid Streaming Data Server.
Java-based app, runs on the NEES-POP,
central to the design.

• NEES-POP - Linux PC, onsite, that runs the
NEESgrid collaboration code

• NSDS driver - C code, running on the
NEES-POP, to mediate between the NSDS
and the DAQ code. Rewrite for other
DAQs.

Terminology

• LabVIEW DAQ system

• Requires v6.1 and Internet Toolkit (~ $2,500)

• Tested on MS Windows (2k and XP). Linux testing in
progress: caveats apply to driver support. UEI DAQ, etc.

• PCI 6036E, DaqPad 6052E, 6070E

• NEESgrid DAQ code (see http://www.mcs.anl.gov/neesgrid/
daq-install-instructions.pdf)

• NEES-POP or other unix box to run the driver code. (http:/
/www.mcs.anl.gov/neesgrid/driver-install-instructions.pdf

• NSDS (on NEES-POP) or simulator (on DAQ PC)

Minimum requirements
for running and testing the DAQ code

NEES-POP

NSDS

Driver

DAQ system

Server

daemon

DAQ

code

Clients / Users

Library code

Experiment

Architecture
and dataflow

• This slide shows the detailed
internals on the NEES-POP and
DAQ machines.

• Notes

• Code provided to save to
disk and upload via FTP in a
standard ASCII format (Tab-
delimited with header)

• Server daemon establishes
the data connection but
does not touch it otherwise

Normal configuration Shared memory

(Channel list

Connection handles

Status bits)

Server daemon

DAQ Code

ftp server driver

NSDS

Control

Data

NEES subroutines

Post-experiment upload

Local disk

Local disk

DAQ PC

NEES POP

Example data file
Event ID: 19364841J12
Active channels: ACH1,Temp
Sample rate: 200.000000
Channel units: V,Deg C

Time ACH1 Temp
2003-01-24T15:42:02.73399 -0.700531 27.603149
2003-01-24T15:42:02.75000 -1.961975 27.587891
2003-01-24T15:42:02.75500 2.678223 27.618408

Example NSDS stream
2003-01-24T15:42:02.73399 ACH1 -0.700531 Temp 27.603149
2003-01-24T15:42:02.75000 ACH1 -1.961975 Temp 27.587891
2003-01-24T15:42:02.75500 ACH1 2.678223 Temp 27.618408

• Same design, but now NSDS is simulated in
LabVIEW on the DAQ PC.

• Verify the driver and network

• No need to have CHEF available to see
data plots

• Code supplied includes:

• Simple single-channel subscribe and plot

• Stress test - subscribe to all, no plotting

• Subscribe and plot all

• This is how I normally develop

Shared memory

(Channel list

Connection handles

Status bits)

Server daemon

DAQ Code

ftp server driver

NSDS

Simulator

Control

Data

NEES subroutines

Post-experiment upload

Local disk

Local disk

Control & data

DAQ PC

NEES POP

Testing with the NSDS
simulator

• Separate TCP connections for control and
data (ports 55055 & 55056 by default)

• Control is bidirectional, data is
unidirectional (DAQ -> world)

• Driver <-> NSDS connection on 42420/1

• Commands are sent by the NSDS and
answered by ‘server daemon’ on the DAQ
PC.

• Data streams from the DAQ, via the driver,
thence to the NSDS

Misc Notes

• Main function is to initiate and maintain connections

• Main loop

• Connect to DAQ

• Connect to NSDS

• Forward on both channels until a TCP error occurs

• Responds to NSDS’s initial ID request; ID is configurable
via the command line

• POSIX C, pthreads, runs on most Unix variants

• Source code is heavily Doxygen-documented; see the html
subdirectory for the results.

Driver details

• Not everyone runs LabVIEW for DAQ

• Read ‘NSDS-Driver Protocol’ document and
decide if you want to use it or rewrite the
driver (http://www.mcs.anl.gov/neesgrid/)

• Example source code in C:

• fake_daq (in nsds-driver package)

• neesdaq (DI-194, in nees-di package)

• All source code has Doxygen docs included

DAQ on other platforms

• http://www.mcs.anl.gov/neesgrid

• Pointers to CVS, mailing list, MUD

• PDF docs

• Bugzilla

• http://www.ni.com/labview

• phubbard@anl.gov

Where To Go From Here

