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• Assume that sites have or will build their 
own customized DAQ system

• We will not provide a turnkey solution; 
we do provide a reference 
implementation in LabVIEW

• Our code should drop into yours with 
minimal effort: small modules

• Minimize impact on the existing system

Design Principles



• DAQ code should not know or notice if 
network is up or down

• Auto reconnect logic is our problem, not 
yours

• Small buffers in the driver

• Simple protocol that’s easy to emulate

• Code included does so: DI-194 DAQ, 
fake_daq

• Include examples and testing code

Design Principles 2



• NSDS - NEESgrid Streaming Data Server. 
Java-based app, runs on the NEES-POP, 
central to the design.

• NEES-POP - Linux PC, onsite, that runs the 
NEESgrid collaboration code

• NSDS driver - C code, running on the 
NEES-POP, to mediate between the NSDS 
and the DAQ code. Rewrite for other 
DAQs.

Terminology



• LabVIEW DAQ system

• Requires v6.1 and Internet Toolkit (~ $2,500)

• Tested on MS Windows (2k and XP). Linux testing in 
progress: caveats apply to driver support. UEI DAQ, etc.

• PCI 6036E, DaqPad 6052E, 6070E

• NEESgrid DAQ code (see http://www.mcs.anl.gov/neesgrid/
daq-install-instructions.pdf)

• NEES-POP or other unix box to run the driver code. (http:/
/www.mcs.anl.gov/neesgrid/driver-install-instructions.pdf

• NSDS (on NEES-POP) or simulator (on DAQ PC)

Minimum requirements
for running and testing the DAQ code
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• This slide shows the detailed 
internals on the NEES-POP and 
DAQ machines.

• Notes

• Code provided to save to 
disk and upload via FTP in a 
standard ASCII format (Tab-
delimited with header)

• Server daemon establishes 
the data connection but 
does not touch it otherwise
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Example data file
Event ID: 19364841J12
Active channels: ACH1,Temp
Sample rate: 200.000000
Channel units: V,Deg C

Time    ACH1    Temp
2003-01-24T15:42:02.73399       -0.700531       27.603149
2003-01-24T15:42:02.75000       -1.961975       27.587891
2003-01-24T15:42:02.75500       2.678223        27.618408

Example NSDS stream
2003-01-24T15:42:02.73399       ACH1    -0.700531       Temp    27.603149
2003-01-24T15:42:02.75000       ACH1    -1.961975       Temp    27.587891
2003-01-24T15:42:02.75500       ACH1    2.678223        Temp    27.618408



• Same design, but now NSDS is simulated in 
LabVIEW on the DAQ PC.

• Verify the driver and network

• No need to have CHEF available to see 
data plots

• Code supplied includes:

• Simple single-channel subscribe and plot

• Stress test - subscribe to all, no plotting

• Subscribe and plot all

• This is how I normally develop
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• Separate TCP connections for control and 
data (ports 55055 & 55056 by default)

• Control is bidirectional, data is 
unidirectional (DAQ -> world)

• Driver <-> NSDS connection on 42420/1

• Commands are sent by the NSDS and 
answered by ‘server daemon’ on the DAQ 
PC.

• Data streams from the DAQ, via the driver, 
thence to the NSDS

Misc Notes



• Main function is to initiate and maintain connections

• Main loop

• Connect to DAQ

• Connect to NSDS

• Forward on both channels until a TCP error occurs

• Responds to NSDS’s initial ID request; ID is configurable 
via the command line

• POSIX C, pthreads, runs on most Unix variants

• Source code is heavily Doxygen-documented; see the html 
subdirectory for the results. 

Driver details



• Not everyone runs LabVIEW for DAQ

• Read ‘NSDS-Driver Protocol’ document and 
decide if you want to use it or rewrite the 
driver (http://www.mcs.anl.gov/neesgrid/)

• Example source code in C: 

• fake_daq (in nsds-driver package)

• neesdaq (DI-194, in nees-di package)

• All source code has Doxygen docs included 

DAQ on other platforms



• http://www.mcs.anl.gov/neesgrid

• Pointers to CVS, mailing list, MUD

• PDF docs

• Bugzilla

• http://www.ni.com/labview

• phubbard@anl.gov

Where To Go From Here


