
GAMA: Grid Account Management Architecture

Karan Bhatia, Sandeep Chandra, Kurt Mueller
San Diego Supercomputer Center
{karan,chandras,kurt}@sdsc.edu

Abstract

Security is a critical component of grid systems and
while there are numerous software components and
tools that provide some capabilities relating to
security, there are few complete end-to-end security
systems that work for emerging grid infrastructures
“out-of-the-box”. Hence significant time and effort
are needed for software evaluation, testing and
integration of different software components despite
the fact that most grid infrastructures have very similar
requirements and needs. In this paper, we present
GAMA, a GSI-based security infrastructure that is easy
to deploy and supports multiple applications. GAMA
consists of two component groups: a backend server
component that creates and manages X.509 user
credentials on behalf of the user, and a set of portal
components that provide interfaces for both users and
administrators. The GAMA server provides
synchronization capability between portals and
clusters, supports any SOAP-based rich clients, and
supports legacy applications that rely on MyProxy.

1. Introduction

Security is a critical component of "grid" systems
[1], which are distributed systems that span multiple
organizational and administrative domains. The
standard technology for security in government and
academic grids is the Globus Security Infrastructure
(GSI) [2]. GSI is a public-key-based, X.509 [3]
conforming system that relies on trusted third parties
for signing user and host certificates. Typical usage
models require that each user is assigned a user
credential consisting of a public and private key. Users
generate "delegated proxy" certificates with short life
spans that get passed from one component to another
and form the basis of authentication, access control and
logging.

Despite the general acceptance of GSI and its use
over the course of many years, GSI-based security
systems are well-known to be difficult for

administrators to deploy and for users to use. Various
grid systems have approached this problem differently.
For instance, many projects build certificate
management capabilities directly into a web portal [4-
6]. While this does provide a simple interface for end-
users, it limits the types of applications with which the
user can interact to those accessible from that specific
web portal. Other projects provide tools for the end-
user to manage their own credentials, but in many
cases, these tools are different for resources in different
administrative domains and require a steep learning
curve for the end-user. From the grid systems
architect's point of view, while there are a number of
tools that support building a GSI-based security
infrastructure, these tools provide different and
overlapping APIs and are not designed for
interoperability. For example: there are a number of
different software packages for building "certificate
authorities," the trusted third parties that sign and
manage user certificates, including CACL [7] and
simpleCA [8]; storing certificates is accomplished by
another software component called MyProxy [9, 10];
certificate management is sometimes left to users and
other times automated by a web-portal; authorization
can also be performed in a variety of ways, from the
traditional GSI gridmap files that map user certificates
to local system accounts, to the use of Akenti [11] and
Security Assertion Markup Language (SAML)[12, 13];
role-based access control may be provided by the
Community Authorization Service (CAS) [14, 15] or
Virtual Organization Management (VOM) [16].

We believe a flexible approach that leverages a
services-oriented architecture and aggregates existing
trusted tools can address many aspects of the security
infrastructure problem. In this paper we present
GAMA, a Grid Account Management Architecture
developed jointly by the GEON [17] and Telescience
[18] projects. While the goals of the two projects are
significantly different (the GEON project provides
distributed data querying capabilities across datasets
hosted by fifteen partner sites while the Telescience
project integrates access to rare and globally
distributed bio-imaging instruments and to

computational and data storage resources), both
projects have remarkably similar security
requirements. We summarize the requirements here:

1. It is unreasonable for most users to install
middleware components on their desktop or laptop
client systems. The typical user in both projects wants
to access the grid systems through a web or grid portal
with no grid software installed and running on their
machine. Users want a familiar username/password
model for logging into portals. They don't know or care
to configure various middleware (MyProxy, CAS, etc).
Users also don't want to manage certificates or create
proxy certificates themselves. Only in certain unusual
cases would a user require access to their actual
certificate or proxy.

2. There are multiple types of resources in each
project, and for each type of resource, multiple
instances spread geographically in different
administrative domains. Resources include web
portals, clusters, databases and domain-specific
applications. For example, the GEON project specifies
a “distributed portal architecture” that allows each
partner site to build a local “satellite” portal that is
customized for the users at that site while still
providing access to global GEON resources. Access to
all project resources by a user should be enabled with a
single username/password pair identifying that user.

3. Role-based authorization mechanisms provide
authorization based on the identity of a user and the
role to which the user is assigned. Ideally, no gridmap
files or local accounts should require updating as users
are added or deleted from the project. While
authorization for resource access is done through a
user's role, detailed logging/accounting is based on the
user identity.

4. The grid security infrastructure of the projects
must support a wide variety of applications, including:
web-based applications such as web portals, Java Web
Start, and Flash; rich or thick clients, such as stand-
alone applications; and traditional command-line tools
such as ssh.

GAMA provides an "out-of-the-box", complete,
end-to-end, GSI-based security infrastructure that
supports multiple web portals, clusters and a wide
variety of end-user applications. It is currently being
deployed for production use in the GEON and
Telescience projects and is being investigated for use
in a variety of other projects. Version 1.0 has been
released and is available for download1. GAMA
consists of two components: a back-end GAMA server
that manages users' identities and credentials, and a set
of web portlets that provide the main interface to users

1 See http://grid-devel.sdsc.edu/gama for download information.

and administrators for credential management. The
back-end services use CACL for creating credentials,
MyProxy for storing credentials and CAS for defining
and using roles. These services are wrapped with
standard web services mechanisms and are accessible
through WSDL interfaces by any programs or
environments that support such mechanisms. In
Section 2 we discuss the interfaces on the GAMA
Server back-end. In Section 3 we discuss the
capabilities of the web portlets which provide a
number of configurable interfaces for end-users to
request and use accounts, and for administrators to
define policies and manage users. In Section 4 we
discuss other clients, including a command-line client
for providing cluster management and rich clients for
various other projects. In Section 5 we provide a brief
evaluation, and we conclude with a comparison to
similar systems in Section 6.

2. GAMA server

The GAMA Server consists of a set of services that
run on an isolated, locked down machine with no end-
user access. The GAMA back-end services run on this
machine and are accessed solely through web-services
calls. These services provide a consistent interface to
the various portal clients, providing basic account
management and login/logout capability. Behind the
scenes, the services manage the user’s certificate and
private keys and interface with CACL, MyProxy and
CAS, as needed, depending on the configuration and
the type of account management system an
organization decides to use. CACL provides an
implementation of a “certificate authority” that
generates user and server certificates; MyProxy
provides a centralized certificate repository with
advanced features such as certificate renewal; and CAS
defines a set of roles and a set of access rights for each
role, and maps users to roles within the GSI
framework.

GAMA defines the following services running in
two different web services containers, one that requires
mutual authentication between the GAMA Server and
GAMA clients, and one that does not. The
SecurityCACLService, SecurityMyproxyService, and
SecurityCASService run in the more secure web
service container and provide functionality to create
and delete users. The SecurityMyproxyloginService,
SecurityCASloginService, and
SecurityUserImportService run in the less secure
container (but still run over a secure communication
channel) and provide basic login and user query
capability.

The SecurityCACLService provides access to the
CACL CA functions. To create a new user,
createUserCACL() method is invoked on the
authentication service with the email address of the
user, the full name associated with the email address
and the password with which to encrypt the user’s
newly-created private key. In order to delete users and
their associated certificates, the
deleteUserCACL() operation is invoked with the
email address identifying the user. The service will
invalidate and delete the associated user certificate
using the appropriate CACL scripts.

The SecurityMyproxyService defines methods that
manage user credentials in the MyProxy repository.
To create a new user createUserMyProxy() is
invoked which calls a MyProxy wrapper class that
loads the credentials of the user identified by email to
the MyProxy repository location from the CACL
certificate repository. In order to delete users and their
associated credentials from the MyProxy repository,
the deleteUserMyproxy() operation is invoked
with the email address identifying the user. The
operation invokes a MyProxy wrapper class that
removes the credentials from the MyProxy repository.

The SecurityMyproxyloginService is invoked when
the user logs into a portal or GAMA-enabled
application. This method uses the MyProxy server
running on the GAMA Server to generate a user proxy
certificate, which is returned as a String.

A fourth interface, SecurityCASService, provides
operations that implement CAS functions. The
createUserCAS() operation enrolls the user into
the default role in the CAS database. Similarly
deleteUserCAS() deletes the user information
from the CAS database.

The interface SecurityCASloginService is invoked
when the user logs into a portal or GAMA-enabled
application. The login operation returns a String
representing the user proxy certificate. This method
first invokes a wrapper class around the Java COG
toolkit to run grid-proxy-init for the user trying to
login. It then invokes the CAS service to run cas-
proxy-init on the user proxy to generate a CAS proxy.
This CAS proxy adds assertions to the original user
proxy. Multiple logins will return the same proxy
certificate so long as the certificate is valid. The
logoutUserCAS() method is invoked when a user
logs out of the portal. This method simply calls the
grid-proxy-destroy command. This is optional, as the
user may never log out. The proxy certificate issued
when a user logs in is valid only for a short time
period, and if the user never explicitly logs out, the
certificate will expire. Nevertheless, on logout, the
proxy certificate is destroyed.

The final interface is the
SecurityUserImportService. This interface provides
functionality to support the distributed portal
architecture model within GEON. This operation
returns a list of valid users on the back-end server. An
admin at a satellite portal can invoke this method to
add users, whose credentials exist on the back-end
server, to their local portal database. This feature
eliminates the need to locally add users on each of
these satellite portals if their credentials already exist
on the back-end GAMA server.

Security between the back-end services and the
portal is achieved using secure http (https) and mutual
authentication. On the GAMA back-end server some of
the interfaces may only be invoked by trusted parties
(such as portals) and therefore the GAMA backend
server and portal server need to mutually authenticate
each other. In particular, interfaces involving account
creation or deletion like SecurityCACLService,
SecurityMyproxyService and SecurityCASService
should only be invoked from trusted portals and
therefore have to be mutually authenticated. Interfaces
that implement user login and import need not require
mutual authentication as they could be invoked by
clients such as Java Web Start and Flash applications.

We use the CA system to generate appropriate host
certificates, a dedicated Apache Tomcat instance to
serve secure services, and the standard Java keystore
mechanism for certificate storage. We achieve mutual
authentication in the system by adding the host
certificate of the portal server as a trusted certificate on
the GAMA back-end server’s keystore and adding the
host certificate of the GAMA back-end server as a
trusted certificate on the portal server’s keystore.
Services that do not require mutual authentication are
served by a separate Tomcat instance running on a
different port.

The backend GAMA server requires services and
software packages, including CACL, Globus,
MyProxy, CAS, web service libraries (Axis) and
services, Apache Tomcat servlet containers and other
dependencies. These software packages and services
can be difficult to install and some require a substantial
amount of configuration after they are installed on the
server, which is cumbersome for a system
administrator. To make this process easier we have
created a GAMA server roll [19], which is based on
the Rocks [20] clusters management software model.
The GAMA roll modularly plugs into the Rocks
framework and is used to install all software packages
used by the GAMA back-end server and perform post
install configuration. When installing a GAMA
backend server the admin only has to provide
information to configure the CA system, such as
organization name and organization unit. The Rocks

software then installs the basic operating system and
all the components of the GAMA roll. During the first
boot of the system it performs the post install
operations that include, among many operations,
configuring the CA system, configuring Globus,
MyProxy and CAS servers, deploying the web services
to the appropriates servlet containers and starting all
the necessary services using startup scripts. This way
we provide a fully functional GAMA back-end server
running out of the box with minimal effort on part of
the system administrator.

3. GAMA portlets

The second component of the GAMA system
consists of a set of portlets that provide an interface for
users to request an account, login and access web-
based applications, and provide administrators the
ability to easily define policies and perform user
management tasks. The GAMA portlets provide the
following features:

• end-users can request grid-enabled accounts
and provide the necessary information for the
administrator to determine whether the user
should be accepted as a grid user,

• once accepted, users can log in as with any
other commercial web site using their email
address and password that they supplied,

• the system provides email verification before
accounts are accepted,

• administrators can define a set of rules for
automatically accepting or rejecting user
account requests based on information
provided,

• administrators can configure the system to
provide temporary “local” accounts to the user
while their request is pending,

• the system provides a mechanism for
“satellite” portals to import accounts
previously created.

The GAMA functionality is available as a set of
JSR168-compatible [21] portlets that run in the
GridSphere [22] portal container.

3.1 User account request process

The user account request process is modeled after
common practice in commercial web sites: users go to
a web site and click a link to request an account. On
the account request page, the user fills out a form and
provides name, contact information, and institution
name, as in Figure 1. The specific set of information
collected per user is easily configurable.

Once the form is submitted, the information is
processed by the system and, if appropriate account
acceptance rules are defined, may be automatically
accepted or rejected. If no rules are defined, the
information is stored for the administrator to manually
approve or reject based on the information the user
provided.

If the account is approved, the system sends an
email to the user’s email address with an embedded
URL activation link in order to ensure that the email
address is valid. The activation link contains a random
element to ensure that it can not be easily guessed.
The user activates the account by visiting the URL
activation link. At this point, the system asks the user
for a password that it will use for encrypting the user’s
private key. Once provided, the portal contacts the
GAMA server that creates the user account. Note that
the password is never stored by the portal or the
GAMA server. If at any point in the process an error
occurs, debug information is stored for the
administrator to review and all changes to the server
are rolled back.

3.2 User login process

After the account request is approved and the
account is created, the user can login to the portal using
the email address and password that she provided
earlier. During login the portal passes the username
and password of the user to the GAMA Server through
the login service, which tries to retrieve a limited-
lifetime proxy from the MyProxy server running on the
GAMA Server with the supplied username and
password. If MyProxy retrieval is successful, the login
service returns the proxy for the user back to the portal.
The user is then logged into the portal and their proxy

Figure 1: Account request form.

is activated in the GridSphere portal environment for
use by grid applications running there.

3.3 Managing account requests

The GAMA portlets allow the administrator to
define rules about who is approved for accounts based
on the domain of the email address of the user. Figure
2 shows an example configuration of the acceptance
rules in which the administrator has configured the
portal to automatically approve account requests from
users within the sdsc.edu domain and send the
administrator an email message when such users apply.
Users with yahoo.com email addresses are
automatically denied. By default (if no rule matches),
the portal requires the administrator to approve the
account request by hand though this default behavior
can also be changed.

In addition, the administrator has the capability to
allow “local user” access to the portal while the
account request is being processed. Such local users
do not have grid credentials and do not have any
information stored on the GAMA server and can not be
imported to other resources (such as portals, clusters,
etc). The purpose of the local user feature is to enable
new users to get started using the portal immediately,
and portal applications running within a portal can
determine that a user accessing them is a “local” user
rather than a grid user and provide a reasonable but
limited set of functionality.

3.4 Support for satellite portals

In many emerging distributed grid infrastructures, it
is desirable to have multiple different portals all
running with the same authentication information. In
GEON the impetus for this is to enable the partner
institutions to develop their own GEON applications in
their own portal customized for their institution. While
the portal applications are left to the institutions to
develop, each of these satellite portals should be
hooked into the global GEON services such as security
and data management. In this section, we describe the
features of GAMA that help to facilitate these satellite
portals.

To keep control of the identity of the users, GEON
must ensure a consistent account acceptance policy. To
do so, we mandate that a single portal instance be used
for account requests and acceptance. This portal must
have increased security in order to communicate with
the secure port of the GAMA server, and will define
the policies on which users get accounts. The satellite
portals can be configured to point to this special
authoritative portal for account requests.

Once the users are defined, the satellite portals have
the ability to “import” account information directly
from the GAMA server. Figure 3 shows the interface
for this. In this example, the portlet shows six
accounts that exist on the GAMA server that can be
imported. The administrator checks the accounts that
should be imported and the system imports all the
information needed. After import, satellite portal
logins for imported users are processed by the GAMA
server as described above in the User Login Process
section.

4. Other clients

While portals provide the primary interface to the
GAMA server for the user and the administrator, the
architecture supports additional client tools including
rich clients and command-line executables.

Rich clients such as Java Web Start applications
and Flash applications offer additional flexibility over

Figure 2: Administrator interface to define
account acceptance policies.

Figure 3: Administrative interface for
“importing” grid accounts.

the interfaces that can be provided in web portals; for
example, rich clients provide more interactivity and
better visualization interfaces than are typically
provided through the browser.

Once a user account is created on the GAMA
Server using the portal-based interfaces, the user can
access a rich client that has been configured to work
with GAMA. One such client is the Gemstone client
being developed in the domain of computational
chemistry. The Gemstone interface contacts the
GAMA server using standard web services (SOAP)
protocols and retrieves a grid proxy credential on
behalf of the user. Figure 4 shows a portion of the
Gemstone interface and the DN of the user logged in.

We have recently started work on a set of
command-line tools that will simplify the process of
creating and administering user accounts on
computational clusters using GAMA. Information
retrieved from a GAMA Server may be used to create
standard unix accounts on cluster front-ends and
configure the cluster grid environment for new users.
For instance, some cluster administrators follow a
certain set of steps when adding a new user to their
clusters, such as 1) add a new unix user, 2) add an
entry in the Globus grid-mapfile for the new user with
the user’s unique DN, and 3) add an authorized_keys
file to the user’s .ssh directory to allow passwordless
ssh access by the user. Since we already store
username and DN information in the GAMA server,
we can automate steps 1 and 2 at the present time
through the gamacl (GAMA command-line) client
which is called as follows:

% java -jar gamacl.jar useradd
username -gamaserver hostname:port –
localname localusername –addmap –
mapfile mapfilename

This command will retrieve information about the
user specified by username from the GAMA Server
specified by hostname:port and add a new local unix
user with localusername and add an entry for this user
to the grid-mapfile specified by mapfilename. The

GAMA command-line tools are in the early stages of
development, and we only show this particular
command to provide an example of the types of
functions we think would be useful to system
administrators. Many more useful command-line
features will be possible once we have implemented
some of the architectural changes to the GAMA Server
outlined in the following section.

5. Evaluation and discussion

GAMA was designed to simplify the deployment
and configuration of distributed grid systems such as
GEON and Telescience. Many emerging grid systems
follow a similar architecture and use similar tools, and
therefore, we believe that GAMA can easily be
deployed for these other projects. GAMA leverages
existing, trusted software components such as CACL
and MyProxy and provides backward compatibility
with legacy applications such as GSI-enabled SSH as
well as newer rich-client applications currently being
developed.

From an end-user perspective, the GAMA
interface, modeled after common practice within the
commercial web development domain, seems to
provide the users with the appropriate level of
abstraction with which they are comfortable while
providing the strong security guarantees that system
architects desire.

The performance of the web services wrappers on
the server side to date has been acceptable. Initial
benchmarks show that login times are in the range of
2-3 seconds even across the wide-area network;
account creation takes longer, in the range of 6
seconds, mostly due to the creation of the certificate on
the server; and account imports are under a second.

While we believe that GAMA is suitable for
creation of new grid systems, it is less suitable for grid
systems already extant. If user certificates have
already been issued, they may not be easily imported
into the GAMA Server. In addition, some grid systems
use a federated trust model where multiple certificate
authorities exist at different institutions all of whom
agree to accept each others’ certificates. GAMA
currently has no way to accommodate such an
architecture.

The next release will also include better user
information management on the server, automatic
synchronization between clients and server, and
additional interfaces for administrators to define which
accounts to synchronize between which resources. The
CAS integration, while functional in our prototypes, is
not packaged as part of the version 1.0 release but will
be packaged in a subsequent version.

Figure 4: GEMSTONE uses the GAMA Server
to authenticate users with web service APIs.

6. Related work

6.1 PURSE

The PURSE project [5] is, on the surface, quite

similar to GAMA in that it bundles a CA system and a
MyProxy credential repository on a dedicated server
and provides a portal interface for account request
creation and management. However, the PURSE portal
actually runs on the same machine as the CA and
MyProxy packages, in contrast to the GAMA system
in which account request and administrative portlets
are installed on a remote portal that communicates with
the GAMA server via web services. The end result of a
new user being created through PURSE is that the
user’s GSI credentials exist in a MyProxy repository
on the PURSE server. In order to be of use, a proxy
must be retrieved from the MyProxy server by a portal
or other environment, and this step is outside of the
scope of PURSE. The benefit of having GAMA
portlets on a remote portal is that we actually provide
the proxy retrieval step, whereby a proxy is
automatically and transparently retrieved from the
GAMA server and activated in a portal environment
when a user logs in to the portal. This can make
application development easier for portal developers
because they have access to a user’s proxy “for free” in
the portal environment, and they do not have to know
anything about MyProxy or GAMA. At the same time,
a proxy can also be retrieved directly from the GAMA
MyProxy server by other mechanisms such as would
be used in a PURSE rollout. In addition, GAMA
Server functions are exposed as web services so they
can be accessed from multiple portals and other
environments, such as rich client applications.

PURSE does not explicitly manage user
authorization. Authorization happens downstream
through standard GSI mechanisms at the resource level
when a user who has retrieved a proxy from the
PURSE MyProxy server passes that proxy to an end
resource and attempts to perform some operation. It is
up to the end resource to determine if the user is
authorized to perform that operation based on internal
policies. GAMA also relies on such mechanisms when
it is configured to use CACL and MyProxy, though it
does have an option to use CAS certificates which
explicitly add authorization information to the
retrieved proxy. However, CAS support is not entirely
stable nor especially useful at the moment because not
many end resources know how to use CAS
authorization assertions.

6.2 GridAuth

GridAuth [23] is comprised of a server component,
written in Perl, and a set of client implementations
(currently Perl, Java and PHP are available). GridAuth
is based on a configurable plug-in architecture whereby
certain pre-defined operations (such as login, adduser,
etc.) are exposed through a standard API and may be
implemented on the server via various mechanisms.
GridAuth comes with a custom CA package for
credential creation and management, and enables
credential retrieval upon user login. Prospective users
can request an account through a simple web interface
on the server, and administrators manage account
requests through a similar interface. The set of steps
that are taken when an account request is approved (for
instance) depends on the specific plug-ins that are in
place on the server and are configured to handle the
useradd() function. This method of allowing and
managing unique implementations of standard API-
specified functions is quite powerful, and certainly
provides more flexibility in this regard than GAMA
which is coupled rather tightly to CACL and MyProxy
in the current version despite the fact that we expose
implementation-independent methods such as login()
through web services. GAMA will be more
implementation-neutral in the future, though it will still
come with MyProxy and CACL options in addition to
others.

GridAuth comes with client implementations in
various languages, as already mentioned, which must
be integrated into some other application or portal
environment in order to be useful. As in the previous
comparison with PURSE, GAMA has an advantage
here in that we have already integrated it into an
application development environment (GridSphere) to
minimize the workload and knowledge required of
developers.

The GridAuth API does not explicitly support
authorization, but instead relies on GSI mechanisms at
the resource level. It is possible that authorization
assertions could be stored in and retrieved through
GridAuth, though no standard way of doing so is
specified or supported out of the box.

6.3 DOE FusionGrid

The DOE FusionGrid [24] project has been

evaluating and using various user management and
security systems for some time. Most recently, they
have created a system that, like GAMA, uses a
dedicated server with a CA system and MyProxy
installed on it. Like PURSE, there is a web interface
directly on the server for handling user account
requests and server management. The CA software was
written in-house due to security requirements of the

FusionGrid collaboration. Clients retrieve credentials
directly from the MyProxy server using MyProxy
client tools, as in PURSE, so client applications and/or
users must be MyProxy-aware. Again, this is in
contrast to GAMA where credential retrieval in a
portal environment is hidden from users and
application developers completely.

A distinct advantage of the FusionGrid system over
GAMA, PURSE and GridAuth is its authorization
system called ROAM. Where the others mostly leave
authorization to end resources (typically through the
rather coarse-grained and decentralized grid-mapfile
mechanism), ROAM provides application developers
and system administrators with an easy-to-manage and
comprehensive system for ensuring that users are
allowed to access resources in the FusionGrid. The
CAS package in GAMA is intended to solve many of
the same problems, and in a more standards-compliant
way, but its true usefulness has yet to be demonstrated.

While GAMA, PURSE and GridAuth are packaged
and distributed freely, it appears that the FusionGrid
solution is proprietary. Because it evolved in a very
specific environment to meet the needs of a certain set
of users, it is no surprise that the end result appears to
be rather tightly coupled to its environment and user
base. Though GAMA and GridAuth (and perhaps
PURSE) were also developed to meet the needs of a
specific community, the developers have put
considerable effort into the task of making software
that can be shared and used in other communities.

Acknowledgements

Supported in part by NBCR P41 RR08605.
Contributions were made to this work by GEON, an
NSF funded Collaborative ITR Project.

7. References

[1] Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy
of the Grid: Enabling Scalable Virtual Organizations",
International Journal of High Performance Computing
Applications, 2001. 15(3): p. 200-222.
[2] Foster, I., C. Kesselman, G. Tsudik, and S. Tuecke, "A
Security Architecture for Computational Grids", ACM
Conference on Computers and Security. 1998. p. 83-91.
[3] Tuecke, S., et al., "Internet X.509 Public Key
Infrastructure Proxy Certificate Profile", 2003, IETF.
[4] Mock, S., et al., "The GridPort Open Source Portal
Toolkit", http://gridport.sourceforge.net/
[5] GridCenter, N., "A Portal-based User Registration
Service for Grids", April, 2005, http://www.grids-
center.org/solutions/purse/
[6] Thomas, M., et al. "The Gridport Toolkit: a System for
Building Grid Portals", in 10th IEEE International Symp. on
High Perf. Comp. 2001.

[7] Link, W., "CACL, A CA System with Automated User
Authentication", Sept 2003, San Diego Supercomputer
Center, http://www.npaci.edu/CA/cacl.pdf
[8] Welch, V., et al. "Security for Grid services", in
Proceedings 12th IEEE International Symposium on High
Performance Distributed Computing. 2003.
[9] "MyProxy Online Credential Repository",
http://grid.ncsa.uiuc.edu/myproxy/
[10] Novotny, J., S. Tuecke, and V. Welch. "An Online
Credential Repository for the Grid: MyProxy", in High
Performance Distributed Computing (HPDC). 2001.
[11] Thompson, M., et al., "Certificate-based Access Control
for Widely Distributed Resources", in Proc. 8th Usenix
Security Symposium. 1999.
[12] Hallam-Baker, P. and E. Maler, "Assertions and
Protocol for the OASIS Security Assertion Markup Language
(SAML)", May 2002, OASIS, Committee Specification, 01,
http://www.oasis-open.org/committees/security/docs/cs-sste-
core-01.pdf
[13] OASIS, "Security Assertion Markup Language (SAML):
Assertions and Protocols", Aug 2003, OASIS, oasis-sstc-
saml-core-1.1, http://www.oasis-
open.org/committees/download.php/3406/oasis-sstc-saml-
core-1.1.pdf
[14] Pearlman, L., et al. "A Community Authorization
Service for Group Collaboration", in IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks.
2002.
[15] Pearlman, L., et al. "The Community Authorization
Service: Status and Future", in CHEP. 2003.
[16] Alfieri, A., et al. "VOMS, an Authorization System for
Virtual Organizations", in 1st European Across Grids
Conference. 2003. Santiago de Compostela.
[17] Baru, C. and others, "CyberInfrastructure for the
Geosciences", http://www.geongrid.org
[18] "Telescience: A Collaborative Environment for
Telemicroscopy and Remote Science", 2004,
https://telescience.ucsd.edu/.
[19] Bruno, G., M. Katz, F. Sacerdoti, and P. Papadopoulos,
"Modifying a Standard System Installer to Support User-
Customizable Cluster Frontend Appliances", in IEEE
International Conference on Cluster Computing. 2004: San
Diego, CA.
[20] Papadopoulos, P., M. Katz, and G. Bruno, "NPACI
Rocks: Tools and Techniques for Easily Deploying
Manageable Linux Clusters", in Concurrency and
Computation: Practice and Experience, Special Issue:
Cluster 2001, 2002.
[21] "Portlet Specification", 2003, The Java Community
Process, JSR 168,
http://www.jcp.org/aboutJava/communityprocess/review/jsr1
68/
[22] "GridSphere Portal Framework",
http://www.gridsphere.org/
[23] "GridAuth", http://www.gridauth.com
[24] Burruss, J.R., Fredian, T.W., Thompson, M.R.,
"Simplifying FusionGrid Security", Challenges of Large
Applications in Distributed Environments (CLADE)
workshop at HPDC14, July 2005

