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Abstract. This paper is an introduction to Datagridflows. Until recently, datagrids 
were generally considered over-hyped and the associated technologies not widely 
embraced in the academic community. Today, datagrids have become a reality 
and an important technology for managing large, unstructured data and storage re-
sources distributed over autonomous administrative domains. The datagrids that 
are operating in production provide us an idea of new requirements and chal-
lenges that will be faced in future datagrid environments. One such requirement is 
the coordinated execution of long-run data management processes in datagrids. 
We term these processes as “datagridflows”. This new area provides exciting op-
portunities and challenges to researchers in distributed computing and distributed 
databases. This paper is intended to introduce these challenges to other research-
ers, including those new to grid computing. We provide motivation through dis-
cussion of datagridflow requirements and real production scenarios.  We intro-
duce current work on datagridflow technologies including the Datagrid Language 
(DGL) for describing datagridflows in datagrids.  

1   Introduction 

Datagrid technology is currently used for managing very large, unstructured data stor-
age resources [1, 2, 3]. The need for long-run data management processes on top of 
datagrid environments is seen as a common emerging requirement in most datagrid 
deployments. Examples of these long-run processes include datagrid information lifecy-
cle management, datagrid triggers, and data-intensive computational workflows. These 
long-run processes could be considered “datagrid workflows” and are discussed later in 
this paper. We refer to these long-run datagrid processes as datagridflows. 
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In the following section, we introduce some fundamental concepts in datagrids for 
the benefit of those new to grid computing. In section 2, we describe three motivating 
scenarios for datagridflows and our work on the Data Grid Language. We discuss the 
requirements and components of a system to manage datagridflows in section 3. In 
section 4, we provide some overview of our work on the Data Grid Language as part 
of the SRB Matrix Project. Related and future works to this paper are presented in 
section 5. 

1.1   Data Grid Landscape 

In this section, we introduce datagrids, associated concepts and relevant terminology 
to prepare the reader for the problem statement discussed in the following sections.   

 
Grid Computing. We describe a “grid” as a coordinated distributed computing infra-
structure, formed by combining heterogeneous resources from autonomous adminis-
trative domains. Grids provide the infrastructure that is used for large-scale, resource-
intensive, and distributed applications. The definition of a Grid is continually evolv-
ing as different people have different perspectives of the same technology. The com-
monality that is observed in the different perspectives of the “Grid” is the formation 
of a logical infrastructure as a single ensemble, by dynamically combining independ-
ently managed resources. 

 
Datagrid. A datagrid is a logical unified view of a grid’s data storage infrastructure. 
Data storage middleware create a federated, location independent, logical infrastruc-
ture namespace that dynamically spreads across the grid’s administrative domains. 
Datagrids support sharing data collections and storage resources between autonomous 
administrative domains. A shared collection is a logical aggregation of digital entities, 
(e.g.) files, which are physically distributed in multiple physical storage resources that 
are owned by multiple administrative domains.  A shared resource allows users from 
multiple administrative domains to share data storage space. The core concept behind 
the success for datagrid software is the concept of “data virtualization”. 
 
Data Virtualization. Data Virtualization is the concept of bringing together different 
heterogeneous data and storage resources into one or more logical views so that the 
distributed and replicated data appear as a single logical data source managed by a 
single data management system. This logical view is simple for users and applications 
as it hides the complexity of working with distributed and heterogeneous systems. 
The logical view is provided on top of a logical resource namespace, allowing high 
levels of flexibility for distributed computing and migration of data storage resources. 
Data and resource names are logical and can be physically changed or migrated with-
out affecting the applications. The underlying concept behind the datagrids and data 
virtualization is the same as the concept behind relational databases: to isolate physi-
cal organization of the data from logical schema. In data virtualization, we go one 
step further. Instead of completely hiding the physical organization of the storage 
resources where the data resides, another logical namespace of storage resources is 
provided to the applications. Applications now have the added capability to perform 
distributed data management operations on the combined logical data namespace 
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along with logical resource namespace without having to directly interact with the 
physical storage resources or the physical organization of data. 

 
     There has been a significant increase in use of datagrid technology over the past 
few years. Data storage infrastructures using datagrid technologies are deployed in 
many countries. Much of the data managed by these technologies is in the form of 
files. One of the popular datagrid management systems (DGMS) [1], the SDSC Stor-
age Resource Broker (SRB) [2], is believed to broker around a Petabyte of data 
worldwide at the time of this writing. 

Multiple independent organizations deploy the SRB middleware on top of their ex-
isting physical storage resources without any changes to the existing system. The 
existing physical storage resources are represented in the SRB datagrid namespace as 
logical storage resources. Each SRB storage server that runs on top of a physical stor-
age system maps that particular physical storage system into the data grid logical 
resource namespace. Many organizations participate in a data grid.  Users can view 
and use the resources of users from other organizations given appropriate access per-
missions and authentication mechanisms. Users use any logical resource from the data 
grid logical resource namespace using the SRB protocol without even knowing where 
the resource is physically located or what type of physical storage resource is actually 
used. In addition, users can create an aggregated logical view of distributed data in the 
form of shared collections, enabling them to have the same logical namespace or data 
organization even if when the data is moved. Thus, the data namespace or the logical 
view of the data in the grid is independent of infrastructure and location information 
for the end users.  

2   Long-Run Processes in Datagrids 

The widespread use of datagrids has helped us observe several common usage pat-
terns in datagrid environments that require long-run datagrid processes. In this sec-
tion, we present the three prominent patterns that we have observed.  These motivate 
our work on datagridflows. 

2.1   Data Grid ILM  

Information Lifecycle Management (ILM), as described in the data storage industry, 
refers to the dynamic re-orientation of data placement and data retention strategies 
based on storage cost and the “business value” of the data to be managed. The term 
“business value of data” refers to the value certain data or information provides to the 
business requirements. Unlike traditional Hierarchical Storage Management (HSM) 
solutions, which normally use “data freshness” as the most important attribute in 
determining data placement, ILM solutions use data value and business policies to 
determine data placement and retention. It must be mentioned that in most business 
cases a high value of data freshness will automatically yield a high business value for 
the data. Hence, ILM could be considered an extension of HSM. 

In a datagrid, information in the form of several related data collections would 
have a lifecycle that spans multiple organizations. Information in the datagrid could 
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be created by one organization, accessed or replicated by other organizations, and 
archived at yet another organization before finally being deleted from the datagrid. 

During its lifecycle, information in the grid would have different business values 
for different domains participating in the datagrid.  This value is based on the needs of 
a particular domain’s users and the role played by that domain in the data grid. For 
example, data being created might be of interest to the domain that is creating it. 
Later, some other domain in the data grid might have more value for the same infor-
mation. We refer this as domain-specific value as “domain value”.  Organizations 
could create replicas of the same data in their own domains as the domain value of 
certain data grows. Once a domain’s users are not interested in some information, its 
domain value decreases and data can either be deleted or migrated to less expensive 
storage systems.  A change to data storage organization with respect to domain value 
of some information is called a “datagrid ILM processes”. These changes usually do 
not involve any transformation of data. They could involve replication, migration or 
removal of existing data, changing access permissions on some data before they are 
migrated or archived, etc., 

In addition to changes in the domain users’ interest in information that could initi-
ate the ILM processes, the role played by a domain in the datagrid could also initiate 
ILM processes. In some cases, one of the domain’s roles in the data grid could be just 
to archive all or some selected information in the datagrid. This could be a third-party 
service provider or an IT department for the enterprise responsible for archiving data. 
The archiver domain might not have any real users who are interested in the informa-
tion – but its business processes are interested in archiving the information. The ar-
chiver domain could store the information for years, before finally moving it the low-
est cost data storage system from a long-term storage management perspective. The 
archiver domain could be an example for what we refer to as an “imploding star”. 
Information from all the domains in the datagrid is finally pulled towards this domain. 
This certainly involves a very well planned archival schedule. An example for this 
type of imploding star is the BBSRC-CCLRC data grid [3]. In the BBSRC project, 
information from multiple hospitals in United Kingdom are finally archived into an 
archiver site.  

The complement of the imploding star based datagrid ILM is the “exploding star”. 
In this case, information is pushed or replicated outside the domain of its creation. For 
example, the datagrid created for the CMS High Energy Physics experiment at CERN 
has many domains that require the data generated by the CMS experiment to be repli-
cated in stages at different tiers across the globe. The CERN domain thus acts as the 
exploding star. Domains can play other roles such as a “data curator” role in a digital 
library that is powered using the data grid technology.  

We can observe some commonalities and generic requirements in these datagrid 
ILMs. All of them require long-run processes on top of the datagrid namespaces. 
These long-run processes could be started, stopped and restarted at any time. For 
example, an ILM process could only be run at some domains during non-working 
hours or on weekends. This would require powerful and highly flexible systems to 
manage these datagrid ILM processes. A requirement from digital libraries and persis-
tent archives, like the National Archives Persistent Archives Test bed (NARA PAT) 
[4] is to preserve the provenance information associated with these ILM processes. 
The requirement is to enable the storing of provenance information for not only the 
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DGMS operations performed by the system, but also the operations that are per-
formed as part of the archival pipeline. 

Currently, some simple datagrid ILM processes can be implemented using simple 
scripts and cron jobs on some operating systems. System administrators are familiar 
with these scripts. However, once the requirements include multiple domains, multi-
ple system administrators and multiple ILM processes, more sophisticated systems are 
required to handle problem. The proposed new systems for datagrid ILM must sup-
port: 

 
• Start, stop, pause and restart of datagrid ILM Processes 
• Query the status of the any datagrid ILM any time  
• Provenance information of all the processes managed at any time even (years) 
       after the execution 
• Programmatic API to define these datagrid ILM and programmatic interface 
       for interaction by other systems 
• Programmatic API to query and monitor any step in the datagrid ILM process 
 
One major requirement is to provide an interoperable description of the datagrid 

ILM processes. A standard format could be used across all the related systems like 
datagrids, grid file systems, digital libraries, persistent archives and dataflow systems. 
Such a standard based on an XML Schema would allow programmatic interaction of 
all the systems. The proposed XML schema must support the definition of ILM proc-
esses of various complexities. The schema must describe all relevant entities, includ-
ing data, resources, and users. The schema would have to be programmatically de-
scribed and executed dynamically as the constraints associated with these processes 
are dynamically modified. 

2.2   Datagrid Triggers 

The datagrid namespace is a logical view of data and storage resources. A datagrid 
trigger is a mapping from any event in the logical data storage namespace to a process 
initiated in the datagrid in response to such an event. Datagrid triggers are defined on 
top of the datagrid namespace and could have the following components. 
 
Event. An event could be any change in the datagrid namespace including updates, 
inserts, and deletes. Datagrid triggers could be triggered before or after events com-
plete. Unlike database transactions datagrid processes or not transactional. The results 
of applying the trigger-based mechanisms on this non-transactional, large-scale, dis-
tributed data management system have not yet been studied. 
 
Condition. Trigger execution is determined by the evaluation of some state informa-
tion in the datagrid. This is very similar to the database Event-Condition-Action (ECA 
rules) based processing used in database rules. 
 
Actions. An Action is the execution any data management process on the datagrid 
namespace. Multiple actions could be performed based on the evaluation of the condi-
tion associated with the trigger. 
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     Datagrid triggers will play an important role for managing unstructured data in 
datagrids. Simple use-cases include: creating metadata when a file is created, sending 
notifications when specific types of files are ingested, and automating replication of 
certain data based on their meta-data.  
     Datagrids allow user-defined metadata to be associated with data. Triggers could 
make use of these parameters. There are many open research issues here. Datagrid 
management systems (DGMS’s) [1] will allow multiple users to define triggers. Dif-
ferent results might be produced based on the order in which triggers defined by mul-
tiple users are processed for the same event. Further complicating the situation is the 
non-transactional nature of datagrid processes.  

In databases, the Structured Query Language (SQL or PL/SQL) can describe the 
triggers and the DBMS executes associated actions. A similar language is required for 
DGMS’s to describe triggers with respect to files, the metadata that are associated 
with those files, data collections, data storage resources, etc. Such a language should 
support data types such as collections and datasets. The proposed language could also 
be used to describe constructs in datagrids similar to “stored procedures” in databases. 
This will allow the datagrid stored procedures to be run from the DGMS itself rather 
than executing the procedure outside the DGMS using client side components. We 
introduce “Data Grid Language” (DGL) as a possible solution for this later in this 
paper. 

2.3   Data-Intensive Workflows 

The last motivation that we want to mention regarding long-run processes in datagrids 
is the use of the datagrid infrastructure to perform scientific or computational work-
flows on unstructured data. Such workflows are sometimes referred to as “scientific 
workflows” because they are often used in certain scientific applications, but the as-
sociated concepts apply equally for non-scientific workflows that require intensive 
processing. 

Grid-workflow is the automation of a business process whereby data and tasks are 
passed from one grid-participant to another according to some set of procedural rules. 
A single grid workflow process could have multiple tasks that might have to be exe-
cuted at different domains participating in the grid. The dynamic scheduling of these 
tasks to the different participating domains could be based on the combined cost all 
the tasks together at different domains. The cost of executing each task at a domain 
could be based on multiple parameters including the amount of data moved, the num-
ber of CPU cycles that would be left idle in the grid, the clock time taken to execute 
all the tasks, the bandwidth utilized, etc. The cost is just an approximate value based 
on certain heuristics used by the scheduler.  

During their execution, Grid-workflows must consider different logics: the busi-
ness process logic, the execution logic and the infrastructure logic as explained below. 

 
Business Logic. Business logic is a representation of the specific business task that 
takes part in the workflow. Some examples of business logic are: processing an order-
entry form (e-business), determining a document type while archiving it in the proto-
type for National Archives Workflow (document management), or any transformation 
used in scientific pipelines (scientific workflow). The isolation of the business logic 
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from the complexities involved in datagrid computing provides ease of development 
of the business logic. The business logic development team need not be concerned 
with scaling up its solution or taking advantage of the distributed nature of the data-
grid. They should only be required to describe the requirements in terms of resource 
types and the service levels required to execute the business logic. Business logic is 
usually in the form of binary executables that could be run on appropriate platforms in 
the datagrid. 

 
Infrastructure Logic. Infrastructure Logic refers to the logic that has to be used 
while matching the tasks in the workflow with the appropriate resources and domains 
within the grid infrastructure. Infrastructure logic would involve the description of 
available resources in the infrastructure, the service level agreements (SLAs) the 
resources can support, the preferred type of users or tasks that could be executed on 
each resources, etc. Infrastructure logic could also involve heuristics that are supposed 
to be used by a Datagridflow Management System (DfMS) while scheduling the tasks 
to the different resources in different domains. 

The DfMS would have to map the requirement of each business logic task to the 
appropriate resources required. The workflow description would dictate what types of 
resource are required at what SLAs. The description might be just a logical or abstract 
specification of the type of resource required rather than a specific physical system.  
This allows dynamic binding to a particular resource at runtime. The workflow de-
scription is used by DfMS along with Grid Resource Brokers to bind the task with 
appropriate resources. For example, the workflow description might logically specify 
that a particular task would require an archival system, a high-performance file sys-
tem, or a certain number of compute nodes. Infrastructure logic on the other hand, 
would specify the mapping from these logical resource types with the physical end-
points and the SLAs that can be supported. The system administrators could change 
the infrastructure logic based on their own domain requirements, assuring them full 
autonomous control over what resources are shared with other grid users and at what 
SLAs. 

Execution Logic. Execution logic provides the control-flow and ordering of tasks that 
take part in the workflow. Execution Logic is provided by the end-user or the 
workflow designer. It provides a description of the workflow execution, identifying 
the tasks that take part in the workflow, the order in which they should be executed, 
the relationship among them, their input and output data sets, etc.  

Execution logic also has information on the state of execution.  This information 
can be checked before execution of any process. Fault handling information for the 
processes could also be provided in the execution logic. Execution logic could remain 
independent of the infrastructure dependencies allowing late binding of resources. 
However, a workflow designer could still choose to specify a particular resource in-
stead of leaving it abstract to be bound later. 

Execution logic also captures the requirement to run tasks for a specified number 
of times or until some milestone is reached. This is very useful in datagrids where the 
workflow involves iterating some set of tasks over collections of files. The files are 
used as input data and processed according to a datagrid query, which could be part of 
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the execution logic itself. This allows configuration of runtime parameters by chang-
ing the execution logic rather than configuring the business logic and recompiling the 
associated code. The execution logic could be viewed as the abstract definition of a 
workflow without concrete descriptions of the underlying physical infrastructure. 
 
Infrastructure-based Execution Logic. The Execution Logic is converted dynami-
cally into Infrastructure-based Execution Logic just before the execution of the tasks 
that are described in the workflow. This is a multi-stage hierarchical process. An 
analogy for this process could be the query re-writing or optimization of SQL before a 
final query plan is generated and executed by the databases. The description of the 
execution logic is rewritten into infrastructure-specific execution logic based on mul-
tiple factors including: the requirements of the task, availability of resources, the 
physical locations of the input or output data, the presence of “virtual data” [5] or 
“virtual services” [6] and other infrastructure heuristics.  

Iterations or milestones present in the execution logic would require a small sec-
tion in the description of the execution logic, a group of tasks, to be dynamically 
converted into infrastructure-based execution logic multiple times. The group of 
tasks, a small section of the execution logic for a single iteration, would have to be 
dynamically converted into infrastructure-based execution logic very late in the 
processes just before execution. This late binding allows execution of the each it-
eration at a different location based on the infrastructure availability just before the 
tasks are executed. 

The scheduling or selection of the appropriate resources for each task has to choose 
the location for execution of a task based on: the available physical locations of input 
data (replicas), desired physical location of the output data, location of the business 
logic (code) and the available resources where the task can be executed. If the re-
quired output data is already available (virtual data), it need not be derived again. The 
final infrastructure-based execution logic for each task would have the chosen replica 
to use as input, the location of the output data and the grid resource to use. In a data-
grid, the replica selection could be handled by the DGMS itself based on location of 
execution of the process. 

All the execution logic associated with the Grid-workflow must be generated pro-
grammatically and exchanged among the participating resources. This includes the 
datagrid execution logic and infrastructure-based execution logic. The Data Grid 
Language described in the following sections could be used for to describe these sets 
of logic. Even though multiple workflow languages are already available, the exis-
tence of datagrid-related data types and operations as part of the language itself makes 
it the suitable language to describe these grid-based data-intensive processes that take 
part in scientific workflows. 

In this section, we have surveyed three of our major motivating scenarios in detail 
and their requirements with respect to datagrid technology. One common observation 
from all these scenarios is the need for datagridflows on top of datagrid systems. An-
other requirement that has been mentioned in all the scenarios is the need for a lan-
guage to describe the long-run processes in the datagrid. In the next section, we intro-
duce Datagridflows and their requirements.  
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3   Datagridflows 

Datagridflow is the automation of a long run process whereby data and/or tasks are 
passed from one datagrid participant to another according to a set of procedural rules. 
Datagridflows are data-intensive long run processes like datagrid ILM, datagrid trig-
gers, or computational workflows in a datagrid environment. Datagridflows could be 
viewed as a subset of regular workflows that involve long-run processes on datagrids. 
Most of the data processed is unstructured, file-like data.  
     Workflow systems have been around for many years. There are many ways to 
hard-wire workflows and develop a system that uniquely satisfies a single user’s re-
quirement.  This approach is easy for the developers to begin with as they can use any 
of their favorite programming languages to hard-wire the tasks involved in the work-
flow. However, from a long-term perspective, this approach is not optimal and it 
becomes extremely expensive to maintain the code that supports the whole system. 
Any change in the execution logic or the infrastructure logic would require modifica-
tion of the whole system. A generic system would be useful for the datagrid commu-
nity, which has clear needs to manage datagridflows, as can be seen in multiple pro-
jects including National Archives Persistent Archive Test bed Project [4], Southern 
California Earthquake Center [7], CCLRC-BBSRC project [3] and LLNL UCSD 
SciData Management Pipeline.  

3.1   Generic Requirements for a Datagridflow Management System (DfMS) 

The challenge is to provide a generic system that can manage most of the datagrid-
flow requirements faced by these data-intensive projects.  The common patterns that 
we observe from our users’ requirements when they want to manage their datagrid-
flows: 

• Data-intensive flows: Most of the projects that use datagrid technology usually 
have large data collections. DfMS must take full advantage of the underlying 
DGMS software that provides all the functions required to manage the very 
large unstructured data. 

• Scalability: DfMS must be scalable in terms of the number of tasks within a 
single workflow; number of workflows that can be processed, and the number 
of resources the workflows can physically take advantage of to complete a 
workflow. 

• Collections and Files: Most of the data that is processed in a DfMS is in the 
form of collections and files. DfMS’s must support these data types and the 
operations that can be supported on collections and files in a datagrid.  

• Highly Flexible: Most of these projects will deploy the DfMS in production for 
at least five years. Over this time, many requirements, probably unknown dur-
ing requirements analysis, will emerge. The system should therefore be flexi-
ble to handle new requirements. 

• Cost of Operation: Having one more software system to manage increases the 
Total Cost of Operation (TCO) of the project. DfMS must minimize the main-
tenance requirements and the system administrator should not have a need to 
learn another system.  
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• Provenance: DfMS must have manage information about all workflows and 
their tasks. This information would be queried and audited later. 

• Novice and Expert Users: DfMS must have a GUI-based system to interact 
with novice users and an API based interface for developers and expert users 
to programmatically interact with the DfMS 

• Distributed Grid Infrastructure:  DfMS must take advantage of the distributed 
grid infrastructure while executing its operations 

• Task Granularity: Workflow designers should have the flexibility to design 
datagridflows with each task that is not too small and not too large to be called 
a task.  

 
The above requirements are generic for both business and academic/scientific 

workflows. Similar business use cases would be observed once business users start 
using datagrids and the Grid File System (GFS) [9]. 

3.2   Components of a Datagridflow System 

The following are the components of a hypothetical Datagridflow System from a 
high-level perspective. 
 
Datagridflow IDE (GUI). A Datagridflow modeling interface would serve as an 
Integrated Development Environment (IDE) for end-users to interact with the DfMS. 
A modeling markup language describes datagridflows and stores it locally for the 
users to use again or view the datagridflow rendered on the IDE. MoML [8], used in 
Ptolemy II/Kepler uses, this approach to serve as a datagridflow IDE.  

 
Datagrid Language (DGL). A language to describe, query, and manage execution 
logic and infrastructure-based execution logic. The SRB Matrix uses this approach. A 
DGL document could be created by the IDE and sent to the DfMS server for process-
ing. More on DGL is provided in the next section. 

 
DfMS Server. The DfMS server can service DGL requests both synchronously and 
asynchronously. DfMS server manages state information about all the tasks, which 
can be queried at any time. The DfMS server works on top of the datagrid server 
(DGMS) and can support the datagrid operations provided by DGMS. In the SRB 
Matrix project [10], the Matrix Server uses SRB as its DGMS. Multiple DfMS servers 
can form a peer-to-peer datagridflow network with one or more lookup servers. DfMS 
servers could have additional capabilities to directly interact with the DGMS server, 
allowing the users to create Datagrid Triggers and Datagrid ILM jobs at the DGMS it 
self. The DfMS server can provide the concepts of virtual data by incorporating a 
virtual data system as a component. The GriPhyN Chimera System is an example of 
such a component that could be present in the DfMS server. 
 
Infrastructure Description Language. The Infrastructure Description Language 
describes the infrastructure at each domain and the different SLAs they can support. 
Infrastructure includes data storage resources, compute resources, DGMS server loca-
tion etc.  



 Datagridflows: Managing Long-Run Processes on Datagrids 123 

Grid Schedulers and Brokers. Grid schedulers and brokers act as intermediaries, 
that do the planning and matchmaking between the appropriate tasks in a workflow 
with the resources that are available. They are used to convert the abstract execution 
logic into concrete infrastructure-based execution logic.  Tools are available for plan-
ning and scheduling on the grid.  One such tool is the GriPhyN Pegasus planner [11]. 

4   The Data Grid Language 

We have discussed the need for a datagrid language as part of our motivating scenar-
ios. Just as SQL is used for databases, an analog is needed for datagrids. Our contri-
bution to the datagridflows and the datagrid community is the Datagrid Language 
(DGL), which is useful for all of our motivating scenarios. DGL is an XML-Schema 
specification that can be extended for domain-specific operations and used by any 
community. 

DGL explicitly supports data types such as datagrid collections, files and datagrid 
operations as part of the language it self. This enables the description of file-based 
flows and datagrid collection processing. DGL can be used to describe datagridflow 
processes, queries, and status. The language is designed to work with a protocol based 
on a request-response model. In addition to request-response, DGL can also be used 
with one-way messages also. The requests can be synchronous or asynchronous. 

 

Fig. 1. Structure of a Flow 
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DGL describes each task of a datagridflow as a “Step” with associated input and 
output parameters. One or more steps are aggregated into “Flows”, which are recur-
sive control structures that describe how to execute steps. Each flow is like a block of 
code in modern programming languages with its own variable scope, commands, and 
steps. Each flow defines a unique control pattern that dictates how its contents should 
be executed, e.g. sequentially, in parallel, while loop, for-each loop, switch-case, etc. 
These patterns are very similar to any modern programming language.  Using these 
control structures recursively, users can create arbitrarily complicated gridflow de-
scriptions.  Figure 1 shows the schema definition for a flow in DGL. 

Each DGL transaction generates a unique identifier that can be used to query the 
status of the any task in the workflow at any level of granularity. The identifier for 
any particular task or flow can be shared with all other processes that require access to 
the status of the particular task or flow.     

DGL also supports user-defined, Event-Condition-Action rules. This enables an 
event-based model for datagridflow programming. More information about DGL can 
be found in Appendix A of this document.  

DGL has been used in prototype runs for managing datagridflows at the UCSD Li-
braries and SCEC Project. Datagridflow for data-integrity and MD5 calculation was 
described in DGL and executed by SRB Matrix servers for the UCSD Library data.  
SCEC workflow for ingesting files into the SRB datagrid was also performed using 
DGL [14]. 

5   Related and Future Work 

Multiple efforts are underway to tap the power of the grid infrastructure and to man-
age long run process or workflows.  There are clear differences in the objective and/or 
approach taken by each of these efforts. Some of the projects working in related areas 
are mentioned here. 
     GridAnt [12] is a client-side workflow engine that provides scripting support to 
initiate and manage the workflow. The state information of the workflow is managed 
at the client side.  GriPhyN Pegasus [11] could be used as planner in a grid workflow 
to avoid redundant computation of existing data products. Pegasus is used as a com-
ponent in GriPhyN Virtual Data System [5].  Kepler [13] is an effort to provide an 
extensible IDE and full system for scientific workflow (which are also long run proc-
esses). Additionally, there are multiple workflow related efforts, which are based 
either on Web/Grid Service Composition or on Process Ordering.  

Our current work in the SRB Matrix Project is to support our existing SRB users 
with these datagridflow requirements. We are also working on providing a rich GUI 
(IDE) to DGL using VERGIL GUI (used in Ptolemy II and Kepler). The user inter-
face will be defined by the MoML modeling language, with execution taking place 
using the DGL. 

There are many research issues that would be interest to others, including: 

• Peer-to-peer datagridflow network and its protocols 
• Distributed data scheduling for datagrid ILM policy strategies for enterprises 
• Dynamic datagrid scheduling based on heuristics at different domains 
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     Datagridflows is an emerging field that presents some exciting challenges. Data-
grid users already require powerful peer-to-peer datagridflow networks. More work 
would help the community understand more about the requirement and the usefulness 
of different approaches taken. 

6   Conclusions 

Datagridflow is an emerging field that supports the proliferation of datagrid technol-
ogy by addressing the new requirements of datagrid users. Datagridflows enable users 
to automate or semi-automate tasks in the datagrid. Many more challenges and oppor-
tunities are present for researchers from distributed computing and distributed data-
bases. 
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Appendix 

A   Structure of DGL 

A DGL document is a XML based description that could be either a Data Grid Re-
quest or Data Grid Response. A Data Grid Request is sent from a client to the DfMS 
server. Currently, the DfMS server uses a request-response paradigm and replies with 
a Data Grid Response for each request.   

Figure 2 shows the structure of a Data Grid Request. It contains general informa-
tion including: Document metadata, Grid user information and the Virtual Organiza-
tion to which the user belongs.  The Data Grid Request’s core component is either a 
Flow or a FlowStatusQuery.  A Flow describes a workflow to be executed and a 
FlowStatusQuery is a query on the status of execution of a Flow at any granular level.  

 

Fig. 2. Structure of a DataGridRequest 

The Flow is a recursive data structure that represents the gridflow execution.  It 
contains more recursive Flows or Steps (called its “children”).  Abstractly, we can 
think of a Flow as an execution environment or a block of code that sets up a scope 
and behavior for its children execute (e.g. sequentially, in parallel, for-loop, etc). 
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As shown in Figure 1, each Flow contains three sections: 

• Variables – A Flow can declare any number of variables for use in its scope 
• FlowLogic – This component dictates the logic by which the contents should 

be executed (e.g. sequentially, in parallel, etc) 
• Children – Sub-flows or steps (but not both), which will be executed within 

this Flow’s scope according to its FlowLogic.   

FlowLogic 
The FlowLogic element contains two sections:  the first is a choice of control struc-
ture (e.g. sequential, parallel, etc) that dictates how the children of this Flow will be 
executed.  The second is a set of UserDefined Rules that encapsulate the actions that 
the Flow should take upon starting up and before exiting.  Figure 3 shows the Flow-
Logic schema. 

 

 

Fig. 3. flowLogic schema 

Before it starts execution, a Flow will execute the user-defined rule named “be-
foreEntry” if one is defined in its FlowLogic.  After finishing execution, it will exe-
cute the rule “afterExit” if one is defined. 
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User Defined Rule 
A UserDefinedRule is similar to a switch statement in programming languages.  A 
UserDefinedRule consists of a condition and one or more action statements. The con-
dition is represented using tCondition. Tcondition is a usually simple string that is 
evaluated. It is possible to use DGL variables in the Tcondition. Each UserDefine-
dRule has one condition and can have one ore more Actions. Each action has a 
(string) name associated with it. The Actions are executed if the condition statement 
evaluates to the name of the action.  

Step 
A Step is a concrete action that a gridflow performs.  A Step can declare variables and 
userDefinedRules just like a Flow, but contains a single element called an Operation.  
The operation describes some atomic operation that the gridflow is to execute.  DGL 
supports a number of DataGrid related operations for SDSC’s Storage Resource Bro-
ker (SRB) or execution of business logic (code) by the DfMS server. 

Data Grid Response 
A Data Grid Response is sent by the DfMS to the client for every Data Grid Request. 
The design for Data Grid Response facilitates both synchronous and asynchronous 
requests. Synchronous Data Grid Requests are replied after the execution of the flow 
with a Data Grid Response that contains the status of flow. Asynchronous Data Grid 
Requests are replied with a Request Acknowledgement inside the Data Grid Re-
sponse. Request Acknowledgement contains a unique identifier for each request and 
the initial status of the request and its validity. Clients can use this identifier to get the 
status of the execution of the flow.  The figure below shows the structure of a DGL 
Data Grid Response. 

 

Fig. 4. Data Grid Response 
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