
PEARC17, July, New Orleans, LA A. Chourasia et al.

Visual Exploration and Analysis of Time Series Earthquake Data

 A. Chourasia
9500 Gilman Dr., MC 0505

La Jolla, CA - 92093
amit@sdsc.edu

K. B. Richards-Dinger
900 University Ave.

Riverside, CA - 92521
keith.richards-dinger@ucr.edu

 J. H. Dieterich
900 University Ave.

Riverside, CA - 92521
dieterichj@ucr.edu

Y. Cui
9500 Gilman Dr., MC 0505

La Jolla, CA - 92093
cui@sdsc.edu

ABSTRACT
Earthquake hazard estimation requires systematic investigation of
past records as well as fundamental processes that cause the
quake. However, detailed long-term records of earthquakes at all
scales (magnitude, space and time) are not available. Hence a
synthetic method based on first principals could be employed to
generate such records to bridge this critical gap of missing data.
RSQSim is such a simulator that generates seismic event catalogs
for several thousand years at various scales. This synthetic catalog
contains rich detail about the earthquake events and associated
properties.

Exploring this data is of vital importance to validate the simulator
as well as to identify features of interest such as quake time
histories, conduct analyses such as calculating mean recurrence
interval of events on each fault section. This work1 describes and
demonstrates a prototype web based visual tool that enables
domain scientists and students explore this rich dataset, as well as
discusses refinement and streamlining of data management and
analysis that is less error prone and scalable.

CCS CONCEPTS
• Human-centered computing → Visualization →
Visualization application domains → Geographic visualization

• Information systems → Information systems applications →
Spatial-temporal systems → Geographic information systems

KEYWORDS
Visualization, data management, earthquake simulators

1 INTRODUCTION
Earthquake simulators are computer codes that can resolve the
discrete fault-slip events across the scale (magnitude, space and
time) needed to track the state evolution for the brittle regions of
the solid Earth. We will develop and apply the most capable
earthquake simulators to investigate brittle deformation, fault
interaction, and earthquake predictability. The need to generate
105 -107 earthquakes in simulations spanning ≥104 years
precludes full representation of inertial dynamics in the
simulations, so the more advanced simulators incorporate quasi-
dynamic approximations such as radiation damping.

RSQSim incorporates rate-state constitutive properties. It has
unique capabilities to deterministically model short-term
clustering together with long-term statistical properties of
earthquakes [1, 2]; and to represent the different modes of slip
observed in nature. Through the use of analytic approximations,
and a computational approach based on sliding state transitions,
RSQSim is very efficient numerically [3]. This efficiency enables
repeated simulations of long earthquake catalogs (105 to 107
events) with outer scales of the dimensions of regional plate
boundaries, and sufficiently resolved inner scales to permit
detailed simulations of the evolution of system state through
occurrence of frequent small earthquakes. This study focuses on
visualization, analysis and data management aspect for the data
produced on high performance computing resources by the
RSQSim simulator.

Table 1: Data properties for a sample catalog

Size 2.4 GB
Files 2 ascii, 9 binary files
Catalog time duration From 50k to 90k years
Number of events 5,970,621
Event variables 12
Number of fault patches 260,051
Fault patch variables 11
Number of event actions 19,127,461
Event action variables 8

PEARC17, July, New Orleans, LA A. Chourasia et al.

2 DATA WRANGLING

2.1 Source Data
The data is in form of a time series catalog containing millions of
earthquake events with varying magnitudes and occurrence
intervals within the entire catalog that spans tens of thousands of
years. Metadata for a sample catalog is listed in Table 1. An
earthquake catalog is generated for each simulation scenario for a
given time period. Each catalog consists of events (earthquakes),
patches (a geometrically well defined portion of a fault) and
action (relationship between event and patches and their
properties). A brief overview of event, patch and action
information is as follow
a) Event information: This columnar text data includes implicit

event ID, time, event magnitude; event origin coordinates in
UTM projection [4], event duration, name of fault section
and few other properties.

b) Patch information: This columnar text data includes implicit
fault patch ID, fault patch geometry either as triangles or
rectangles, its coordinates in UTM projection, fault section
ID and the name to which this patch belongs.

c) Action information: This data is a set of binary files that
record the action for every given earthquake event and its
effect on affected patches and associated properties such as
change in slip, stress, etc.

2.2 Data Transformation
Working with source data required parsing, restructuring and in
memory indexing, this requires processing time before
visualization or analysis to be conducted. Iterative refinements to
the implementations of raw data handling improved from 20
minutes to 2 minutes on a MacPro workstation with 2x 2.26 Ghz

Quad Core Intel Xeon processor and 16 GB memory. However
this duration was not ideal as it was still too slow when
application would restart. Furthermore, this implementation was
single user oriented and could not be easily deployed on the web.
The source data can be mapped to a relational database in a
straightforward manner by representing the data with three tables;
one for events, second for patches, and third for actions that
includes relationship between former two. SQLite [5] database
was chosen based on following considerations
a) The database will be written once, rarely modified, but read

repeatedly for visualization and analysis
b) SQLite simplifies data management, but keeps notion of a

file, this is desirable as the domain scientists are used to file
handling

c) SQLite does not requires database server setup, this lowers
setup hurdles for domain scientists

d) SQLite database is portable on multiple platforms, thus can
be easily generated on diverse computing resources and
shared easily with others

e) SQLite drivers are available in many languages, thus can be
easily used from variety of languages such as R [6] and
Python [7]

The data transformation was conducted using Python and
validated to match source data. During the data transformation
geographic data was translated from UTM projection to
EPSG:4326 projection [8] and stored in GeoJSON format [9] for
quick retrieval later. The data translation process takes
approximately 20 minutes on a workstation mentioned previously;
the resulting database is almost twice the size, mainly due to
addition of ID columns that were implicit in source data and extra
computed columns as well as translated geo-referenced data,
which is more verbose.

Figure 1: Frequency distribution of quakes for 40,000-year period. Magnitude range is indicated by color.

PEARC17, July, New Orleans, LA A. Chourasia et al.

3 VISUALIZATION

3.1 Tasks
The domain scientists had developed a method to view the data in
3D using R scripting. As most quake events affect very few fault
patches the 3D aspect was deemed to be of less interest, instead
we focused on developing a projected 2D visualization that would
allow the domain scientists to accomplish the following
a) Browse events and view them in geographic context
b) View the fault patches affected by a given quake
c) View chronology in space and time of events that precede

and follow a selected event
d) Filter events based on magnitude and number of affected

fault patches
e) Provide a web interface to easily investigate and disseminate

this data

3.2 Visual encoding
To accomplish the set tasks, we employed map visual idiom
(see Fig. 2) that implicitly represents geographic spatial data and
line plot idiom (see Fig. 3) that allow us to represent time series
data in abstract form. The map shows geographic context with
roads, cities and other landmarks, the data encoded using circle
markers and displayed at its geo-referenced locations. Events on
map are shown by polygons with shape corresponding to their
magnitude in whole number. Events with magnitude less than 4
are shown as triangles, event with magnitude between 4 and 5 are
shown with a square, events between 5 and 6 are shown as
pentagon and so on. The selected event is shown with red color
polygon, clicking on this polygon presents a popup window
containing contextual information associated with this event as
shown in Table 2.

Figure 2: Map showing selected event with a red circle and corresponding affected fault patches in blue. Previous events are
displayed with grey circles connected by a grey line that indicates their chronology with respect to the selected event. Similarly next
events are displayed with purple circles connected by a purple line. Visibility control toggles for various layers are on top right.

Figure 3: Line plot shows magnitude, duration and area of 100 previous and 100 next events that are adjacent the selected one
shown in the center. Clicking on any event on the time series loads the chosen event in the map above, enabling swift exploration.

PEARC17, July, New Orleans, LA A. Chourasia et al.

Similarly previous and next events adjacent to the selected event
are displayed as grey and purple polygons respectively, these
polygons are connected via a trail line to indicate event
chronology. Affected fault patches are projected in 2D and are
displayed as explicit geometry in blue color. All these elements
including the base maps are separated into layers such that they
can be either displayed or hidden on demand.

Lastly, a timeline chart below the map displays event chronology
of ± 100 events adjacent to the selected event. The timeline chart
includes few properties such as magnitude, area and duration of
events. The timeline and the map interface are linked such that
when an event is selected in the timeline the map is updated.

Table 2: Pop up information for a selected event ID

Event properties Value
Event ID 108632
M-Magnitude 7.650801
M0-Moment (Nm) 3.76879000084e+20
T0-Time (s) 1.60341098492e+12
DT-Duration (s) 203.089111328
Patch ID 184145
X-Coord (m) 448831.639048
Y-Coord (m) 3797705.13249
Z-Coord (m) -7542.424242
Area (m^2) 3.66856720806
Patches affected 5194

3.3 User interface
The catalog consists of millions of events, thus a careful user
interface design was needed to accomplish event selection. We
implemented the graphical users interface (GUI) which could be
subdivided into a composite of three sections (see Fig. 4).

The top section allows event selection via event ID (Fig. 5) or
time. In case the of event selection via time which is natively
stored in seconds, on interaction we show the time in human
readable format as year:day:hour:second (see Fig. 6). Both ID and
time based selections offer sliders for quick pick and text input for
precise input. Additionally increment and decrement buttons at
various scales are provided for swiftly changing the selection.
The middle section of the GUI allows filtering of selected event
by magnitude and number of patches affected. The corresponding
sliders for these filers offer the user an ability to set upper and
lower range as desired. The Map trail and Time slider allow the
user to customize the number of events to be shown on map and
time series chart respectively.

The bottom section of the GUI provides checkboxes for applying
filters on time series, auto fitting of all displayed events on the
map and an ability to set auto submission rather than submitting
changes manually after desired changes.

Figure 4: Snapshot of full graphical user interface, showing
selection by event ID. The event can be further filtered via
magnitude and patch sliders. Trail and time series sliders
allow customization of ancillary items for display.

Figure 5: Selection by event ID snapshot. The interface allows
users to provide input via a slider (for easy scrubbing), text
input box (for precise numeric input) as well as increment and
decrement buttons at preselected scales for swift exploration.
A drop down selection list enables choice for additional scales.

Figure 6: Selection of event by time. The interface allows users
to provide input via a slider (for easy scrubbing), text input
box (for precise numeric input) as well as increment and
decrement buttons at preselected scales for swift exploration.
A drop down selection list enables choice for additional scales.
On user interaction human readable time in
year:day:hour:second format is shown in the orange box.

PEARC17, July, New Orleans, LA A. Chourasia et al.

3.3 Implementation
Custom visualization is implemented using Python, JavaScript
and HTML as a server-client application. The server side handles
processing and responds with renderable data to the client. The
client (web browser) fetches the served data and displays the
result along with the user interface. The application relies on
LeafletJS mapping library [10] that provide geographic
environment. Flask framework [11] in Python is utilized for web
serving and query response interaction. The selection and filters
are mapped to appropriate database queries on server side. Folium
Python module [12] is used to generate custom map with custom
code that fuses data for selected event and fault patches
ondemand. The timeline chart is generated using the C3JS
JavaScript library [13] and linked with map visualization. The
graphical user interface is created using noUISliderJS JavaScript
library [14], which provides mobile friendly and range sliders that
are not natively available with HTML5. The web application is
deployed using Gunicorn [15] web server.

4 RESULTS AND DISCUSSION
We have developed and demonstrated a web based visualization
application [16] that displays an interactive map with set of layers
that includes base map, selected event, trail events (previous and
next events adjacent to the selected event), trail event line (line
connecting previous, selected and next events) and affected fault
patches. These layers can be toggled on/off to reduce clutter and
the map could be zoomed in/out or panned.

A graphical user interface allows the users to interactively select,
browse, search and filter events of interest, refer to section 3.3 for
interaction details. Users can spatially view location of chosen
event (see red polygon in Fig. 2) and its chronology on a map (see
black and purple polygons connected by a grey and purple lines in
Fig. 2) as well as inspect other calculated properties such as area,
duration by clicking on these markers. The users can also view the
patches affected by the event spatially (see series of projected blue
triangles Fig. 2). Finally the event chronology is shown as line
plot, which allows easy comparison and trend assessment of
magnitude, duration and area (see Fig. 3) adjacent to the selected
event. Each event in this timeline in linked to map visualization,
such that when the user clicks on any event, the clicked event is
updated on the map. This linking enables swift navigation and
exploration.

In addition to the interactive visualization, the newly implemented
data management scheme can be used for scientific analysis. One
such analysis is implemented and the results were validated with
the domain scientists. The analysis is computation of mean
recurrence interval of quake on each fault sub section from a total
of 2,606.

The following steps illustrates the computation process
i. Find all unique fault sections in fault geometry table

ii. For each section find event record in event table
iii. Arrange records from ii in chronological order
iv. Calculate time duration between successive records by

computing pairwise difference of all records in iii
v. Compute mean of all items in iv

vi. Repeat ii–v for each section

This analysis using the original workflow with R scripts consumes
more time compared to the new one that uses database. The
original analysis required loading, parsing and structuring of raw
data, which is not need by new analysis, as it relies well structured
database. More importantly the new analysis does not need to load
entire data into memory as the database is kept on disk. This
demonstrates that the analysis-using database will offer better
scalability and convenience for domain scientists.

The domain scientists are currently using this web based
visualization interface for data exploration and also considering its
use for pedagogy purpose in classroom.

5 CONCLUSIONS
To conclude, we have developed and demonstrated an interactive
web based application for visualizing of large time series
earthquake data. The application not only allows easy browsing
and filtering, but also is also easily accessible by multiple
concurrent users. Furthermore, we have transformed the original
data handling to a modern environment that lends itself to error
reduction as less code is required for custom parsing and filtering,
easier data management, easy dissemination and most importantly
scalable data analysis and visualization.

6 FUTURE WORK
We would like to refine and extend this work for the entire
scientific pipeline; this includes writing output directly to the
database from simulation, rather than translating it as a post-
processing step. Refine the visualization to include graphical
spatial region selection. Provide an ability to download filtered
data and perform custom queries on the web application. Finally,
refactor all existing analysis routines to use database queries.

ACKNOWLEDGMENTS
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1053575. The National Science
Foundation grant number EAR-1135455 and Keck Foundation
grant number 005590-00001 also supported this work.

PEARC17, July, New Orleans, LA A. Chourasia et al.

REFERENCES
1. Dieterich, J. H., Applications of rate- and state-dependent friction to models of

fault slip and earthquake occurrence, In: Treatise On Geophysics, Vol. 4.
Elsevier, Oxford, Vol. 2 Earthquake Seismology, Elsevier, 107-129, 2007.

2. Dieterich, J., and K. Richards-Dinger, Earthquake recurrence in simulated fault
systems, Pure Appl. Geophys., 167, 1087-1104, 2010.

3. Pekurovsky, D., A. Chourasia, K. B. Richards-Dinger, B. E. Shaw, J. H.
Dieterich, and Y. Cui (2016). Performance enhancements and visualization for
RSQSim earthquake simulator. Presented at the 2016 SCEC Annual
Meeting. Palm Spring, CA, Sep 11-14, 2016.

4. Dutch, S. The Universal Transverse Mercator System. Retrieved Jun 8, 2017
from https://www.uwgb.edu/dutchs/FieldMethods/UTMSystem.htm

5. SQLite – SQLite Home Page. Retrieved Jun 8, 2017 from
https://sqlite.org/index.html

6. R: The R Project for Statistical Computing. Retrieved Jun 8, 2017 from
https://www.r-project.org

7. Python. Retrieved Jun 8, 2017 from https://www.python.org
8. WGS84: EPSG Projection – Spatial Reference. Retrieved Jun 8, 2017 from

http://spatialreference.org/ref/epsg/4326
9. GeoJSON, 2016. Retrieved Jun 8, 2017 from http://geojson.org
10. Leaflet – a JavaScript library for interactive maps. Retrieved Jun 8, 2017 from

http://leafletjs.com
11. Flask (A Python microframework). Retrieved Jun 8, 2017 from

http://flask.pocoo.org
12. Folium: python data leaflet.js. Retrieved Jun 8, 2017 from

https://github.com/python-visualization/folium
13. C3.js | D3-based reusable chart library. Retrieved Jun 8, 2017 from

http://c3js.org
14. noUISlider – JavaScript Range Slider | Refreshless.com. Retrieved Jun 8, 2017

from https://refreshless.com/nouislider
15. Gunicorn – Python WSGI HTTP Server for UNIX. Retrieved Jun 8, 2017 from

http://gunicorn.org
16. Chourasia. A..Visualization for RSQSim. 2017. Retrieved Jun 8, 2017 from

http://vis.sdsc.edu:5555

