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ABSTRACT 
Earthquake hazard estimation requires systematic investigation of 
past records as well as fundamental processes that cause the 
quake. However, detailed long-term records of earthquakes at all 
scales (magnitude, space and time) are not available. Hence a 
synthetic method based on first principals could be employed to 
generate such records to bridge this critical gap of missing data. 
RSQSim is such a simulator that generates seismic event catalogs 
for several thousand years at various scales. This synthetic catalog 
contains rich detail about the earthquake events and associated 
properties. 

Exploring this data is of vital importance to validate the simulator 
as well as to identify features of interest such as quake time 
histories, conduct analyses such as calculating mean recurrence 
interval of events on each fault section. This work1 describes and 
demonstrates a prototype web based visual tool that enables 
domain scientists and students explore this rich dataset, as well as 
discusses refinement and streamlining of data management and 
analysis that is less error prone and scalable.  

CCS CONCEPTS 
• Human-centered computing → Visualization →  
Visualization application domains → Geographic visualization 

• Information systems → Information systems applications →  
Spatial-temporal systems → Geographic information systems 
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1 INTRODUCTION 
Earthquake simulators are computer codes that can resolve the 
discrete fault-slip events across the scale (magnitude, space and 
time) needed to track the state evolution for the brittle regions of 
the solid Earth. We will develop and apply the most capable 
earthquake simulators to investigate brittle deformation, fault 
interaction, and earthquake predictability. The need to generate 
105 -107 earthquakes in simulations spanning ≥104 years 
precludes full representation of inertial dynamics in the 
simulations, so the more advanced simulators incorporate quasi-
dynamic approximations such as radiation damping.  
 
RSQSim incorporates rate-state constitutive properties. It has 
unique capabilities to deterministically model short-term 
clustering together with long-term statistical properties of 
earthquakes [1, 2]; and to represent the different modes of slip 
observed in nature. Through the use of analytic approximations, 
and a computational approach based on sliding state transitions, 
RSQSim is very efficient numerically [3]. This efficiency enables 
repeated simulations of long earthquake catalogs (105 to 107 
events) with outer scales of the dimensions of regional plate 
boundaries, and sufficiently resolved inner scales to permit 
detailed simulations of the evolution of system state through 
occurrence of frequent small earthquakes. This study focuses on 
visualization, analysis and data management aspect for the data 
produced on high performance computing resources by the 
RSQSim simulator.  

Table 1: Data properties for a sample catalog 

Size 2.4 GB 
Files 2 ascii, 9 binary files 
Catalog time duration From 50k to 90k years 
Number of events 5,970,621 
Event variables 12 
Number of fault patches 260,051 
Fault patch variables 11 
Number of event actions  19,127,461 
Event action variables 8 
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2 DATA WRANGLING 

2.1 Source Data 
The data is in form of a time series catalog containing millions of 
earthquake events with varying magnitudes and occurrence 
intervals within the entire catalog that spans tens of thousands of 
years. Metadata for a sample catalog is listed in Table 1. An 
earthquake catalog is generated for each simulation scenario for a 
given time period. Each catalog consists of events (earthquakes), 
patches (a geometrically well defined portion of a fault) and 
action (relationship between event and patches and their 
properties). A brief overview of event, patch and action 
information is as follow 
a) Event information: This columnar text data includes implicit 

event ID, time, event magnitude; event origin coordinates in 
UTM projection [4], event duration, name of fault section 
and few other properties. 

b) Patch information: This columnar text data includes implicit 
fault patch ID, fault patch geometry either as triangles or 
rectangles, its coordinates in UTM projection, fault section 
ID and the name to which this patch belongs. 

c) Action information: This data is a set of binary files that 
record the action for every given earthquake event and its 
effect on affected patches and associated properties such as 
change in slip, stress, etc. 

2.2 Data Transformation  
Working with source data required parsing, restructuring and in 
memory indexing, this requires processing time before 
visualization or analysis to be conducted. Iterative refinements to 
the implementations of raw data handling improved from 20 
minutes to 2 minutes on a MacPro workstation with 2x 2.26 Ghz 

Quad Core Intel Xeon processor and 16 GB memory. However 
this duration was not ideal as it was still too slow when 
application would restart. Furthermore, this implementation was 
single user oriented and could not be easily deployed on the web. 
The source data can be mapped to a relational database in a 
straightforward manner by representing the data with three tables;  
one for events, second for patches, and third for actions that 
includes relationship between former two. SQLite [5] database 
was chosen based on following considerations  
a) The database will be written once, rarely modified, but read 

repeatedly for visualization and analysis 
b) SQLite simplifies data management, but keeps notion of a 

file, this is desirable as the domain scientists are used to file 
handling 

c) SQLite does not requires database server setup, this lowers 
setup hurdles for domain scientists  

d) SQLite database is portable on multiple platforms, thus can 
be easily generated on diverse computing resources and 
shared easily with others 

e) SQLite drivers are available in many languages, thus can be 
easily used from variety of languages such as R [6] and 
Python [7] 

 
The data transformation was conducted using Python and 
validated to match source data. During the data transformation 
geographic data was translated from UTM projection to 
EPSG:4326 projection [8] and stored in GeoJSON format [9] for 
quick retrieval later. The data translation process takes 
approximately 20 minutes on a workstation mentioned previously; 
the resulting database is almost twice the size, mainly due to 
addition of ID columns that were implicit in source data and extra 
computed columns as well as translated geo-referenced data, 
which is more verbose. 

 

Figure 1: Frequency distribution of quakes for 40,000-year period. Magnitude range is indicated by color.
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3 VISUALIZATION 

3.1 Tasks 
The domain scientists had developed a method to view the data in 
3D using R scripting. As most quake events affect very few fault 
patches the 3D aspect was deemed to be of less interest, instead 
we focused on developing a projected 2D visualization that would 
allow the domain scientists to accomplish the following 
a) Browse events and view them in geographic context 
b) View the fault patches affected by a given quake 
c) View chronology in space and time of events that precede 

and follow a selected event  
d) Filter events based on magnitude and number of affected 

fault patches 
e) Provide a web interface to easily investigate and disseminate 

this data  

3.2 Visual encoding 
To accomplish the set tasks, we employed map visual idiom     
(see Fig. 2) that implicitly represents geographic spatial data and 
line plot idiom (see Fig. 3) that allow us to represent time series 
data in abstract form. The map shows geographic context with 
roads, cities and other landmarks, the data encoded using circle 
markers and displayed at its geo-referenced locations. Events on 
map are shown by polygons with shape corresponding to their 
magnitude in whole number. Events with magnitude less than 4 
are shown as triangles, event with magnitude between 4 and 5 are 
shown with a square, events between 5 and 6 are shown as 
pentagon and so on. The selected event is shown with red color 
polygon, clicking on this polygon presents a popup window 
containing contextual information associated with this event as 
shown in Table 2.  
 
 

 

Figure 2: Map showing selected event with a red circle and corresponding affected fault patches in blue.  Previous events are 
displayed with grey circles connected by a grey line that indicates their chronology with respect to the selected event. Similarly next 
events are displayed with purple circles connected by a purple line. Visibility control toggles for various layers are on top right. 

 

Figure 3: Line plot shows magnitude, duration and area of 100 previous and 100 next events that are adjacent the selected one 
shown in the center. Clicking on any event on the time series loads the chosen event in the map above, enabling swift exploration.  
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Similarly previous and next events adjacent to the selected event 
are displayed as grey and purple polygons respectively, these 
polygons are connected via a trail line to indicate event 
chronology. Affected fault patches are projected in 2D and are 
displayed as explicit geometry in blue color. All these elements 
including the base maps are separated into layers such that they 
can be either displayed or hidden on demand.  
 
Lastly, a timeline chart below the map displays event chronology 
of ± 100 events adjacent to the selected event. The timeline chart 
includes few properties such as magnitude, area and duration of 
events. The timeline and the map interface are linked such that 
when an event is selected in the timeline the map is updated. 

Table 2: Pop up information for a selected event ID 

Event properties Value 
Event ID 108632 
M-Magnitude 7.650801 
M0-Moment (Nm) 3.76879000084e+20 
T0-Time (s) 1.60341098492e+12 
DT-Duration (s) 203.089111328 
Patch ID 184145 
X-Coord (m) 448831.639048 
Y-Coord (m) 3797705.13249 
Z-Coord (m) -7542.424242 
Area (m^2) 3.66856720806 
Patches affected 5194 

3.3 User interface 
The catalog consists of millions of events, thus a careful user 
interface design was needed to accomplish event selection. We 
implemented the graphical users interface (GUI) which could be 
subdivided into a composite of three sections (see Fig. 4).  
 
The top section allows event selection via event ID (Fig. 5) or 
time. In case the of event selection via time which is natively 
stored in seconds, on interaction we show the time in human 
readable format as year:day:hour:second (see Fig. 6). Both ID and 
time based selections offer sliders for quick pick and text input for 
precise input. Additionally increment and decrement buttons at 
various scales are provided for swiftly changing the selection. 
The middle section of the GUI allows filtering of selected event 
by magnitude and number of patches affected. The corresponding 
sliders for these filers offer the user an ability to set upper and 
lower range as desired. The Map trail and Time slider allow the 
user to customize the number of events to be shown on map and 
time series chart respectively.  
 
The bottom section of the GUI provides checkboxes for applying 
filters on time series, auto fitting of all displayed events on the 
map and an ability to set auto submission rather than submitting 
changes manually after desired changes.  
 

 

Figure 4: Snapshot of full graphical user interface, showing 
selection by event ID. The event can be further filtered via 
magnitude and patch sliders. Trail and time series sliders 
allow customization of ancillary items for display.   

 

Figure 5: Selection by event ID snapshot. The interface allows 
users to provide input via a slider (for easy scrubbing), text 
input box (for precise numeric input) as well as increment and 
decrement buttons at preselected scales for swift exploration. 
A drop down selection list enables choice for additional scales. 

 

Figure 6: Selection of event by time. The interface allows users 
to provide input via a slider (for easy scrubbing), text input 
box (for precise numeric input) as well as increment and 
decrement buttons at preselected scales for swift exploration. 
A drop down selection list enables choice for additional scales. 
On user interaction human readable time in 
year:day:hour:second format is shown in the orange box. 
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3.3 Implementation 
Custom visualization is implemented using Python, JavaScript 
and HTML as a server-client application. The server side handles 
processing and responds with renderable data to the client. The 
client (web browser) fetches the served data and displays the 
result along with the user interface. The application relies on 
LeafletJS mapping library [10] that provide geographic 
environment. Flask framework [11] in Python is utilized for web 
serving and query response interaction. The selection and filters 
are mapped to appropriate database queries on server side. Folium 
Python module [12] is used to generate custom map with custom 
code that fuses data for selected event and fault patches 
ondemand. The timeline chart is generated using the C3JS 
JavaScript library [13] and linked with map visualization. The 
graphical user interface is created using noUISliderJS JavaScript 
library [14], which provides mobile friendly and range sliders that 
are not natively available with HTML5. The web application is 
deployed using Gunicorn [15] web server. 

4 RESULTS AND DISCUSSION 
We have developed and demonstrated a web based visualization 
application [16] that displays an interactive map with set of layers 
that includes base map, selected event, trail events (previous and 
next events adjacent to the selected event), trail event line (line 
connecting previous, selected and next events) and affected fault 
patches. These layers can be toggled on/off to reduce clutter and 
the map could be zoomed in/out or panned. 
 
A graphical user interface allows the users to interactively select, 
browse, search and filter events of interest, refer to section 3.3 for 
interaction details. Users can spatially view location of chosen 
event (see red polygon in Fig. 2) and its chronology on a map (see 
black and purple polygons connected by a grey and purple lines in 
Fig. 2) as well as inspect other calculated properties such as area, 
duration by clicking on these markers. The users can also view the 
patches affected by the event spatially (see series of projected blue 
triangles Fig. 2). Finally the event chronology is shown as line 
plot, which allows easy comparison and trend assessment of 
magnitude, duration and area (see Fig. 3) adjacent to the selected 
event. Each event in this timeline in linked to map visualization, 
such that when the user clicks on any event, the clicked event is 
updated on the map. This linking enables swift navigation and 
exploration.  
 
In addition to the interactive visualization, the newly implemented 
data management scheme can be used for scientific analysis. One 
such analysis is implemented and the results were validated with 
the domain scientists. The analysis is computation of mean 
recurrence interval of quake on each fault sub section from a total 
of 2,606.  
 
 
 
 

The following steps illustrates the computation process  
i. Find all unique fault sections in fault geometry table 

ii. For each section find event record in event table 
iii. Arrange records from ii in chronological order 
iv. Calculate time duration between successive records by 

computing pairwise difference of all records in iii 
v. Compute mean of all items in iv 

vi. Repeat ii–v for each section  
 

This analysis using the original workflow with R scripts consumes 
more time compared to the new one that uses database. The 
original analysis required loading, parsing and structuring of raw 
data, which is not need by new analysis, as it relies well structured 
database. More importantly the new analysis does not need to load 
entire data into memory as the database is kept on disk. This 
demonstrates that the analysis-using database will offer better 
scalability and convenience for domain scientists. 
 
The domain scientists are currently using this web based 
visualization interface for data exploration and also considering its 
use for pedagogy purpose in classroom. 

5 CONCLUSIONS 
To conclude, we have developed and demonstrated an interactive 
web based application for visualizing of large time series 
earthquake data. The application not only allows easy browsing 
and filtering, but also is also easily accessible by multiple 
concurrent users. Furthermore, we have transformed the original 
data handling to a modern environment that lends itself to error 
reduction as less code is required for custom parsing and filtering, 
easier data management, easy dissemination and most importantly 
scalable data analysis and visualization. 

6 FUTURE WORK 
We would like to refine and extend this work for the entire 
scientific pipeline; this includes writing output directly to the 
database from simulation, rather than translating it as a post-
processing step. Refine the visualization to include graphical 
spatial region selection. Provide an ability to download filtered 
data and perform custom queries on the web application. Finally, 
refactor all existing analysis routines to use database queries. 
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