
XCAT3: A Framework for CCA Components as OGSA Services

Sriram Krishnan Dennis Gannon

Department of Computer Science, Indiana University.
215 Lindley Hall, 150 S Woodlawn Avenue, Bloomington, IN 47405-7104�

srikrish, gannon � @cs.indiana.edu

Abstract

The benefits of component technologies are well known:
they enable encapsulation, modular construction of ap-
plications and software reuse. The DOE sponsored Com-
mon Component Architecture (CCA) [3] project adopts a
component-based approach for building large scale sci-
entific applications. On the other hand, the Web services-
based Open Grid Service Architecture (OGSA) and Infras-
tructure (OGSI) [14] come close to defining a component
architecture for the Grid. Using an approach where a CCA
component is modeled as a set of Grid services, the XCAT3
framework allows for CCA components to be compatible
with the OGSI specification. This enables CCA components
to be accessible via standard Grid clients, especially the
ones that are portal-based. For CCA compatibility, XCAT3
uses interfaces generated by the Babel [5] toolkit, and for
OGSI compatibility, it uses the Extreme GSX [12] toolkit.
In this paper, we describe our experience in implementing
the XCAT3 system, and how it can be used to compose com-
plex distributed applications on the Grid in a modular fash-
ion.

Key Words: Grids, Components, Web Services, OGSA,
OGSI, CCA, Babel, XSOAP, GSX.

1. Introduction

A software component is a unit of composition with con-
tractually specified interfaces and explicit context depen-
dencies. A software component can be deployed indepen-
dently and is subject to composition by third parties [20].
A component architecture is a system defining the rules
of linking components together. The software engineering
benefits of component based software are well known: they
enable encapsulation, modular construction of applications
and software reuse. Component systems are immensely use-
ful to scientists who wish to build complex distributed
applications by composing existing software components,

thereby shielding them from the underlying complexity of
the distributed set of resources.

Various component models have been successful in in-
dustry, as well as in academia. Microsoft’s COM and
DCOM frameworks have been fundamental to inter-
operability in Windows based applications. Their current
Web services oriented .NET framework is also compo-
nent based and is gaining widespread acceptance. In the
CORBA world, the Object Management Group has re-
leased a specification for the CORBA Component Model
(CCM) [4], whereas Java Beans and Enterprise Java Beans
(EJB) [18] have been popular component standards for
Java based applications. The CCA project, which is de-
scribed here, is an initiative by DOE laboratories and
universities to develop a common architecture for build-
ing large scale scientific applications from well-tested
software components that run on both parallel and dis-
tributed systems. Several implementations of CCA exist,
viz. XCAT [15], Ccaffeine [2], SCIRun [17].

A computational Grid [13] is a set of hardware and soft-
ware resources that provide seamless, dependable, and per-
vasive access to high-end computational capabilities. Un-
til recently, there has been no consensus on what program-
ming model is appropriate for the Grid. The Open Grid Ser-
vices Architecture (OGSA) is the first effort to standard-
ize Grid functionality and produce a Grid programming
model consistent with trends in the commercial sector. It in-
tegrates Grid and Web services concepts and technologies.
The Open Grid Services Infrastructure (OGSI) refers to the
basic infrastructure on which OGSA is built. At its core
is the Grid Service Specification [11], which defines stan-
dard interfaces and behaviors of a Grid service in terms of
Web services technologies. OGSA and OGSI come close to
defining a component architecture for the Grid.

In our previous work [16], we argue for the need for mak-
ing our CCA-based components compliant with Grid stan-
dards. Some of the arguments we make in the above paper
are:�

By making our CCA components compliant with

OGSI, we can access them on the Grid using the same
standards and clients used to access other Grid re-
sources. This makes it easy to build Grid portals that
can access and control our components on the Grid.�
The area of Web and Grid services is seeing a lot of re-
search on standardization of various technologies such
as Workflow (or composition in time), Service Level
Agreements (SLAs), etc. These technologies should be
leveraged to make components easier to use and more
effective.�
Web and Grid services are lacking in standards that
allow for application assembly (such as via compo-
nent composition, which we refer to as composition in
space). Concepts from standard component technolo-
gies such as CCA should be used to enable creation
of complex applications on the Grid by composition of
existing components.

However, merging the two standards (CCA and OGSI)
is not a trivial task because of semantic differences between
CCA components and Grid services which preclude a di-
rect one-to-one mapping between components and services.
Hence, in this paper, we present an approach where a com-
ponent is modeled as a set of Grid services. We describe
the design and implementation of XCAT3, which uses the
above approach to create a framework that is compliant with
both CCA and OGSI. With an example, we show how com-
ponents written within the XCAT3 framework can inter-
operate and coexist with Grid services that are OGSI com-
pliant, even if they may be written using other frameworks.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the technologies that are vital for our
project. In Section 3, we present the design and implemen-
tation issues that we have to deal with in order to make the
XCAT3 framework compatible with both CCA and OGSI,
and show how components can be written within our frame-
work, and in Section 4, we discuss a typical scenario where
XCAT3 can be used.

2. Relevant Technologies

In this section, we describe the Common Component Ar-
chitecture (CCA) and the Open Grid Services Infrastructure
(OGSI) in a little more detail. We also present the tools that
we use for compatibility with these standards, viz. Babel for
CCA compatibility, and Grid Service Extensions (GSX) for
OGSI compatibility.

2.1. Common Component Architecture (CCA)

The CCA has primarily emphasized building applica-
tions and components for massively parallel supercomput-

Component B

Uses Port of Type X Provides Port of Type X

Connection between ports of compatible types

Component A

Figure 1. Example of a component connec-
tion using CCA. A uses port of type X can
be connected to a provides port of the same
type.

ers, but its semantics do not preclude its applicability to the
Grid.

The central idea in CCA is to build applications by com-
ponent composition. Two CCA components are composed
by connecting together their ports. Provides ports represent
functionality a component provides to other components.
Semantically, these are almost similar to RPC Web service
ports. Uses ports represent functionality a component may
need. Uses ports are essentially bindable references to pro-
vides ports. After a uses port is connected to a provides port,
any functionality represented by the uses port is obtained by
invoking the connected provides port.

The CCA can be compared to the CORBA Component
Model (CCM). Like the CCA, the CCM also has the notion
of ports. The CCA uses port is analogous to the CCM recep-
tacle, and the CCA provides port is analogous to the CCM
facet. Unlike the CCM, however, the CCA envisions con-
nections as a dynamic, run-time activity. Ports can be added,
removed, and connected at run-time, and this is considered
normal behavior. The CCM does not allow the addition or
removal of ports. CCM connections are considered part of
application assembly, and not something the end user would
usually do dynamically. While the CCA also supports con-
nections used in this manner, the more flexible nature of
CCA ports and connections allow it to be used to as part of
Problem Solving Environments (PSEs), in which the end-
user directly manipulates component connections to solve
the particular problem at hand.

Each port is identified by name and is described by an in-
terface of operations. The interface can be described by the
Scientific Interface Definition Language (SIDL) [8], or in
our case by simple Java interfaces or by the Web Services
Description Language (WSDL) [10]. Figure 1 shows an ex-
ample of a connection between two components with com-
patible port types.

2.1.1. Babel. To define components and their inter-
faces, CCA uses the Scientific Interface Definition Lan-
guage (SIDL) that was developed as part of the Babel
project. SIDL addresses the unique needs of parallel sci-
entific computing by supporting complex numbers and
dynamic multi-dimensional arrays as well as parallel com-
munication directives that are required for parallel dis-
tributed components. SIDL also provides other common
features that are generally useful for software engi-
neering, such as enumerated types, symbol versioning,
name space management, and an object-oriented inheri-
tance model similar to Java.

Babel tools parse interface descriptions for components
in SIDL, and automatically generate glue code for the
specified software library. This glue code mediates differ-
ences among calling languages and supports efficient inter-
language calls within the same memory address space. In
the future, Babel plans to support calls across memory
spaces for distributed objects; however, this ability does not
exist at this point.

2.2. Open Grid Services Infrastructure (OGSI)

The Open Grid Service Infrastructure extends the Web
service model by defining a special set of service properties
and behaviors. First, it separates the service naming and ser-
vice reference. A Grid Service Reference (GSR) is a precise
description of how to reach a service instance on the net-
work. GSRs can be complete WSDL descriptions of a ser-
vice instance. A Grid Service Handle (GSH), on the other
hand, is an immutable name for a service. The idea is that
a GSR may change over time as a service is moved or up-
graded. Hence a GSH may be bound to different GSRs over
time, but the GSH can always be resolved to the official ver-
sion of the service instance.

The most important contribution of OGSI is the spec-
ification and restriction of Grid service behavior through
the definition of a family of standard ports. The most im-
portant of these is the GridService port. This port provides
dynamic service introspection, which is a common feature
of component architectures. By invoking queries on the re-
quired Grid Service port, a client can discover information
such as the other portTypes the service supports, the life-
time of the service instance, and other service-specific in-
ternal state data that the service wishes to expose. The in-
formation is conveyed back to the client in the form of XML
fragments called Service Data Elements (SDEs). Each SDE
is described by a Service Data Descriptor (SDD), which de-
fines the schema and the content of the SDE.

Another important set of portTypes in OGSI involve no-
tification. A client service can subscribe to changes in the
service data of a source service by sending its GSH or GSR
to the source service, via its NotificationSource portType.

The notification source pushes SDEs back to the subscriber
when they have changed. This is accomplished by invok-
ing a DeliverNotification operation on the subscribing ser-
vice. This provides a basic form of service composition.

2.2.1. XSOAP and Grid Service Extensions (GSX).
XSOAP [19] (formerly called SoapRMI) is a lightweight
implementation of Remote Method Invocation (RMI) that
uses SOAP [9] as the communication protocol. XSOAP
can also be used to write Web services, and any client
that can understand the WSDL description for the ser-
vice can make remote invocations on it.

GSX builds on top of XSOAP and provides extensions
that enable users to expose their plain Web services as
Grid services compliant with OGSI. The main additions to
XSOAP are the OGSI specific portTypes that are required
for a Web service to be a Grid service (e.g the GridService
portType), the provision to add Service Data Elements to
these services, and the use of multiple level naming (GSH
and GSR, as described in Section 2.2).

3. The XCAT3 Framework

Currently, the XCAT3 framework is implemented in
Java, and we plan to implement a corresponding C++ ver-
sion that is inter-operable with the former.

3.1. General Architecture

Some of the key features of the XCAT3 architecture are
as follows:�

ComponentID: Every component has a unique Com-
ponentID that can be used to refer to it. CCA defines
two operations for the ComponentID: getInstan-
ceName which returns the name of the component in-
stance, and getSerialization which returns
the framework specific serialization of the Com-
ponentID. However, we add a few methods to the
XCATComponentID which is an interface that ex-
tends the ComponentID. These are used internally
by the XCAT3 framework, especially for compo-
nent composition purposes. The interesting ones are
getPortRef to get a reference for a remote pro-
vides port that can be cached when a connection
is made between a local uses and the remote pro-
vides port, setPortRef to cache a reference for
a remote provides port when a connection is be-
ing made between a local uses and the remote
provides port, disconnectProvider to discon-
nect the remote provides port from a connection
with a local uses port (by removing the cached re-
mote port reference), and disconnectUser to

notify a remote provides port that it has been dis-
connected from a uses port (for reference counting
purposes).�
Services: Every component has a Services object that
is set using the setServices method via the Com-
ponent interface. The Services object is responsible
for providing methods to register uses ports (reg-
isterUsesPort), add provides ports (addPro-
videsPort), fetch a previously register port (get-
Port), get a reference to the ComponentID (get-
ComponentID), etc.�
Exceptions: CCA defines a set of exceptions that may
occur during execution, viz. PortNotDefined, PortAl-
readyDefined, PortNotConnected, BadPortName, etc.
XCAT3 creates a Java Exception class for every CCA
defined exception. All exceptions extend from the base
CCAException. All exceptions thrown during commu-
nication between components are caught and returned
to the component that initiated the communication.
The exceptions are mapped to SOAP faults on the wire
and then to corresponding exceptions on receiving end
of the initiating component.�
Builder Service: The Builder service is a port imple-
mented by CCA compliant frameworks for composing
components into applications in a standard way. It ex-
poses the component creation and composition func-
tionalities. Some methods exposed by the Builder ser-
vice for component lifecycle purposes are create-
Instance for creating an instance of a component,
and destroyInstance for eliminating the compo-
nent instance from the scope of the framework. Since
ours is a distributed component framework, the cre-
ateInstance is capable of creating component instances
on remote locations using the Globus GRAM [7] pro-
tocol provided by the Java CoG Kit [21]. Upon suc-
cessful creation of a component, a ComponentID is re-
turned for the component which can be used to refer to
it in the future. For composition purposes, the Builder
services provides methods connect for connecting a
uses port to a provides port, and disconnect for dis-
connecting an already existing connection.�
Scripting Interface: For rapid prototyping purposes,
XCAT3 provides an interface to the Builder service us-
ing Jython scripts. Jython is pure Java implementation
of the Python scripting language, and provides an al-
most seamless interface to code written in Java. Hence,
exposing the functionality of the Builder service which
was originally written in Java via Jython was a trivial
task. The Jython API provided to the user closely mir-
rors the API provided by the Builder service.

3.2. CCA Compatibility

The CCA specification itself is defined in SIDL. The
SIDL describes the various interfaces that a framework
must implement in order to be compliant with CCA. It also
defines the interfaces that ports and components must im-
plement.

We use Babel to generate the Java interfaces from the
SIDL specification in order to be compatible with CCA.
However, Babel is currently defined for language inter-
operability within the same process space, and not for the
distributed object case that we are interested in. Hence, we
needed to strip out code from the stub classes that used Java
Native Invocation (JNI) for native calls to other languages,
and replace it with code that does remote invocations us-
ing XSOAP.

3.3. OGSI Compatibility

To be compatible with OGSI, we use the GSX toolkit
to present both our provides ports, and our components as
Grid services. We discuss each of the two cases separately
in the following subsections.

3.3.1. Ports as Grid Services. As per the CCA specifi-
cation, one component can have more than one instance
of a provides port of the same type, where each instance
is unique. As an example, consider the case of a remotely
accessible electron microscope with multiple guns. In this
case, the microscope itself will be represented as a compo-
nent, while each of the guns will be represented as a pro-
vides port. In other words, these ports are envisioned to be
state-ful.

On the other hand, in the Web services world (includ-
ing OGSI), if a service has several ports of the same type
(with different bindings and addresses), the ports are con-
sidered semantically equivalent. As a result, the same oper-
ations on different ports of the same type affects the state
of the service in exactly the same way. Thus, Web service
ports function as interfaces to the Web service, and can be
inferred to be stateless.

Because of the above semantic difference between CCA
provides ports and Web service ports, a model where ev-
ery component is mapped to a Web (or Grid) service and
every provides port is mapped to a Web service port is too
restrictive, and is incorrect. Hence, we chose to model ev-
ery provides port of a CCA component in XCAT3 as a sep-
arate lightweight Grid service (and hence, a Web service)
using GSX. The XSOAP toolkit can be used to create the
WSDL definition for these services and these can be pub-
lished in registries such as UDDI [1] for interested clients.

Every provides port could conceivably be implemented
as a simple Web service, and not a Grid service. However,

in the future, we plan to enable checkpointing and migra-
tion of XCAT3 components. The provision of multiple level
naming for Grid services (and hence, XCAT provides ports)
will help us keep our uses-provides connections location-
independent, and help us in enabling migration for individ-
ual components. Additionally, the provides ports are now
no different in behavior from other Grid services imple-
mented using other frameworks such as the OGSI compli-
ant Globus Toolkit (GT3). This means that a uses port can
be connected to any OGSI compliant Grid service. Thus, ex-
isting Grid services that already provide functionalities that
the users desire can be easily leveraged by simply connect-
ing to them via uses ports.

In XCAT3, every port interface extends the XCATPort in-
terface, which extends from gov.cca.Port (which is Babel-
generated) and from XSoapGridServiceInterface which rep-
resents the OGSI GridService port, as provided by GSX.
XCAT3 also provides a basic implementation of a provides
port (BasicPortImpl) that every port implementation should
extend from. This class implements the methods declared in
the XSoapGridServiceInterface, obviating the need for the
user to implement (or even be aware of) them. Thus, ev-
ery provides port implemented by a user within the XCAT3
framework is automatically exposed as a Grid service.

3.3.2. Components as Grid Services. Every CCA com-
ponent is a collection of provides ports, along with other
shared state. It follows that every XCAT3 component is a
collection of Grid services, which happen to be provides
ports. We choose to expose every XCAT3 component itself
as a Grid service, via its ComponentID.

The XCATComponentID implementation extends not
only the Babel-generated gov.cca.ComponentID, but also
the XSoapGridServiceInterface which makes it a Grid ser-
vice. When a component is instantiated, the framework
creates a Container for the instance. The container is re-
sponsible for managing the component instance. The
container adds Service Data Elements to the XCATCompo-
nentID containing the names, GSH and GSR for the pro-
vides ports. Thus, any Grid client can obtain access to the
provides ports by using this information from the XCAT-
ComponentID. In its current form, the container is very
basic and performs limited functionality. But in the fu-
ture, the container will be responsible for activities such as
checkpointing the state of the component, evaluating per-
formance guarantees or Service Level Agreements (SLA),
etc.

Since the CCA ComponentID is an object that can be
passed around so that any other user can have access to
a particular component, we have to make sure that it can
provide access to a remote component even if the com-
ponent has migrated to another resource. In other words,
the ComponentID implementation has to provide location-
independence. Hence, the getSerialization method

Service Data Elements with Locators
 for other Provides Ports

Uses Port as a Grid
 Service Client

Other Provides Ports as Grid Services

Standard
Grid Service

ComponentID as a Grid Service

Grid
Service
Client 2. Make remote invocation onprovides port

1. Retrieve locator for provides port

Component

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

 XCAT3

Figure 2. Every XCAT3 component is a Grid
service. It contains SDEs with locators for all
provides ports, which are also Grid services
themselves

of the ComponentID in XCAT3 returns the GSH for the
component that is valid for all time, and not the GSR which
may no longer be valid if the component has migrated. The
GSH along with a HandleResolver (which is an OGSI de-
fined port that provides an ability to resolve a GSH into a
valid GSR) is used by a client-side stub to make sure that
the GSR for the remote component stays valid as long as
the component is alive.

The modeling of an XCAT3 components and ports as
Grid services is illustrated in Figure 2. The OGSI specifica-
tion uses a concept called ServiceGroups to group together
a set of Grid services that are related. We can model a com-
ponent (using the ComponentID) as a ServiceGroup, and
plan to do so in the future.

3.4. Writing Components

Writing components in the XCAT3 framework consists
of writing the port interfaces, implementing the ports, writ-
ing the components, and writing scripts that create com-
ponent instances and compose them meaningfully. We de-
scribe each of the above steps in this section.�

Defining Port Interfaces: In XCAT3, port interfaces are
defined in Java. We don’t use SIDL to describe our port
interfaces because currently Babel tools have no no-
tion of distributed objects. For any Java interface to
function as a port in XCAT3, it needs to extend from
intf.ports.XCATPort. As explained in Section 3.3, ev-
ery port interface extends from XCATPort in order to

be compatible with the OGSI specification. The XCAT-
Port (via its inheritance from XSoapGridServiceInter-
face) provides methods to query for Service Data Ele-
ments (SDE) and manage lifetime of the ports.�
Implementing Ports: XCAT3 provides a basic imple-
mentation of a port via class xcat.ports.BasicPortImpl.
This class implements the methods present in the inter-
face XCATPort, so that the user of the system need not
be concerned with details of the OGSI specification.
Hence, the user only needs to implement the methods
that are added via the definition of the port interface.�
Implementing Components: Every implementa-
tion of a component has to implement the inter-
face gov.cca.Component. The only method present
in the Component interface is called setSer-
vices which is used to initialize the Services
object for the component. Within the setSer-
vices method, a component is expected to create
instances of provides ports and add them to the Ser-
vices object using the addProvidesPort method,
and also register uses ports using the registerUs-
esPort method. When a provides port is added,
the XCAT3 Services implementation makes it avail-
able to the outside world as a Grid service transpar-
ently.�
Scripting an application: Once all the components
have been written, the Builder service API can be used
from Java to create instances of components, and com-
pose them together to form a distributed application.
However, as we mention in Section 3.1, Jython scripts
can also be written for the same purpose. Currently,
the Jython API to XCAT3 allows creating instances
of components locally and remotely (using GRAM),
connecting and disconnecting ports between compo-
nent instances, querying Service Data Elements from
components, destroying component instances, and in-
voking methods on provides ports contained within in-
stantiated components.

In summary, Figure 3 describes the overall architec-
ture of XCAT3, as described in the above sections.

4. Typical Scenario

Figure 4 illustrates a typical scenario in which the
XCAT3 framework can be used. It shows how XCAT3
can be used to create a distributed application consist-
ing of CCA components and OGSI services.

The application consists of a pool of Worker compo-
nents, and a Master component that steers the computation
with the aid of the Workers. Also present in the system is a
Registry service that is OGSI compliant. The Registry is as-
sumed to be persistent and implemented by a third party.

 The XCAT3 Framework

Jython ScriptsComponents
User−specific Framework Services

 Core XCAT Implementation

 (CCA and OGSI Compatible)
 XCAT API

 (Babel generated) (Lightweight OGSI impl)
 CCA API GSX

 (RMI using SOAP/HTTP)
 XSOAP

Figure 3. Architecture of XCAT3

Each of the Workers have a provides port that provides the
core functionality of the Worker. The Master and the Work-
ers communicate with the Registry with the help of uses
ports. In addition, several uses ports are added dynamically
to the Master for communicating with the Workers. And fi-
nally, the Master also has a Builder service port that is used
to make connections between its uses ports and the provides
ports of the Workers.

A Jython script is used to launch the Master and the pool
of Worker components. The Jython script also connects the
Master and the Workers with the Registry with the help of
uses ports. Once the Workers are instantiated, they register
Locators (GSH and/or GSR) to themselves with the Reg-
istry. In addition to the Locators, they also publish Service
Data Elements periodically containing resource utilization
and capabilities of their locations. In order to choose the
best Worker for fastest turnaround time, the Master queries
the Registry for Workers with the best availabilties and ca-
pabilities, and receives the Locators for the same. It then
uses its Builder service to make a connection with the cho-
sen Worker, and sends out a work packet via the uses port.

Thus, XCAT3 can be used to build a complex distributed
application by composition of regular CCA components,
along with Grid services as long as they are compatible
with OGSI. Even though such a system could conceivably
be built using vanilla distributed CCA components or plain
Grid services, a combination of these models helps us use
concepts of component composition (via the uses-provides
mechanism) for modular construction of complex applica-
tions in the realm of Grid services. Additionally, the compli-
ance with OGSI opens up avenues for reusing hundreds of

Jython Script

Component
Master

Registry Service

Worker
Component Component Component

Worker

C
om

po
ne

nt
 L

au
nc

h Builder Service Port

Get Best
Worker

Locators,
Capabilities,
Availabilities

Worker
 Port

Worker

Figure 4. Typical scenario for the use of
XCAT3

Grid services and clients available in the fast growing Grid
community (e.g the Registry service that is used in our sce-
nario).

5. Conclusions

We have presented a distributed software component
framework, XCAT3, that is compatible with the Common
Component Architecture (CCA) and also compliant with
the Open Grid Services Infrastructure (OGSI). This allows
the combination of benefits from both models - the ability
to construct complex distributed applications by composi-
tion due to the former, and the ease of use in a Grid-based
environment due to the latter.

CCA components have two types of ports: Provides
which is identical to a Web service port, and Uses which is
an external reference from one component to a provides port
of another component. Provides ports are modeled as OGSI
services in XCAT3, and the component itself is modeled
as an OGSI service consisting of a set of OGSI-compliant
provides ports. The Grid Service Handles (GSH) and Refer-
ences (GSR) to the ports contained by the component can be
obtained from the introspection information available from
the component, which is represented as Service Data Ele-
ments (SDE).

In the future, we plan to implement a C++ version of
XCAT3 that is compatible with the Java version. The C++
version will use the Proteus Multi-protocol library [6] for
better performance for scientific applications.

6. Acknowledgements

This work is supported by National Science Foundation
grants EIA-0202048 and NSF-0116050, and the Depart-
ment of Energy Office of Science SciDAC grants. We also
wish to acknowledge insights from our colleagues at the Ex-
treme Lab at Indiana University, in specific Randall Bram-

ley, Kenneth Chiu, Madhusudhan Govindaraju, and Alek-
sander Slominski.

References

[1] Universal Description Discovery and Integra-
tion of Business for the Web (UDDI), Dec 2003.
http://www.uddi.org/specification.html.

[2] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.
Bernholdt, and J. A. Kohl. The CCA core specification in
a distributed memory SPMD framework. Concurrency and
Computation: Practice and Experience 14(5), 2002.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Toward a Com-
mon Component Architecture for High-Performance Scien-
tific Computing. In 8th IEEE International Symposium on
High Performance Distributed Computation, August 1999.

[4] D. Bartlett. CORBA Component Model (CCM): Intro-
ducing next generation CORBA, Dec 2003. http://www-
106.ibm.com/developerworks/webservices/library/co-cjct6.

[5] Center for Applied Scientific Computing
(CASC), LLNL. The Babel Project, Dec 2003.
http://www.llnl.gov/CASC/components/babel.html.

[6] K. Chiu, M. Govindaraju, and D. Gannon. The Proteus
Multiprotocol Library. In Supercomputing 2002, November
2002.

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A resource management ar-
chitecture for metacomputing systems. In IPPS/SPDP 98,
Workshop on Job Scheduling Strategies for Parallel Process-
ing, 1998.

[8] N. Elliott, S. Kohn, and B. Smolinski. Language Interop-
erability for High-Performance Parallel Scientific Compo-
nents. In International Symposium on Computing in Object-
Oriented Parallel Environments (ISCOPE 1999), September
29 - October 2 1999. San Francisco, CA.

[9] D. Box et al. Simple Object Access Protocol 1.1, Dec 2003.
http://www.w3.org/TR/SOAP.

[10] E. Christensen et al. Web Services Description Language
(WSDL) 1.1, Dec 2003. http://www.w3.org/TR/wsdl.

[11] S. Tuecke et al. Grid Service Specification, April
2003. http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-
ogsi-gridservice-29 2003-04-05.pdf.

[12] Indiana University Extreme Computing Lab.
Grid Service Extensions (GSX), Dec 2003.
http://www.extreme.indiana.edu/xgws/GSX.

[13] I. Foster and C. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan-Kaufmann, 1998.

[14] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. Computer 35(6),
2002.

[15] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski,
D. Gannon, and R. Bramley. XCAT 2.0: Design and Imple-
mentation of Component based Web Services. Technical re-
port, Department of Computer Science, Indiana University,
June 2002. TR562.

[16] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski,
D. Gannon, and R. Bramley. Merging the CCA Component
Model with the OGSI Framework. In 3rd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
May 2003.

[17] C. Johnson and S. Parker. The SCIRun Parallel Scientific
Computing Problem Solving Environment. In 9th SIAM
Conference on Parallel Processing for Scientific Computing,
1999.

[18] R. Monson-Haefel. Enterprise Java Beans. O’Reilly, 1999.
[19] A. Slominski, M. Govindaraju, D. Gannon, and R. Bram-

ley. Design of an XML based Interoperable RMI System
: SoapRMI C++/Java 1.1. In International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations, Las Vegas, Pages 1661-1667, June 25-28 2001.

[20] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1998.

[21] G. von Laszewski, J. Gawor, S. Krishnan, and K. Jackson.
Grid Computing: Making the Global Infrastructure a Re-
ality, chapter 25, Commodity Grid Kits - Middleware for
Building Grid Computing Environments. Wiley, 2003.

