Hardware Monitors for Dynamic Page Migration

Mustafa M. Tikir*S Jeffrey K. Hollingsworth
San Diego Supercomputer Center Computer Science Department
9500 Gilman Drive, 0505 University of Maryland
La Jolla, CA 92093 College Park, MD 20742
ntikir@dsc. edu hol I i ngs@s. und. edu

* This work was done while a student at the University afflénd, College Park.
$ Correspondence for the manuscript. Tel: (858) 822-0886 Fax: 3885117

1

Abstract
In this paper, we first introduce a profile-driven online paggration scheme and investigate its

impact on the performance of multithreaded applicationsu®éecentralized lightweight, inexpensive

plug in hardware monitors to profile the memory accesswehaf an application, and then migrate

pages to memory local to the most frequently accessincegsor. We also investigate the use of
several other potential sources of data gathered fromdwaae monitors and compare their

effectiveness to using data from centralized hardware torsniln particular, we investigate the

effectiveness of using cache miss profiles, Translatiaok&éside Buffer (TLB) miss profiles and the

content of the on-chip TLBs using the valid bit informatidoreover, we also introduce a modest
hardware feature, called Address Translation Countef€) and compare its effectiveness with other
sources of hardware profiles.

Using the Dyninst runtime instrumentation combined with haréwmonitors, we were able to
add page migration capabilities to a Sun Fire 6800 server wtitt@ving to modify the operating
system kernel, or to re-compile application programs. Quaghic page migration scheme reduced
the total number of non-local memory accesses of applisatby up to 90% and improved the
execution times up to 16%. We also conducted a simulationl Istasgy and demonstrated that cache
miss profiles gathered from on-chip CPU monitors, whichtgpeally available in current micro-
processors, can be effectively used to guide dynamic pagatmns in applications.

Keywords
Dynamic Page Migration, Hardware Performance MonitasNUMA Systems, Multiprocessor
Systems, OpenMP Applications, High Performance Computkdgpress Translation Counters,

Runtime Optimization, Full System Simulation

1. Introduction

The dominant architecture for current shared-memoryipnaltessor systems is cache-coherent non-uniform
memory access (cc-NUMA). In cc-NUMA systems, procesd@ve a faster access to the memory units
local to them compared to the remote memory units. kample, the remote and local latencies in mid-
range Sun Fire 6800 servers is around 300ns and 225ns[6], redpeatneze as the remote and local
latencies in a 512 processor Altix 3000 is around 605ns and,I#Spgctively[21]. Traditionally cc-NUMA
systems use physical first-touch page placement where mgrages are placed into the memory that is
local to the processors that touch the page first. Howdist-touch placement may result in non-local
placement of a page relative to the processor that &sci#dtie most, which may have a significant impact
on memory performance of the memory intensive applicatiamsing on cc-NUMA servers.

In this paper, we first introduce a user-level memory paigration scheme, namely dynamic page
migration. In this page migration scheme, applications arfeunt to determine the preferred locations of the
memory pages in the memory units using hardware monifdrsn system calls are used to request the
kernel to migrate the memory pages to the specific memnoitg. In this dynamic page migration scheme,
both profiling and page migrations are conducted during the samefrthe applications. The access
frequencies of the memory pages by the processors araeaghitentinuously at runtime using hardware
monitors and the pages are migrated local to the magidrely accessed processors at fixed time intervals.

Although page migration has been extensively studied in pesearch, our dynamic page migration
approach demonstrates several novel features. First, ouriggoak to introduce a new page placement
policy. Instead, we demonstrate that the combinations-epensive plug in hardware monitors that sample
information about interconnect transactions and a simple pagmtion policy can be used effectively to
improve the performance of real scientific applicatiorescddd, even on multiprocessor systems with small
remote to local memory latency ratios, optimizing ppgeement still provides substantial benefit to some
applications. The remote to local memory latency rétite Sun Fire system we used is 1.33:1. We believe

our page migration scheme will be more effective on systeitin large remote to local latency ratios.

The hardware performance monitors we used to gather gagssaprofiles for our actual dynamic page
migration scheme are centralized external pug-in monitorss& monitors listen to all address transactions
on the system interconnect in the cc-NUMA server. Howeusrh snonitors are not available in most
systems. Moreover, for non-bus based multiprocessors thattds@@ common address and data bus, it is
difficult to implement such centralized monitors that needlisten to all transactions on the system
interconnect. Alternatively, many processors now includecbip hardware support for performance
monitoring such as MIPS R10000[22], Compaq Alpha[7], Itanium firdei[10], Sun UltraSPARCI[17].

In this paper, we also investigate the use of several pittential sources of profiles gathered from
hardware monitors in dynamic page migration and compare #ifsctiveness to using profiles from
centralized hardware monitors. In particular, we investighe effectiveness of using cache miss profiles
and TLB miss profiles from on-chip CPU monitors, and samphe content of the processor TLBs. If such
sources of information can provide sufficiently accuratormation, it would mean software based
migration could be performed on systems without the needdédlicated hardware monitors. We also
introduce a simple hypothetical modest hardware featatked Address Translation Counters (ATC), which
is specifically designed to gather profiles for dynamic pamdgration and compare its effectiveness with
other sources of profiles. The ATC hardware is a sehddfitional counters included in the TLBs of a
processor and gathers accurate information on accegsefreies to the memory pages by the processor.

To evaluate the effectiveness of our dynamic page migratbense, we implemented our page
migration scheme for a Sun Fire 6800 server with Sun Fire L8jkjardware monitors for the Sun Fireplane
system interconnect. To evaluate the effectiveness of wsaich source of profiles in dynamic page
migration, we conducted a simulation based study using ayiik® simulator, Simics[12]. We present the
results of our studies in terms of the number of page nogsatriggered, reduction in the number of non-
local memory accesses, and improvement in execution timee @fpplications. We present the results for
OpenMP C implementation of the NAS Parallel Benchmark suitefdibboth our actual page migration

scheme and our simulation study.

2. Hardware and Software Componentsfor Dynamic Page Migration Scheme
In this section, we describe the hardware and software @oemps used in our actual dynamic page

migration scheme. We first describe the architecture oStireFire servers. We next describe the centralized
Sun Fire Link hardware monitors. Finally, we give a begblanation about the system calls that we used.
2.1 Sun Fire Servers

The Sun Fireplane interconnect is Sun’s fourth generation ofnfgync Multiprocessor Systems (SMP)
interconnect. The Sun Fireplane interconnect is implementdd ugitto four levels of interconnect logic
depending on the number of processors in the server[6]. iumeand large-sized Sun Fire servers,
processors and memory units are grouped together ormsystards (locality groups)[17]. Each system
board contains 4 processors and 4 memory units local frdleessors.

In Sun Fire servers, the transfer time to move a dat llom a memory unit to the requesting device is
non-uniform depending on the system boards the memory uniteguesting processor are on. Processors
on a system board have faster access to the memorg bartke same board (local memory) compared to
the memory banks on another board (non-local memory). Fonmgaback-to-back latency measured by a
pointer-chasing benchmark in a Sun Fire 6800 server with 7500M1s is around 225ns if the memory is
local and 300ns if the memory is non-local.

The Sun Fire 6800 server is a mid-range cc-NUMA architedbased on UltraSPARC Il processors
and Sun Fireplane interconnect. It supports up to 24 proseasdr24 memory units. The processors and
memory units in these servers are grouped into 6 sybtaEms. Each processor has its own on-chip and
external caches. Mid-range Sun Fire systems use a singlgping coherence domain that spans all the
devices connected to a single Fireplane address bus.

2.2 Sun FireLink Hardware Monitors

For our actual dynamic page migration scheme, we use th&iBuhink hardware monitors[14] to gather
profiling information for page migration. The Sun Fire Linkrdware monitor counts and samples the
transactions on the address bus of the Sun Fireplane intectofihese monitors were developed as part of

a system to cluster multiple systems together, thusligtey to the address bus of the system interconnect.

The Sun Fire Link Monitors consist of two 32-bit courregisters, a programmable control register that
activates the counters, two registers to filter tratisas based on transaction type, and two sets of anagk
match registers to filter transactions based on oth@mpeters, such as physical address range and the device
identifier. In addition to counter registers, the Sure fEiink Bus Analyzer has an 8-deep FIFO that records a
limited sequence of consecutive interconnect address ttaomsad=ach recorded transaction includes the
requested physical address, the requestor device idharichnsaction type. The bus analyzer is configured
with mask and match registers to select specificesddranges, processors or transaction types.

Even though the Sun Fire Link monitors provide useful informagioout the addresses and requesting
processors, the information is at the level of physicalresses. To accurately evaluate the memory
performance of an application, the address transactionstbideeassociated with virtual addresses used by
the application. This requires us to reverse map physdtiieases back to virtual addresses. We used the
meminfo system call in Solaris 9 to create a mapping betweesigdiyand virtual pages in the applications.
2.3 System Callsin the Solaris 9 Operating System
To ensure the reusability of local caches in the processac, application thread should be scheduled on
the same processor, if possible, throughout its execution[b6dn$ure the reusability of local caches and to
accurately count page access frequencies by processorsnadéep of thread scheduling, we explicitly bind
application threads to the processors in the system. Weapjplitation threads to the processors in a round
robin fashion using thprocessor_bind system call in Solaris.

Solaris places each physical memory page into the metimatys local to the first processor that touches
the page. To move pages in our dynamic page migration schenusewiee move-on-next-touch feature of
themadvise system call in Solaris 9. Using the move-on-next-touch featue request the operating system
to move a range of virtual memory onto the local memory optbeessor that next touches the range.

3. Dynamic Page Migration M ethodology
Our dynamic page migration algorithm consists of two differeadules. The first module gathers profiling
information using the Sun Fire Link monitors. The second neothdves memory pages using the profiling

information gathered by the first module. In our approa@hingert instrumentation code into the application

6

to gather profiling information, to migrate the memory pagedind application threads to processors and to
detect the application termination.

We used Dyninst[2] to insert instrumentation code into agiptins. Dyninst is a library that permits the
insertion of code into a running program. The Dyninst library prevelenachine independent interface to
permit the creation of tools and applications that use rentiode patching.

For our dynamic page migration algorithm, instrumentatiodecis inserted at the entry of th@in
function, exit point(s) ofhr_create function, and the entry @it function. The instrumentation code that is
inserted atmain loads a shared library that creates additional hethezads for gathering profiling
information and migrating memory pages. The instrumentabole inserted at the exit point(s)tf_create
calls theprocessor_bind system call to explicitly bind the newly created appiara threads to available
processors in a round robin fashion. The helper thregdbaund to dedicated processors and the remaining
processors are used to bind the other threads in the agmplicBhe instrumentation code inserted at the entry
to exit function detects the application termination and cleanbeipdardware monitors.

Our dynamic page migration algorithm is a two-phase algorithereates two helper threads, one for
profiling and another for page migration. The profiling Hdesamples the interconnect transactions and
updates the access frequencies of the memory pagescfosgstem board. The migration thread stops the
execution of all other application threads at fixed timierivals and triggers page migration based on the
profiling information gathered. To trigger migration orpage, our scheme uses the move-on-next-touch
feature of themadvise system call on the page. In addition, to prevent memory gagggonging between
memory units, we freeze memory pages that have beentedgracently for a fixed number of page
migration iterations (We freeze a page for 3 consecutigrations after migration). Thus, the memory pages
are migrated at fixed time intervals and a page maynkggated more than once throughout application
execution.

Our migration algorithm does not use a minimum access fneguéreshold to trigger the migration of a
page. At every migration interval, regardless of the Inemof accesses to a page, the page is considered as

candidate for migration. Alternatively, we could ltnmigration to the pages with a minimum number of

accesses or cache misses and thus migration overhead paeidially be eliminated for pages with little
contribution to the application's memory time.

Our dynamic migration scheme does not have a particularanich for cache coherency but rather
relies on the cache coherency mechanism the underlying iopesatstem uses since our approach is
designed for cache coherent NUMA systems that already ¢ectee coherency mechanism implemented.
Instead, we advise the underlying OS to move the page tcegediffiocation in physical memory and cache
coherency is maintained by the OS by updating the TLBesnand invalidating the cache lines that are
indexed using the physical addresses. Moreover, in our gchehen migration is triggered for a page, we
do not have a control whether a victim page will be evictemhfthe target physical memory if there is no
available page for the migration to succeed. We instdgadmnethe mechanisms used in the underlying.OS

In our page migration scheme, the two helper threadsaned to dedicated processors. However, these
helper threads are mostly idle other than gathering profinformation and triggering page migrations at
fixed time intervals. To isolate the impact of page watiigin on non-local memory accesses, we chose to bind
these threads to dedicated processors. Instead, theselsthcould run on the processors the application
threads run and make use of idle cycles. Alternativbigse threads can be pushed to the OS level by adding
two more threads to the OS. More importantly, consmerihe impact of chip-level multiprocessor
architecture on processor costs, additional dedicated gasesan be included to the HPC systems for
application profiling and page migration.

4. Other Sourcesof Hardware Profilesfor Dynamic Page Migration

In our actual page migration scheme on the Sun Fire sevgarse the centralized Sun Fire Link monitors to
identify the preferred locations of memory pages for dyogmaige migration. However, such monitors are
not available in many systems. Moreover, for non-bus basdtiprocessors that do not use a common

address and data bus, it is difficult to implementhsgentralized monitors that need to listen to all

% In the underlying OS we used for this research, page nugrdsils if there is no available
physical page on the target memory. However, we havee®st a case where migration was denied
since we track how much memory is used by the applicamoihdon’t move pages if we run short
on memory. In practice, this constraint never caused fasl to make a desired migration.

8

transactions on the system interconnect. Alternativelgnymprocessors now include on chip hardware
monitors for performance tuning. In this section, we dbsoother potential sources of profiles that can be
used to generate page access frequencies. Later in themexgsrsection, we present the results of our
simulation based study to investigate the effectivenef®esé other sources of profiles.

4.1 Profilesfrom Distributed On-Chip CPU Monitors

Profiles of page access frequencies by processors apjgication running on a cc-NUMA system can be
gathered by using information about the cache or TLB mibyesach processor in the system. If the
information about the number of cache or TLB missesawh @age by a processor is known, the access
frequency of the page by the processor can be approxiniéedever, for such information to be available,
the addresses associated with the cache and TLB migsesegied.

Many processors include hardware support to count ef@nperformance monitoring. Moreover, they
often provide mechanisms to trigger an interrupt when a givenber of events occur. More recently, an
increasing number of processors provide the ability to caghg@ememory addresses and/or instructions
involved in performance critical events. (Note that samanitors may provide approximate information
about the instruction(s) involved due to the difficulty of assing information with specific events when
many instructions are in flight. However, even approximaterinédion still provides valuable insight for
dynamic tuning of applications). For example, the Itanium Zgs®or provides a set efent address
registers (EARS) that record the instruction and data addredséata cache misses, the instruction and data
addresses of data TLB misses, and the instruction addred instruction TLB and cache misses[10]. Thus,
by distributed sampling of the addresses associated gtltache or TLB miss events, profiles of page
access frequencies by processors can be generated. Moremeos cache miss events are generally
distributed throughout the execution and provide information ra drain behavior, profiles of page access
frequencies gathered from cache miss events may be neqmresentative. Compared to cache misses, the
number of TLB miss events is generally lower and thesmte may not correspond to the pages that are
frequently accessed due to the fact that applicatems to keep frequently accessed pages in TLBs. In this

paper, we investigate the use of cache and TLB miss infemgtm on-chip CPU hardware.

9

4.2 Profilesfrom Valid Bit Information in TLB Entries
Hardware tries to keep virtual-physical page translatiomiesnbf the frequently accessed pages in the

processor TLBs. Thus, the contents of the valid TLBiestin a processor potentially provide information
on the pages that are mostly accessed by the process@mBlirg the content of the TLBs periodically, it
is possible to approximate page access frequencies bydbespor. Similarly, the information from each
processor can be combined and page access frequenciexbysors can be generated to guide migrations
in a dynamic page migration scheme.

To sample the contents of valid TLB entries of a presesthe underlying operating system needs to
provide a software sampling mechanism. In particular, thezatimg system needs to provide a means to
guery the list of valid entries and the virtual addresdebe pages for each valid TLB entry. In our research
we assume the underlying operating system provides a systemtatareturns the list of virtual page
addresses in the valid TLB entries for a given pramess
4.3 AddressTranslation Counters
To further evaluate the effectiveness of sources of peofih dynamic page migration, we designed a
dedicated hardware monitor that gathers accurate pageefieies and compared the effectiveness of other
sources of profiles with the dedicated monitors.

The hypothetical hardware feature we uaddress Translation Counters (ATC), is a set of additional
counters that is included in the TLBs of the proces$nr8TC, a counter is included for each TLB entry in a
processor (Shown in Figure 1) and incremented when a vidyatysical address translation is satisfied by
the corresponding TLB entry. Moreover, when the content DER entry is evicted due to a TLB miss or
invalidated due to other reasons such as cache coherpamtions, the counter associated with the TLB
entry is cleared. The ATC is included in each processdrcaunts the number of accesses to the memory
pages by the processor using the virtual to physical addrestatrans requested while the memory pages
are actively accessed. Note that the main reason fodinting these counters is to evaluate the effectiveness
of other sources of profiles by comparing them to this hardveature as ATC counters are more likely to

capture page access frequencies more accurately compam@ther more indirect sources of profiles.

10

Associating information hardware monitors provide withcsie events with many instructions in flight can
be difficult, but that associating TLB misses and ATCnévevith memory addresses is relatively easy due to
the fact that virtual page addresses are already stortbe ifLB and that TLB misses must be necessity to

update the TLB.

Address Trnsaction

Processor 1 TLB i || Processor 2TLB
vip: Vitual Physica ATC vy p Virual Physica ATC
Page Page Counter Page Page Counter
il 4 ~ Virtual to Physical Map [Increment]
P — Virtual to Physical Map | Increment|
¢ ¢ ¢ —

Virtual Addresses and ATC values

Figure 1. Information flow in the Address Trandation Counters

Information recorded by the ATC hardware can be gathereseveral ways. One way is to sample the
content of the counters regularly during execution aleitly the virtual page addresses associated with these
counters. Another approach is that the operating systeyrproaide low-overhead software traps such that
when a TLB entry in invalidated due to a TLB miss ocheacoherency operation, the content of the
corresponding ATC counter value and the associated vpage address can be provided to the application
(similar to the software TLB miss handler in MIPS pszs[9]). Lastly, the underlying operating system
could include an additional field for each page table ewtngre the ATC entry can be saved at context
switches. Later, the count information can be gathei@dystem call by querying the page table content.
For our research, we assume the underlying operatingmsystvides means to sample ATC content.

5. Experimental Results
In this section we first present the results of expenit® we conducted to ensure that we could accurately
sample address transactions via hardware monitors in theatppis being analyzed. We then present the

results of experiments in which we evaluated our actuahmym page migration scheme on the real

11

hardware and simulation based study where we comparedé¢lcgweness of other sources of profiles to the

centralized plug in hardware monitors we used in our aatigration scheme.

5.1 Interconnect Transaction Sampling Experiments

We sample the interconnect transactions using hardware msaitd approximate the access frequencies for
the memory pages. However, for sampling to be effectivesdah®ling technique has to be representative of
all transactions that occurred during the execution oafipdication being analyzed.

One approach to sample interconnect transactions via hardmwanitors is to continuously sample at the
maximum speed of the interconnect instrumentation softwéfe. refer to this sampling scheme as
maximum-rate sampling. Maximum-rate sampling does not capture a corspet®f transactions, but it tries
to sample as many transactions as possible. Alterhgtivansactions can be sampled at fixed time interval
or at everyN™transaction occurrence, where N is a constant thaietethe interval of sampling[3]. We refer
to sampling at everi™ transaction occurrence agerval sampling.

We conducted a series of experiments to compare how rapagse the maximum-rate and interval
sampling techniques are of all transactions. To olwelgticompare the two sampling techniques we
designed a distance metficthat given a set of transactions and a set of sanfilen the set, measures the
percent difference between the values of a property feethets. The property we used in our experiments is
the ratio of transactions requested by a specific gsmeto the total number of transactions. This metric
indicates how much a set of transactions deviate from ane#teof transactions in terms of memory
behavior. Thus, the closer the value of our distanceieristto 0, the more representative the set of sampled
transactions is of the set of all transactions.

For this study, we used the Sun Fire Link counters. SiheeSun Fire Link counters can accurately
count the number of transactions as well as the nuwibigansactions from a given processor, we counted
both of these values and compared them with samples takeé$uwi Fire Link bus analyzer to approximate
the sampling error of sampling techniques.

For each experiment, we configured one of the two coumditsei Sun Fire Link hardware monitors to

count the number of transactions requested by a sdlgmbcessoP, denotedCpy. The other counter is

12

configured to count all transactiorS,. Using the Sun Fire Link bus analyzer we also sampled interconne
transactions and recorded the number of transactions shndeleoted,. In the set of sampled transactions,
we count the number of transactions that are requidsterocessoP, denoteds.. We calculate the ratios
for the set of sampled transactions and the set ofraliséctions afRsuipe = S/Sy and Ray = Cp/Ch,
respectively. We define the distancel@s ABSRsamie - Rar) / Rar. That is, the distance metric gives an
insight as to how far the set of sampled transactionsiefrom the set of all transactions.

We conducted a series of experiments for a set of praseggile running an OpenMP version of the
CG benchmark from NAS Parallel benchmark suite[15]. WeCG with 6 threads using the input set of size
B. We repeated the experiments with different sampimervals in which samples taken at every 64, 256,
1024 and 4096 transactions.

Table 1 presents the results of the experiments conductsahipare how representative the sampled
transactions are of all transactions with respeciutodistance measure. In Table 1, the second column gives
the distance values for maximum-rate sampling, the tbigixth columns give results for interval sampling
with different interval values. The rows that are ladewith processor identifiers give the distance between

the set of all transactions and the set of sampledaations with respect to that processor.

Max-Rate Interval Sampling

Sampling 4K 1K 256 64
Processor 0 0.51 0.03 0.03 0.03 0.09
Processor 1 0.61 0.04 0.04 0.04 0.09
Processor 2 0.47 0.01 0.02 0.02 0.23
Processor 3 0.58 0.00 0.01 0.01 0.02
Processor 4 0.65 0.02 0.02 0.02 0.12
Processor 5 0.57 0.03 0.02 0.03 0.15
Average Dist. 0.56 0.02 0.02 0.02 0.11
% Sampled 17.56 0.19 0.78 3.07 9.75

Table 1. Distance values for maximum-rate sampling and interval sampling

Table 1 shows that even though the maximum-rate samplingacaple about 18% of all transactions,
the distance metric is significantly higher compared terual sampling for all processors. Moreover, for
maximum-rate sampling, the average distance over all moess 0.56, which shows that the set of
sampled transactions is quite different from the setldfansactions.

13

During maximum-rate sampling, the maximum number ofstations the instrumentation software can
record bounds the number of samples that can be takea fwpcessor. Thus, if a processor requests
transactions faster than the maximum rate the instrianentsoftware can read, many transactions for the
processor are not recorded. Similarly, if a processmuests transactions slower than the rate of
instrumentation software, almost all of its transactiam$ be recorded as samples. Thus, maximum-rate
sampling results in a skewed distribution of sampled tramsectiith respect to the level of memory system
activity on processors and the sample set does not adguggteesent all transactions.

Table 1 also shows that for interval sampling, the digtaradues depend on the sampling rate. The
distance values are low and similar to each other eXoefite experiments where transactions are sampled
at every 64 transactions. In particular, if the samplesaken at every 256 transactions or more, the set of
sampled transactions is fairly representative of alhdaations. Table 1 also suggests that if the rate of
interval sampling exceeds 5% of all transactions, thefssampled transactions becomes less representative.

To further investigate how representative the sampledaigrer sampling interval values, we also
conducted experiments varying the sampling interval up toyed28M address transactions. In addition, for
each experiment, we also recorded the number of distincsphgé are included in the set of sampled
transactions. Figure 2 presents the average sampling kftoy-6xis) and the percentage of distinct pages

sampled (right y-axis) in the application for the interwaéstested.

0.60 100%
—¥— Average Sampling Error
a —o— % Distinct Pages Sampled
T 048 +80% B
2 =
: ;
2 0.36 + T+ 60%
5 0.24 + T 400 O
o B
€
2 g
g 012 +20% A
2 S
0.00 =o— 0%
max- 6 8 10 12 14 16 18 20 2 23 24 25 26 27
rate Sampling Interval (log, Scale)

Figure 2. Average distance and percentage of pages sampled in CG (B)
14

Figure 2 shows that average sampling error is the highestdgrrate sampling and it starts decreasing
dramatically as the sampling interval increases. ee average error stays low and steady for a large
range of sampling intervals starting at every-256 trammactsampling to every-8M transactions sampling.
Average sampling error starts to increase again afenyel6M transaction sampling due to the fact that the
number of samples taken is not large enough to accyctatacterize all transactions in the application.

Figure 2 also shows that for max-rate sampling, 93%Iqgdagjes in the application are included in the
samples taken. Similarly, for smaller intervals, tleegentage of distinct pages sampled is around 90% for
interval sampling. However, as the sampling intervalagases, Figure 2 shows that the percentage of distinct
pages sampled in interval sampling decreases dranhatiegulting in many pages not included in the set of
sampled transactions. Figure 2 shows that even though inwawapbling generates more representative
samples, the percentage of the pages included in the sampleasds as the sampling interval increases.

5.2 Page Migration Experiments

To investigate the effectiveness of our actual dynamic pageatiin scheme on the performance of real
applications, we conducted experiments using the OpenMP Cermeptation of the NAS Parallel
Benchmark suite[15]. We chose applications with differergéssranging from B to C (large data set sizes).
We compiled the applications using Sun’s native compiler, Su®.5 EA2, with optimizations (-
xopenmp=parallel and -O3) on to support parallelized code.

We conducted all of our experiments on a 24-processor Beie&00 with 24GB of main memory. The
memory in each system board is 8-way interleaved evbach processor controls two banks of memory. The
Sun Fire Link hardware is plugged into an I/O drawethia system. The Sun Fire Link instrumentation has
full visibility into all transactions on the Fireplangenconnect.

To quantify the benefits of our dynamic page migration approae conducted a series of experiments
with and without page migration. For all applications, we suead both the original execution times and the
execution times when pages are migrated using our dynamiaypgoion approach. For each application,

we also measured the percentage reduction in the nuinben-docal memory accesses when memory pages

15

are dynamically migrated compared to its original exeoutWe sampled interconnect transactions at every
1024 transactions for experiments with page migration.

We ran all applications with 12 threads on 6 system bazrtise Sun Fire 6800 server where each board
executed 2 threads rather than running the applications withr@dds where each processor is assigned a
thread. This is due to the fact that we noticed enfof intra-board locality in the Sun Fire servers [18&]tth
can mislead the benefits of page migration in isolation. di¥served the choice of the processor from the
group of processors on the same system board can alsoanawmpact on the execution times of
applications. We implemented a simple benchmark and mebii@@xecution time of this benchmark when
different processors in the same system board are tosesecute the application. In each execution, to
eliminate the effect of memory page placements, athamg pages in the benchmark are explicitly placed
locally. We observed that our simple benchmark took up to ib¥e time to execute when it is bound to the
second processor of the system board compared to whebhatiigl to the first processor even though the
array pages are placed local to the processors [18]. Titaeboard variations can be partially explained by
resource sharing contention among processors, bookkeepingiapenanning on processors by OS and
whether the array pages are placed on the memory banks smhbglthe processor running the application
or on the memory banks controlled by another processor imthe system board. To eliminate any possible
contention due to resource sharing among processors,hedwded only two threads on each system board
rather than four threads such that we would isolate thefite of page migration alone for our experiments
and the gain due to the page migrations is not overcomfeeligtta-board variations.

As explained in Section 3, we insert instrumentation coldetive application using the Dyninst library.
For each application, the instrumentation overhead is aimeeoverhead since the Dyninst library has a
capability of saving instrumented executables for lagaese. Moreover, the instrumentation overhead for our
page migration approach is independent from the execution timése applications we analyzed. We
measured the instrumentation overhead for all applicatigreufodynamic page migration approach and it is

typically around 2 seconds.

16

For the experiments with page migration, the migration vales given as a parameter to our dynamic
page migration scheme. To investigate the impact of migratitervals and choose the migration interval
for the experiments, we conducted a sensitivity analysighich we ran each application under different
migration intervals ranging from 1 second to 50 seconds. gperienents showed that migration interval
used does not have a major impact on the performance apgieations except MG. For MG, migration
interval has a significant impact due to the fact & is a short running program and when migration is
triggered at a slower rate, MG does not benefit from paggamons. Thus, for our page migration
experiments, we chose to trigger page migration at evegcénsls. We chose 5 seconds as the migration
interval such that we would trigger enough number ofratigns in all applications to benefit from dynamic
page migration but still keep a slower rate of migratiorthénother applications for a lower overhead.

5.2.1 Reduction in Non-Local Memory Accesses dueto Page Migrations

To quantify the benefits of our dynamic page migration aproae counted the total number of non-local
memory accesses for all applications with and without ugymgmic page migration. We used the Sun Fire
Link hardware monitors to measure the total number of noatimemory accesses in the applications.

Table 2 presents the percentage reduction in the total muofb@on-local memory accesses when
dynamic page migration is used compared to when memory pegestamigrated. In the second column,
we give the total number of address transactions reggiégteach application during its execution. The third
column gives the percentage of non-local memory accessissutvour page migration approach and the
fourth column shows the percentage of non-local memorysaesevhen memory pages in the application
are migrated using our dynamic page migration approach.iffhedlumn lists the percentage reduction in
the total number of non-local memory accesses when dgr@age migration is used.

Table 2 shows that for all applications, our dynamic page tegrapproach was able to reduce the
number of non-local memory accesses by 19.7-89.6% (The avezdgetion for applications is 58.3%).
Table 2 also shows that for MG, a significant number oflnoal memory accesses were eliminated when

memory pages were migrated. This is due to the fatttiieafirst-touch policy in the underlying operating

17

system placed pages poorly in a single memory unit and ouwatioig policy was able to migrate pages to

several memory units according to their access pattern.

Per centage of
'I#frjnps\ggt?(;esnss Non-local i\gcoesses %
(Millions) w/o Page Page Rectztlll
Migration Migration
BT (B) 38,50° 40.¢ 25.c 38.C
CG (C) 15,72 80.¢ 15.¢ 81.C
EP (C) 42 85.2 28.2 67.C
FT (B) 2,32¢ 64.2 29.¢ 54.(
LU (C) 48,68: 41.2 33.1 19.7
MG (B) 841 80.t 8.2 89.¢
SP (C) 116,11¢ 55.C 22.7 58.¢

Table 2: Reduction in non-local memory accesses due to page migration
Unlike MG, for LU our dynamic page migration approach wasaibé to reduce the number of non-

local memory accesses significantly. For LU, first-toymlicy placed memory pages better. Moreover,
system boards uniformly access the majority of thenaomg pages that our dynamic approach was able to
migrate. That is, while migrating those pages to a sy&teand reduces the number of non-local memory
accesses requested by the processors in that systeh the number of non-local memory accesses by the
processors in all other system boards increases. Ypantc page migration approach uses a simple decision
mechanism that identifies the preferred location of a angrpage as the system board that accesses it most.
It does not take the access frequencies by other systexshboto consideration. The access frequencies by
other system boards may also be used to better debiethier a page should be migrated[19].

5.2.2 Impact of Page Migration on Cache Usage

The UltraSPARC Ill processors in the Sun Fire serusesphysical addresses to index their external caches.
Since page migration changes the physical addresses ofdm®ryn pages in an application, it is also
necessary to ensure that our page migration approach dodwmveta significant impact on the cache
behavior of applications. To quantify the cache usage of theapphs, we counted the number of conflict
and capacity misses (i.e. non-compulsory misses) duringkdeeiion of the applications with and without
dynamic page migration using the Sun Fire Link monitors. The FSienLink monitors measure non-

compulsory misses by measuring the number of write-back (WéB¥yactions requested. A WB transaction

18

is requested when a dirty cache line is evicted from xthermal cache due to a capacity or conflict miss.

Table 3 presents the number of WB transactions with atidut our page migration approach.

of WB Transactions (Millions)

o E . . % Change

Migration Page Migration
BT (B) 14,948.8 14,900.1 -0.33
CG (C) 270.6 268.7 -0.67
EP (C) 12.3 12.6 2.38
FT (B) 855.0 851.8 -0.37
LU (C) 18,252.8 18,171.6 -0.44
MG (B) 217.4 218.0 0.28
SP (C) 39,223.3 39,139.9 -0.21

Table 3: Percent changein the number of write-back transactions

Table 3 shows that our dynamic page migration approach doeavealsignificant affect on the cache
behavior of applications. It also shows that our dynamic pageation approach has a higher impact on EP
compared to other applications. However, EP does not allacsignificant number of memory pages and
thus the absolute number of cache misses is more thacta bf 20 lower than any other application we
measured. Moreover, since the working set of EP fitsdalloaches, the increase in cache misses in EP is
mainly due to the invalidation of cache lines causethlgyation of memory pages.

5.2.3 Execution Timeswith Page Migration

While reducing the number of non-local memory accesses application is important, what matters is the
impact of this reduction on application’s runtime. Thug measured the impact of our page migration
approach on the execution times of the applications. Fdr application, we conducted three different
experiments and measured the total execution time foreequdriment.

First, we ran each application using our dynamic page nogratpproach and measured the total
execution time including overhead due to the creation ohdéhger threads and triggering page migrations.
Even though the migration thread runs in parallel with otheeads of the application, it suspends all
application threads to trigger the actual page migrationslated resumes their executions. During the
second set of experiments, we measured the original ezedirties of the applications with no intervention.

Lastly, we conducted a third set of experiments to ingatgithe impact of binding application threads to
19

fixed processors, and therefore the impact of dynamic pagation in isolation. During these experiments,
we ran each application with page migration disabled but bthenthreads to the processors in the system.

For each application and experiment, we repeated the exgrgrgaven times and recorded the minimum
of the execution times among all runs. We used the miniragetution time since we noticed higher
variation in the original execution times for some appiicet We suspect the higher variation in the original
execution times of those applications is due to differennethe initial page placements and thread
scheduling by the operating system.

Table 4 presents the execution times of the applicationsinaé/zed. The second column lists the
original execution times of the applications. In the thirlliem, we present the execution times when the
application threads are bound to the processors throughout &oetiexs. The fourth column lists the
execution times of the applications when pages are migusied our dynamic page migration approach.
The fifth column presents the number of page migratioggered. Lastly, the sixth column presents the
overhead due to page migrations.

Table 4 shows that for all applications except LU and MG, wherapplication threads are bound to
processors the applications run faster by 0.16-1.76% comparéeitmtiginal executions. However, LU
slows down by 0.6% where MG slows down by 2.2% when their tha@dsound to the processors. Table 4
shows that binding application threads to the processorsnmiestilalways beneficial even though the

performance gain is not significant.

Execution Times (seconds)

of Over head

Original T?\?iggs " izfgteion Migrations | (seconds)

BT (B) 99¢ 99z 96€ 112,31(11.¢
CG (C) 62& 61Z 534 47,21 4.4
EP (C) 29¢ 29z 29z 2,071 0.2
FT (B) 11: 112 11€ 177,60: 15.1
LU (C) 1981 199¢ 197¢ 132,69t 13.1
MG (B) 31 32 26 49,88 2.7
SP (C) 3901 385¢ 3347 138,94: 17.1

Table 4: Execution times, number of migrations and migration overhead

20

Table 4 also shows that the overhead due to page migratiairis/mproportional to the number of page
migrations requested and it ranges up to 12.8% compared ooigh®al execution times of the applications.
To guarantee that the migration thread touches the pageefexe other threads, all other threads have to be
suspended. If the operating system instead provided a sgatethat would allow applications to indicate
the target locations of the memory pages, it would pemgtation of pages to their target locations during
the next available opportunity, and thus partially reduce the pagration overhead.

Figure 3 presents the performance improvement when our pagationgapproach is used compared to
both the original execution time and the execution time whenhtleads of the applications are bound to
processors. Under the label of each application on the xfagsre 3 also presents the migration overhead
percentage with respect to the original execution timthefapplication. The migration overhead includes
time spent for the suspension of all threads and moviggsp#o their target memory location. Figure 3
shows that our dynamic page migration approach was ablepimven the execution performance of the
applications except FT by up to 15.9% compared to their origiredutétons. However, FT runs slower
under dynamic page migration.

Our dynamic page migration approach improved the performanc&ddr@ SP by 14.5% and 14.2%,
respectively, compared to their original execution tin@S.and SP request many memory accesses and our
dynamic page migration approach was able to eliminate miatihe mon-local memory accesses (see Table
2). In addition, dynamic page migration improved the execution peafiace of CG and SP by 12.8% and
13.2% respectively, compared to the executions where appli¢hteads are bound.

Like CG and SP, our dynamic page migration approach wasibledo improve the performance of MG
by 15.9% compared to its original execution time. Even though dbes not request many memory
accesses, our page migration approach was still abledt@eehe number of non-local memory accesses
significantly (see Table 2). Compared to the execution ofWwih@n its threads are bound to the processors,
dynamically migrating memory pages in MG improved the execyerformance by 18.1%.

Figure 3 also shows that our dynamic page migration apptiogoioved the execution performance of

BT by 2.9% compared to its original execution and by 2.6% coedpt® execution where its threads are

21

bound to processors. Figure 3 also shows that our page iongagiproach is not as effective for BT as for
CG, MG, and SP, which is partially due to fact tha teduction in the number of non-local memory
accesses in BT is not as high. Similarly, our page maratpproach improved the performance of LU by

0.8%, which is also mainly due the small reduction in nemab non-local memory accesses.

Performance Improvement due Page Migration

20%
O Comypared to Original
15% B Comparedto Bound Threads |
10%
5%6
oo I |
-5%
-10%
bt(B) cg(©) ep(C) ft(B) u(C) mg(B) sp(C)
1.2% 0.8% 0.1% 12.8% 0.7% 10.2% 0.5%

Figure 3: Performance gain for the applications under dynamic page migration. The
percentages under each application label present the migration overhead percentage with
respect to the original execution time of the application.

Figure 3 also shows that our dynamic page migration approacmateess effective in improving the
execution performance of EP even though it reduced théeuaf non-local memory accesses by 67.0%.
EP reuses data in the local caches of the processortheandhjority of its memory accesses are requested at
the beginning of its execution, before the memory pages igrated.

Figure 3 shows that our dynamic page migration approach washietto improve the execution
performance of FT even though it reduced the number of omal-imemory accesses in FT by 54.0%.
Instead, our page migration approach slowed down the exeaftibii by around 4.2% compared to its
original execution. However, Figure 3 also shows that tddwn for FT is mainly due to the overhead
introduced by page migration, which is 12.8% of the origiratation time for FT. That is, the reduction in
the number of non-local memory accesses did not overcome theeadeantroduced by migration of many

pages that are initially placed poorly. Moreover, the pageatiayr overhead for FT would be partially

22

reduced if the operating system did not require suspengplgation threads to trigger the actual migrations
by touching pages and instead provided a mechanism to diregtigst migration.

Overall, our dynamic page migration approach reduced thernotaber of non-local memory accesses
of applications by up to 90% and improved the execution times Lf%o0 To investigate the effectiveness
of our approach, however, we also conducted experimentsetsure how dynamic page migration
compares to ideal static page placement in terms of redustimn-local memory accesses and performance
improvement. We modified our scheme to run in two phases wtharieg the first phase, profiling
information is collected and during the second phase, applicis run with ideal static placement where
pages are placed at application start using the profilirrmdtion and move-on-next touch feature of the
underlying OS. Even though our experiments showed that ideat pde placement also resulted in a
reduction of non-local memory accesses compared to th@arexecution, it was not as effective compared
to our dynamic page migration scheme. For profile-drivetticsppage placement, reduction in non-local
memory accesses was 28.6% less in the average compargddalynamic page migration except FT. For
FT, ideal static page placement was able to reduce non+oealory accesses up to 68% where the
reduction is only 54% when dynamic page migration is used (fatethis partially explains why dynamic
page migration overhead is higher for FT.). More importanthe improvement in performance of
applications was only 0.02-7.9% when static page placementeds uxlicating that the dynamic page
migration is more effective in both reducing the numben-local memory accesses and improving the
execution performance of applications compared to usinggxabfiven static page placement scheme.

To briefly investigate the impact of suspending all applicatioeads on the overall migration overhead,
we also ran experiments where application threads werterlening hoping that the right processor touches
the pages that are to be migrated next. This would also g some insight on the benefits of using an
operating system with a system call that does not regsuispension of application threads for page
migration. However, our experiments showed that the reduictidre number of non-local memory was not
as high when application threads are not suspended and resulie@6% more non-local memory accesses

compared to when application threads are suspended. Thegrily mue to the fact that majority of the pages

23

are accessed by multiple processors throughout the emdgetzen though with different frequencies) and

some of the pages for migration are touched by other prase®n the one running on its target location.
More importantly, the reduction in the overall migratmrerhead was insignificant compared to original the
execution times. Thus, Table 4 and these results indicatéhthalverhead of actual moving pages to their
target locations (between two physical memories) domirtaeegverall migration overhead. Hence, a new
system call that would not require suspension of threadsorrectly migrate pages to their preferred

locations would only reduce the overall migration overhead bgnall amount.

5.2.4 Graphical User Interface for Dynamic Page Migration

To visualize the page placement in the applications, weeimgrited a Graphical User Interface (GUI) that
presents the locations of the virtual memory pages in tefmthe memory units (system boards) in the

underlying CC-NUMA server. Our dynamic page migration GUI plssents additional information such as

the number of page migrations triggered for each migrattanval, the stack percentage bars indicating the
percentages of pages migrated to each memory unit ftatég migration interval.

Figure 4 shows the GUI snapshot for application MG when dynpage migration is not used. The
bottom window in Figure 4 visualizes the virtual address spad¢ke application where each pixel (or a
sequence of pixels when a portion of application’s addres® spalisplayed) represents a virtual page and
the color of the pixel presents the memory unit the pagtated. The virtual page index increases from left
to right and top to bottom, starting with the page index @@teft corner of the window. Note that in our
GUI, there are 6 colors to represent the locations optuges due to the fact the Sun Fire 6800 server we
used have 6 memory units (boards).

Figure 4 shows that almost all of the memory pages in MGlaced in a single memory unit when MG
is run without page migration. This is due to the fact M& starts with a single thread that initializes its
data structures, hence first-touch placement in the widgrbperating system places pages in the memory
unit on the same board as the initialization thread runs.

Figure 5 shows the GUI snapshot for MG when run with dynamic paigeation (every 5-second

migration) after several migration iterations. Figurehdws that our dynamic page migration scheme was

24

able to accurately move pages local to the processors iagcésem most. Even though Figure 5 shows
some imperfections in the placement of the pages due pagation, it clearly indicates the stride-access
pattern in MG. We believe imperfections are causedhbyfdct that information on some memory pages is

not included in the profiles gathered from performance tooidue to use of interval sampling.

Eleorrp 0 o0 EEMsosrD 2 Il EorrD 4

Figure 4: GUI snapshot for page placement in M G without page migration
In addition to locations of the memory pages in an applicaban dynamic page migration GUI also

presents detailed information on page migrations triggered wine with dynamic page migration. The
window at the top-left corner in Figure 5 displays the nunadfgrage migrations triggered to each memory
unit for each migration interval. The top middle window digl the stack percentage bar that presents the
percentages of migrations triggered to each memory anithe latest migration interval in addition to the
total number of pages migrated for the interval. Sirtyilahe top right window displays the stack percentage
bar that presents the percentages of migrations trigderedch memory unit since the application start in

addition to the total number of pages migrated.
25

Maximum Migrations at Any Interwal is 8866

Cummulative

Il EorrD o Il conRD 2 Il conRD 4

Figure5: GUI snapshot for page placement in M G with page migration

5.3 Simulation Experimentsfor other Potential Sources of Hardware Profiles
To evaluate the effectiveness of each source of profilepdge access frequencies, we conducted a

simulation study using the full system simulaBimics[12]. For our research, we chose to simulate a Sun
Fire 6800 as the target cc-NUMA system. Despite its sratdi of local to remote memory latency, it allows
us to compare our simulation study to the actual page naigraxperiments described in Section 5.2. We
installed the Solaris 9 binaries on the simulated machine.

The memory subsystem of UltraSparc Il processorsun Bire server includes five caches in their
memory hierarchy, four on-chip caches and one external c@iblese caches include an L1 data cache, an
L1 instruction cache, a pre-fetch cache, a write cache and aexternal cache. In addition, the memory
management unit includes two data and two instructionsTitat are accessed in parallel. In each pair of

TLBs, one TLB is smaller and is used to support lapggye sizes (64K-4M).

26

By default, Simics does not model any cache system or mesutagystem. It uses its own internal
memory representation where the memory is always upt®with the latest CPU and device transactions.
However, the functionality of Simics can be extended by-wsi&en modules[20]. To simulate the memory
subsystem of UltraSparc Il processors, we both modifteal dlready available Simics modules and
implemented a new timing module. We also implementsdparate module to simulate the on-chip TLBs.
In addition to the memory subsystem, we also implementewrEtoring module for the data collection
methods we want to evaluate. These include on-chip hardveafermance monitors to gather cache miss
and TLB miss information, centralized Sun Fire Link ntors to gather interconnect transactions, and our
hypothetical ATC hardware to gather page access freqgsenci

To investigate the effectiveness of each source of prdhlelynamic page migration, we conducted
simulation experiments using the OpenMP C implementatfothed NAS Parallel Benchmark suite. We
chose applications with different sizes from A to B sudt each application would have a similar memory
footprint. Moreover, we modified the number of iterationseach application to keep the simulation time
manageable. We compiled the applications using Sun’s nativepileomwith optimizations (-
xopenmp=parallel) on an actual Sun Fire server and copigdtththe simulated Sun Fire server.

For all experiments, as the target machine, we booted ao2égzor Sun Fire 6800 in the simulator with
12GB of main memory where each locality group contains 2@B memory. The default processor type in
the simulated machine is an UltraSPARC IIl. Since wedumteractive mode to set up the simulated
machine including installing the operating system, copying ¢inepded executables to the simulated disk,
we used the default processor settings.

To quantify the benefits of using each source of profileslyoramic page migration, we ran a series of
experiments with and without page migration using the simwuldtor each application, we ran the
application with dynamic page migration several times varyhe source of profiles. Additionally, to
investigate the impact of accurate page access frequencid® effectiveness of dynamic page migration,
we also ran each application where pages are migrated bagerfect profiles. Perfect profiles are gathered

by having the simulator use a full memory access histofynd the references for all page references during

27

the next migration interval. This allows us to quantify tbetof the less than perfect profiles produced by
sampling of all page references up to the migration intertals the experiments with page migration, we
triggered page migration at every 5 seconds like the expesnreection 5.2.

For all experiments, we used the same simulation paresnktde the simulated memory subsystem
except we varied the sampling method used to gather préfden hardware monitors. Table 5 summarizes

the parameters we used in our experiments for each solupcefiles to generate page access frequencies.

I nter connect Cache TLB TLB ATC
Transactions Misses Misses Content | Content
Sampling Method Centralize Distributec
Sampling Interval | 51Z transictions 512 miss event | 16K translation even
L ocal Latency 225n:
Non-L ocal L atency 300n:
I-TLB 12¢&-entry, zway associative, 8K pag
D-TLB 51z-entry, -way associative, 8K pac
L1 D-Cache 64 KB, ~way associative, -byte lines, 2ns hit tinr
L1 1-Cache 32KB, 4-way associative, -byte lines, 2ns hit tin
L2 Cache 8MB, 2-way associative, 5-byte lines, 16ns t time

Table 5. System parametersand their values used in smulation experiments

5.3.1 Memory Access L ocality Experimentswith Page Migration

For each simulation experiment, we measured the pegen¢auction in the number of non-local memory
accesses in the application when memory pages are dyngmicgthted compared to its original execution.
We also measured the total number of pages migratedghout the execution.

Table 6(a) presents the percentage of non-local memoegsesx for the applications we tested with and
without page migration. The second column presents the pageeatanon-local memory accesses in the
original execution. The next five columns present the pé&éiges of non-local memory accesses when
applications are run with dynamic page migration using diffeseatces of profiles to generate page access
frequencies. The last column presents the percentage dbecaeinmemory accesses using accurate page
access frequencies gathered from all actual memorgsaes. For each application and source of profiles,
Table 6 (a) also gives the percentage reduction in the mushim@n-local memory accesses with respect to

the original execution of the application.

28

Like Table 6 (a), Table 6 (b) presents the number of pageatians triggered when applications are run
with dynamic page migration using different sources of pfile generate page access frequencies.
However, for each application, the number in parentheséaah cell in Table 6 (b) gives the ratio of the
number of page migrations triggered with respect to tiaber of page migrations triggered using perfect
profiles. We present these ratios for a better compamddhe number of page migrations triggered for

different source of profiles (Figure 6 also presents ¢dection percentages in Table 6 (a))

Orig. % of Non-L ocal Accesses (% Reduction over Original)
% Non- | Intercon. Cache TLB TLB ATC Per fect
L ocal Trans. Misses Misses Content Content Profiles
BT-A 42.C| 29.2 (30.1)| 29.1 (30.9)| 36.€ (12.1)| 30.7 (26.9)| 28.z (33.0)| 28.1 (33.3)
CG-B 79.5| 13.7 (82.7)| 11.€ (85.0)| 26.6 (66.5)| 11.¢ (85.2)| 11.:Z (85.8)| 11.7 (85.3)
FT-B 77.C 66.5 (13.6)| 66.C (14.3)| 71.¢ (6.6)| 64.z (16.7)| 64.C (16.9)| 63.8 (17.1)
LU-B 42.5| 35.F (16.5)| 34.2 (19.3)| 46.€ (-9.6)| 42.z (0.8)| 41.1 (3.3)| 33.E (21.3)
MG-B 80.¢| 14.¢ (8L.7)| 12.€ (84.0)| 46.: (426)| 10.: (87.2)| 10.z (87.3)| 10.C (87.6)
SP-B 69.(| 54.C (21.7)| 53.€ (22.0)| 62.€ (9.3)| 55.¢ (19.1)| 54.t (21.0)| 52.€¢ (23.9)
(a) Percentage of non-local accessesfor different sources of profiles
Number of Page Migrations Triggered (Ratio with respect to Perfect Profiles)
I nter con. Cache TLB TLB ATC Perfect
Trans. Misses Misses Content Content Profiles
BT-A 34,529 (2.20)| 31,422 (2.00)| 36,472 (2.32)| 17,298 (1.10)| 14,122 (0.90)| 15,730
CG-B 18,82¢ (0.97)| 18,92((0.98)| 18,52:¢ (0.96)| 19,82¢ (1.02)| 19,30¢ (1.00)| 19,34«
FT-B | 190,31 (1.05)| 214,60! (1.18)| 98,32((0.54)| 156,18((0.86)| 155,57¢ (0.86)| 181,63:
LU-B 22,88 (2.23)| 21,17 (207)| 19,49: (1.90)| 8,58¢ (0.84)| 4,897 (0.48)| 10,24:
MG-B | 51,36. (1.06)| 52,43% (1.08)| 34,00¢ (0.70)| 49,10: (1.01)| 48,55: (1.00)| 48,297
SP-B 35,42((1.43)| 34,450 (1.39)| 40,57: (1.64)| 25,03 (1.01)| 25,23¢ (1.02)| 24,81

(b) Number of page migrationstriggered for different sourcesof profiles

Table 6. Results of memory locality experimentsfor different sourcesof profiles

At first glance, it looks like dynamic page migration iseetffve in reducing the number of non-local
memory accesses independent of the source of profiles usgather page access frequencies. The one
exception is that the number of non-local memory access@xreased for LU only when TLB miss
information is used. Overall, the reduction in the nund§eron-local accesses ranged from -9.6% to 87.3%.
Moreover, it appears that the behavior of the differetd dallection techniques can broadly be grouped in

to three different categories based on the number of suat-memory accesses and the number of page
29

migrations triggered. In particular, the results show thatgusiterconnect transactions performs similar to
using cache misses, and using ATC content performs sitoilasing TLB content, and using TLB misses

performs poorly compared to the others.

80%0 - [] O Intercon. Trans.
60% - B O Cache Miss

|| OTLBM
40% | SS

@ TLB Content

ZZjo | |—|_|— | H_‘Uj | H_H—H_‘ 0O ATC Content

o

Reduction in Non-Local Accesses

@ Perfect Profiles

-20%

bt A cg.B ft.B luB mg.B sp.B

Figure 6: Percentage reduction in non-local accesseswrt. original executions
Table 6 (a) shows that when perfect profiles are used, dgraage migration reduces the number of

non-local memory accesses in the applications by 17.1-87.6%e ® (a) also shows that page migration
using interconnect transactions reduces the number of nahrA®@mory accesses by 13.6% to 82.7%.

For some applications the reduction in the number of non-lmesmory accesses is slightly lower
compared to the reduction percentages presented in 1$éc@idl. This is mainly due the fact that we
modified the number of iterations in the applications to iobtaanageable simulation times. Most of the
page migrations are triggered early in the execution okthpgplications and during the rest of the execution
they benefit from these page migrations. Thus, by reducing timberuof iterations in an application, the
application does not fully benefit from dynamic page migratibiwvever, Table 6 (a) also shows that the
reduction using interconnect transactions are comparableng perfect profiles, which indicates that using
interconnect transactions is effective in approximating tiesh page access frequencies.

Table 6 (a) and (b) show that using cache miss informatidgnamic page migration performs slightly
better compared to using interconnect transactions in tefnise reduction in the number of non-local
memory accesses and the number of page migrations tiigderethe majority of applications, using cache

miss information reduces the number of non-local meraocgsses slightly more and triggers slightly fewer
30

page migrations compared to using interconnect transachbm®over, the results show that using cache
miss information performs closer to using perfect pesficompared to using interconnect transaction in
terms of the reduction in the number of non-local menamgesses. Thus, by distributed sampling of cache
misses from on-chip CPU hardware monitors in a multiprazesiynamic page migration can accurately

generate page access frequencies in an applications anblecas effective as centralized sampling of

interconnect transactions.

Table 6 (a) and (b) also show that using TLB and ATC contewnlynamic page migration perform
similar and they are comparable in terms of the reductidghemumber of non-local memory accesses to
using cache miss and interconnect transaction informaticailfapplications except LU. In LU, they are not
as effective in reducing the number of non-local memagesses even though they trigger significantly
fewer page migrations. In terms of the number of pageatiags triggered, using TLB and ATC content
tend to trigger fewer page migrations compared to using cawiss information and interconnect
transactions. However, for CG and MG where dynamic pageating is highly effective, they trigger
comparable number of page migrations.

Table 6 (a) and (b) show dynamic page migration using TLB nfiegmation is not as effective as other
sources of profiles. Even though using TLB miss informatimyérs fewer migrations, it is not as effective
since the page access frequencies gathered from TLBimfosmation is not representative of page access
frequencies in the applications. Moreover, dynamic page tiograsing TLB miss information increases the
number of non-local memory accesses for LU by around 10%.

Table 6 (a) also shows that using ATC content for CG padalightly better (0.5%) compared to using
perfect profiles, which indicates that perfect profileaymrmot always be a perfect predictor of the future.
Perfect profiles are generated using all memory acceHsar application occasionally exhibits different
memory behavior during different intervals compared todierall behavior, perfect profiles will include
profiles from these intervals which may reduce the accuochqyrediction. However, Table 6 (a) overall

shows that using sources of profiles other than TLB mipsg®rms comparable to perfect profiles, which

31

also indicates that sampling of transactions does notanaignificant impact on the accuracy of page access
frequencies generated.

Overall, Table 6 (a) and (b) show that the sources of psofitaer than using TLB miss information
perform similar in terms of the reduction in the numb&mnon-local memory accesses. More importantly,
they show that cache miss profiles gathered from on-chipMaaedmonitors can be effectively used to guide
page migrations in an application. This is particularly eregimg since such on-chip counters are included
in many recent processors, and instrumentation softwaaedess these counters are publicly available. Thus
using cache miss information via distributed sampling in dynange mpaigration is an easy and effective
approach. Even though using TLB and ATC content performstisligatter for some applications, their use
requires new hardware and system calls.

5.3.2 Case Study: Memory Access Locality in MG

To further investigate how dynamic page migration works usifigrdint sources of profiles for page access
frequencies, we present the number of page migratiaygeted versus time for MG (size B). We chose to
present the results for MG since both our actual dyng@age migration approach and our simulation study
have shown page migration to be most effective for thiscgtn.

Figure 7 presents the number of page migrations triggeredsvéirse in MG for experiments with
dynamic page migration using different sources of profiles. Méasured the number of page migrations

after each migration interval, thus the x-axis is latbeleh increasing order of migration interval.

—A— Intercon. Trans.

—B— Cache Miss

TLB Miss

—>¢— TLB Content

—¥— ATC Content

of Page Migrations

—o— Perfect Profiles

Mgration Interval
Figure 7. Number of migrationstriggered by timein MG

32

Figure 7 shows that when MG is run with dynamic page mamnaising sources of profiles other than
TLB miss information, the majority of the page migrations tiggered early in the execution. Using TLB
and ATC information triggers more migrations during thstfgseven migration intervals compared to using
interconnect transactions and cache miss information but tiee $murces of profiles trigger slightly more
migrations in total. Overall, the number of migrationggered in MG is comparable for all sources of
profiles other than using the TLB misses. Dynamic paigeation using TLB miss information triggers page
migrations throughout the execution and triggers signifigdatier overall page migrations.

More importantly, Figure 7 shows that using profiles othantTLB miss information triggers a similar
number of page migrations compared to using perfect psofiHowever, using TLB and ATC content
matches the behavior of using perfect profiles slightlyeb&ompared to using other sources of profiles.

Overall, Figure 7 shows that using TLB content and ATC carnsemitially more effective in reducing
the number of non-local memory accesses in MG comparedsing cache misses and interconnect
transactions. However, by the end of execution, all ssursterofiles except TLB miss information provide
comparable information.

5.3.3 Execution Times

To investigate the impact of the reduction in the numbenari-local memory accesses in the execution
times of the applications, we also measured the total nuoibeycles spent to execute each application
using different sources of profiles in the simulator. BEach simulation experiment, we measured the total
number of cycles spent to satisfy memory accesses.

Our simulation experiments showed that even though the totaber of cycles to satisfy memory
accesses is reduced by up to 16% for the applicationsmipeci of this reduction on the total number of
cycles to execute the applications was not significanta@ylyi about a 0.5% improvement). This is due to
the fact that even though our simulator can simulag&untions executed by an application accurately, it
lacks the ability to properly simulate the contentiontfee memory units. Moreover, in such a simulation
environment it is also difficult to accurately simulate siankous out-of-order issue of multiple instructions

by multiple processors. Thus, since our workload exhi@ty low cache miss behavior, the performance

33

improvement in actual memory accesses did not have a signifiopact on the overall performance of the
applications when the simulator executes one instructiortiatea We believe this limitation contributes to
conclusions reached by previous researches that indicatedditmenefit to page migration in cc-NUMA
systems[4,13,19].

To verify this claim, we conducted experiments where we VHB (size B) under different page
placement scenarios on an actual machine to isolatenfbeect of memory contention and the impact of the
reduction in the number of non-local memory accesses @xdcution performance.

Originally, almost all pages in MG are placed intoraglg memory unit which results in 80.5% of non-
local memory accesses in its execution. Since the itya@irthe pages are placed on a single memory unit,
the contention for this memory unit during execution is v@gh. To investigate the impact of memory
contention on the execution performance of MG, we ran Wi@er two different page placement scenarios
on an actual Sun Fire 6800 server. In the first scenarionésiory pages are placed uniformly on all
memory boards and in the second scenario, all of itsspageplaced in a single memory unit. We measured
the percentage of non-local memory accesses in MG @r e using the Sun Fire Link counters and the
fraction of non-local memory accesses remained around 8@¥experiments show that by placing the
pages in MG uniformly to all memory boards, the execupenformance of MG improved by 10.2%
compared to its execution where all pages are placed imgke snemory unit. This indicates that simply
reducing the memory contention to a single memory unit improve@stieution performance of MG by
10.2%. Thus, the lack of ability to accurately capture orgnecontention in the simulated machine partially
explains why our simulation experiments did not yield improsenin the time to run the applications.

To investigate the impact of the reduction in the numbeoflocal memory accesses on the execution
performance, we also ran MG on an actual Sun Fire sengeplaced all pages local to processors accessing
them most at the beginning of the execution. We did this iplack based on the data gathered during
execution of MG using our dynamic page migration scheme. gparienents showed that the execution
performance of MG improved by 10.3% when the pages are pladbdiirpreferred locations compared to

when all pages are placed uniformly over all memory unités ithproved placement resulted in an 81%

34

reduction in the number of non-local memory accesses. difficulty to accurately simulate the actual
memory subsystem and latency hiding in the instruction exewutising in-order cache modules in the
simulator also partially explains why our simulation expentaedid not yield an improvement in the total
number of cycles in the applications despite the reductidreimumber of non-local memory accesses.

To better evaluate the impact of the reduction in the nurobenon-local memory accesses on the
execution times of the application, we adopted a differpptaach. In this approach, during simulation
experiments, we recorded the actual page migrations trggeeach simulation experiment to a log file and
used the log file to trigger page migrations using our dynange pagration scheme on the actual machine.
We modified our page migration system not to gather pofiitom hardware monitors but instead use log
files generated during simulation to guide page migratioosekch application and source of profiles, we
recoded the page migrations and ran the application on the &UG80I0 server where page migrations are
triggered at fixed time intervals using the recoded nignaentries.

Table 7 presents the percentage improvement in the executies dihthe applications we tested with
migration on the actual Sun Fire 6800 server using the migratsngenerated during simulations. Starting
with the second column, the next five columns present tleepiarge improvement in the applications when
they are run with dynamic page migration using different ssuraf profiles to generate page access
frequencies. The last column presents the percentag®vement using accurate page access frequencies
gathered from all actual memory accesses. For eaclcapphi and source of profiles in Table 7, the positive
improvements in the execution performance of applicatiomst@wn in bold.

At first glance, Table 7 shows that dynamic page migratioeffisctive at improving the execution
performance of applications CG, MG and SP independent o$dhce of profiles used to gather page
access. Dynamic page migration slightly slowed down theuttom of FT for all sources of profiles and
slowed down the execution of BT and LU for profiles otheant TLB and ATC information. The
improvement in runtime for all applications ranged from -118%48.3%. Moreover, similar to Table 6 (a)
and (b), Table 7 shows that the behavior of dynamic pageatimigrcan broadly be grouped in to three

different groups in terms of the improvement in the execuiioes of the applications. That is, Table 7

35

shows that using interconnect transactions performsagitalusing cache miss information, and using ATC
content performs similar to using TLB content, and uslitd miss information performs differently
compared to other sources of profiles. Also with our ABtdware, we were able to improve the execution

times of 5 of 6 applications versus 3 of 6 for our originatredized monitors.

% | mprovement in Execution Times compared to Original

I nter con. Cache TLB TLB ATC Perfect

Trans. Misses Misses Content Content Profiles
BT-A -1.0 -0.8 -1.7 0.2 0.8 0.9
CG-B 8.4 8.4 6.5 8.5 8.6 8.5
FT-B -0.2 -1.8 -0.1 -2.4 -1.2 -15
LU-B -0.8 -1.C -0.¢ -0.1 0.4 0.3
MG-B 16.5 15.8 13.1 18.1 18.3 18.0
SP-B 55 5.8 2.8 7.1 7.6 7.2

Table 7. Improvement in execution performance for different sources of profiles

Table 7 shows that when perfect profiles are used, dynamic ipagation improves the execution
performance of the applications by -1.5-18.0%. Table 7 shtras for applications CG, MG and SP,
dynamic page migration improves their execution performance emdigmt from the source of profiles used
compared to their original execution. The improvement is ud83% for MG. Moreover, for these
applications, using TLB content and ATC information perfer slightly better compared to using
interconnect transactions and cache miss information.ig kise to the fact that using TLB content and ATC
information tend to trigger fewer page migrations, whiclsults in less migration overhead. More
importantly, for these applications using cache miswmétion performs comparable if not better than using
interconnect transactions. The minor differences for tlaggdications when interconnect transactions and
cache misses are used are due to differences in thetieed of the number of non-local memory accesses
and the number of page migrations triggered during the execotithese applications.

Table 7 shows that using TLB content and ATC informationgoer$ slightly better for the applications
BT and LU compared to using other profiles. This is due tdatiethe for these applications dynamic page
migration triggers fewer page migrations compared to othdilggavhile producing a similar reduction in
the number of non-local memory accesses. Thus, migratierhead is not as much when TLB content and
ATC information is used for these applications.

36

Table 7 shows that for FT none of the profiles was effedgtivienproving the execution performance.
Like the experiments in Section 5.2.3, this due to the tfat the reduction in the number of non-local
memory accesses for FT is only around 15% and the overhieaduced by migrations of any pages did not
overcome the benefits due to improvement in memory acoeshty of FT.

Table 7 also shows that even though using TLB miss informé&iggers fewer migrations, it is not as
effective in reducing the number of non-local memory aesegdicating that the page access frequencies
gathered from TLB miss information is not representativieage access frequencies in the applications.

6. Related Work

Most processors now include hardware support for performammatoring such as Compaq Alpha[7],
[tanium from Intel[10], Sun UltraSPARCI[17]. Similarlyh@ared-memory multiprocessors provide increasing
hardware support for performance monitoring of the systeberdonnect such as Sun Fire Link
Hardware[14]. These processors have for some time inclwdgd to count events and trigger an interrupt
when a given number of events occur. More recently, psocesuch as Intel Itanium 2, provide the ability
to capture the addresses involved in these events such additess of an access that misses a cache or TLB.

Noordergraaf and Zak[14] described a set of embedded hardwstrumentation mechanisms
implemented for monitoring the system interconnect on Sun [eineers. The instrumentation supports
sophisticated programmable filtering of event count@rBeir implementation results in a very small
hardware footprint making it appropriate for inclusion in comrmyodiardware. Since the information
gathered from these instrumentation mechanisms is basadmpling, the access frequencies of memory
pages need to be approximated. Moreover, the information gdtiiere these instrumentation mechanisms
only captures a subset of all memory accesses thatatslve system interconnect for cache coherency.

Most prior page migration policies[1,11] have been in the gbnbté non-cache-coherent NUMA
multiprocessor systems. These kernel-level policies wesedan page fault mechanisms and designed for
multiprocessors with large remote to local latencyomtBolosky et al.[1] used memory reference traces to
drive simulations of NUMA page placement policies. LaRoweal.§L1] modified OS memory management

modules to decide whether a page will be migrated on a faadf. In contrast, this paper introduces page

37

migration techniques for cache-coherent NUMA multiprocessstems. Moreover, the page migration
technigues in this paper work at user level and migrate pageg the page access frequencies gathered
from embedded hardware monitors.

Chandra et al.[5] investigated the effects of differe® §€xheduling and page migration policies for
cache-coherent NUMA systems using Stanford DASH multiprocgsalthough they mainly focused on OS
scheduling policies, they also investigated page migratioicig®lbased on TLB misses. Chandra et al.
reported that page migration did not improve the responsefomte workloads used due to overhead
incurred by the operating system.

Verghese et al.[19] studied the operating system suppopage migration and replication in cache-
coherent NUMA multiprocessors. They introduced a decisemtb select the action to be taken on memory
pages upon cache misses. The actions taken for a page inglic&tion, migration and freeze, depending
on the threshold values used in the decision tree. Usinghtlesholds that gave the best results they
evaluated their approach using a simulator for SGI Origin20@i€iprocessors and workload traces of cache
misses in the applications. The multiprocessor system ubkey also had large remote to local memory
latency ratios. They reported that dynamic page placem@htsot yield performance gains due to overhead
introduced by the operating system.

Kernel-level dynamic page placement schemes are also eefgnstudied in the Sun WildFire
systems[4,8,13]. The Sun WildFire system is a prototyphesaoherent NUMA architecture that is built
from small number of large SMP nodes and has large remdveal latency ratios. Hagersten and Koster[8]
evaluated the impact of coherent page replication and hiearélffinity scheduling on TPC-C execution.
They used excess-remote-cache-miss counts to guide pagemefdas. Noordergraaf and Pas[13] also
evaluated page migration and replication using a simple HipGcation. To identify memory pages for
migration, they used excess misses that indicate coafidtcapacity misses in a local node’s cache. They
reported that using a replication-only policy yielded muchebgterformance than policies that included

migration.

38

More recently, Bull and Johnson[4] studied the interastibatween data distribution, migration and
replication for the OpenMP applications. Although they paldidy focused on a data distribution extension
for OpenMP, they also studied the impact of page migratimh replication. Their study also showed that
page replication is more beneficial than migration. Intiast, this paper introduces a user-level page
migration approach for cc-NUMA servers with small reentd local memory latency (1.34:1). Moreover,
our page migration approach focuses on applications that @ likely to benefit from page migrations
rather than trying to increase the overall system pedana.

Most similar to our work, Marathe et al.[23] introducediser-space hardware-assisted page placement
scheme based on automated profiling. Similar to our wdré, pflacement scheme allocates pages near
processors that most frequently access that page emetiafes performance monitoring capabilities of
microprocessors to extract an approximate trace of meammesses. This information is used to decide page
affinity. Unlike our work, their work requires a separatefiling phase where the profiling information is
gathered, which later is used to decide page affinitgHferoptimized run. In addition, Marathe et al. uses
long-latency loads or DTLB misses as profile souraeguthe ability of the hardware monitors to time load
accesses. Similar to our results, Marathe et al. hawrs that information from hardware monitors can be
efficiently used to improve page placement and applicatiofoqeaince can be improved over 20% with
around 2.7% initial profiling cost.

Nikolopoulos et al.[24] introduced a user-level dynamic paggation scheme on multi-programmed
NUMA shared memory multiprocessors. The algorithms etqudothe idea of correlating the scheduling
actions of the operating system with information obtaifnech dynamic monitoring of memory references.
For profiling information, Nikolopoulos et al. used the page hardware reference counters already
embedded in the underlying SGI system. These counters eaipéuirequency of accesses from each node to
a particular page. Unlike our work, their scheme intercppgemptions and thread migrations at user-level
and uses these events as triggers for activating page migaigmithms that associate reference counting
information with the nodes to or from which threads migratnlike our research, their algorithms assume

compiler support for identifying hot memory areas, thatmgmory areas which are likely to concentrate

39

excessive remote accesses and have several candidatefqragagration. They have also shown that
significant performance improvements can be achieved foti mpudgrammed workloads of OpenMP
programs compared to the already existing IRIX page plaaeamel migration mechanisms.

7. Conclusions

In this paper, we first introduced an automatic profile-drip@ge migration scheme and investigated the
impact of this page migration scheme on the memory pedioce of multithreaded programs. We used
commercially available plug in hardware monitors to peofhe applications. We tested our dynamic page
migration approach using the OpenMP C implementation diitke Parallel Benchmark suite.

Our dynamic page migration approach always reduced thentotaber of non-local memory accesses in
the applications we analyzed compared to their original exewytibby up to 90%. Our page migration
approach was also able to improve the execution time ofpipécations up to 16% compared to their
original executions.

We believe the effectiveness of our page migration appraBsthshows the advantage of putting the
page migration policy at the user level while only relyingtbe operating system kernel to provide the
actual migration mechanism. We also believe that for pamgation mechanism to be more beneficial,
underlying operating system should provide means to trigger paigeation without stopping the
application. That is, if the user could simply requegiration of a page and the underlying operating system
could move the page during available idle cycles, most ahigeation overhead would be hidden.

We also evaluated the effectiveness of using of sevenat piotential sources of hardware profiles in
dynamic page migration and compared their effectiveness to usinde@ribm centralized hardware
monitors. In particular, we investigated the effectivenessising profiles gathered from on-chip CPU
monitors, the content of the processor TLBs and a hypothdtardware feature designed specifically for
dynamic page migration.

Our experiments showed that the reduction in the number oflocah memory accesses in the
applications ranges up to 87.3% compared to not using page womgratiich resulted in up to an 18.3%

improvement in execution time. Moreover, our experiments shothat using interconnect transactions

40

performs similar to using cache miss information, andguaTC content performs slightly better. However,
using TLB miss information performs poorly compared to tiheinosources of hardware profiles.

More importantly, our experiments showed that using cadse mformation performs comparable to
using profiles gathered from hardware monitors specificddlyigned for page migration as well as perfect
profiles constructed from all actual memory accesses . equeriments demonstrated that cache miss profiles
gathered from distributed on-chip hardware monitors, which tgpecally available in current micro-
processors, can be effectively used to guide dynamic pagatioig in an application. This also means
software based migration could be performed on systathsut the need for dedicated hardware monitors.

Our simulation experiments also demonstrated the importaihaecurate simulators when benefits of
dynamic page migration are evaluated in multiprocessor ragsteln particular, our results indicate that
lacking an accurate model for out of order execution in sitotd could easily hide the benefits of page
migration. We believe this limitation contributed to soafig¢he conclusions reached by previous researches
that indicated limited benefit to page migration ilNdOMA systems[4,13,19].

References

[1] W.J. Bolosky, M.L. Scott, R.P. Fitzgerald, R.J. FawA.L. Cox: NUMA Policies and Their Relation to
Memory Architecture. International Conference on Architesit Support for Programming Languages
and Operating Systems, Santa Clara, CA, April 1991..

[2] B.R. Buck, J.K. Hollingsworth: An API for Runtime CoBatching., International Journal of High
Performance Computing Applications, v.14 n.4, p.317-329, November 2000.

[3] B.R. Buck, J.K. Hollingsworth: Using Hardware Perfiamce Monitors to Isolate Memory Bottlenecks.
ACM/IEEE conference on Supercomputing, Dallas, Texas, Noge2®00

[4] 3.M. Bull, C. Johnson: Data Distribution, Migration anepfcation on a cc-NUMA Architecture.
European Workshop on OpenMP, Rome, Italy, September 2002.

[5] R. Chandra, S. Devine, B. Verghese, A. Gupta, M. Rasen Scheduling and Page Migration for
Multiprocessor Compute Servers. Architectural support for progning languages and operating
systems, San Jose, CA, October 1994.

[6] A. Charlesworth: The Sun Fireplane System Intercon#éCM/IEEE conference on Supercomputing,
Denver, CO, November 2001.

[7] Compaq Computer Corporation: Alpha Architecture Handbookg\ger4), 1998.

[8] E. Hagersten, M. Koster: WildFire: A ScalableliPdr SMPs. International Symposium on High
Performance Computer Architecture, Page: 172, Orlando, Ruada 1999.

41

[9] J. Heinrich: MIPS R10000 Microprocessor User's Manual@). MIPS Technologies, 1996.

[10] Intel Corporation: Intel Itanium 2 Processor RefieeeManual for Software Development and
Optimization, 2002.

[11] R.P. LaRowe, C.S. Ellis, L.S. Kaplan: The RobustoédUMA Memory Management. ACM
Symposium on Operating System Principles , Pacific Groye October, 1991

[12] P.S. Magnusson, M. Christensson, J. Eskilson, Bsgfen, G. Hallberg, J. Hogberg, F. Larsson, A.
Moestedt, B. Werner: Simics: A Full System Simulaticatfetm. IEEE Computer, 35(2): 50-58, 2002.

[13] L. Noordergraaf, R. van der Pas: Performance Egpegs on Sun's WildFire Prototype. ACM/IEEE
conference on Supercomputing, Portland, OR, November 1999.

[14] L. Noordergraaf, R. Zak: SMP System Interconnedrimsentation for Performance Analysis.
ACM/IEEE conference on Supercomputing, Baltimore, MD, Ndven2002.

[15] Omni OpenMP Compiler Project: NAS Parallel Benchm&®@genMP C Versions.
http://phase.hpcc.jp/Omni/benchmarks/NPB, 2000.

[16] M.S. Squillante, E.D. Lazowska: Using ProcessaheaAffinity in Shared Memory Multiprocessor
scheduling. IEEE Transactions on Parallel and Distrib8tesiems, 4(2), 1993.

[17] Sun Microsystems: UltraSPARC 11l Cu User's Manwatgion 1.0), 2002.

[18] M.M. Tikir, J.K. Hollingsworth: Using Hardware Cowans to Automatically Improve Memory
Performance. ACM/IEEE Conference on Supercomputing, Pitteb&dy, November 2004.

[19] B. Verghese, S. Devine, A. Gupta, M. Rosenblum: Opeg&8ystem Support for Improving Data
Locality on CC-NUMA Compute Servers. International Coefee on Architectural Support for
Programming Languages and Operating Systems, Cambridge, &4ébHeD 1996.

[20] VirtuTech Corporation: Simics Programming Guide (v2.2hp://www.virtutech.com/products/, 2005.

[21] M. Woodacre, D. Robb, D. Roe, K. Feind: The SGI Altix 3@abal Shared-memory Architecture.
SGI White paper, Mountain View, CA, 2003.

[22] M. Zagha, B. Larson, S. Turner, M. Itzkowitz: féemance Analysis Using the MIPS R10000
Performance Counters. ACM/IEEE Conference on Supercompuitigburg, PA, November 1996.

[23] J. Marathe and F. Mueller. Hardware Profile Guidetibmatic Page Placement for cc-NUMA Systems
Symposium on Principles and Practice of PalrBiftogramming, New York, NY, March 2006.

[24] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulokabarta, and E. Ayguade. User-level

Dynamic Page Migration for Multi-programmed Sldangemory Multiprocessors. International
Conference on Parallel Programming, pages 95-108nibp Canada, August 2000.

42

