
 1

Efficient Instrumentation for Code Coverage Testing

Mustafa M. Tikir
tikir@cs.umd.edu

Computer Science Department
University of Maryland

College Park, MD 20742

Jeffrey K. Hollingsworth
hollings@cs.umd.edu

ABSTRACT
Evaluation of Code Coverage is the problem of identifying the
parts of a program that did not execute in one or more runs of a
program. The traditional approach for code coverage tools is to
use static code instrumentation. In this paper we present a new
approach to dynamically insert and remove instrumentation code
to reduce the runtime overhead of code coverage. We also explore
the use of dominator tree information to reduce the number of
instrumentation points needed. Our experiments show that our
approach reduces runtime overhead by 38-90% compared with
purecov, a commercial code coverage tool. Our tool is fully auto-
mated and available for download from the Internet.

KEYWORDS
Testing, Code Coverage, Dynamic Code Patching, Dynamic Code
Deletion, Dominator Tree, On-Demand Instrumentation

1. INTRODUCTION
Evaluation of Code Coverage is the problem of identifying the
parts of a program that did not execute in one or more runs of a
program. Developers and testers use code coverage to ensure that
all or substantially all statements in a program have been executed
at least once during the testing process. Measuring code coverage
is important for testing and validating code during both develop-
ment and porting to new platforms. Traditionally code coverage
measurement tools have been built using static code instrumenta-
tion. During program compilation or linking, these tools insert
instrumentation code into the binary executable file. The inserted
instrumentation provides counters to record which statements are
executed. The code inserted into the executable remains in the
executable throughout the execution even though once a statement
has been executed, the instrumentation code produces no addi-
tional coverage information. Moreover, these tools conservatively
instrument all functions prior to the program execution even
though some of them may never be executed. Leaving useless
instrumentation in place increases the execution time of the soft-
ware being tested especially if the program is long running and
has many frequently executed paths (as most server programs
due). For example, the perl benchmark from SPEC95 suite runs
almost 20 times slower when the instrumentation code for code
coverage is left in the executable during execution. Statically in-

serting all possibly needed instrumentation code increases the
instrumentation overhead for large programs that execute only
small portion of execution paths (common for the applications
built from libraries).
In this paper we present a new approach to dynamically insert
code and remove it when it does not produce any additional cov-
erage information. To our knowledge, this approach has not been
used in previous code coverage tools. Our goal in this paper is to
show that deletion of instrumentation code used for code coverage
produces faster code coverage results for long running programs.
Although code coverage testing has traditionally been performed
as a distinct phase of the software development process, by mak-
ing it cheaper it potentially could be included in production code.
This would allow feedback to developers about the behavior of
the software once deployed. For rarely executed code, such as
error cases, this type of feedback could be especially valuable. By
significantly reducing the overhead of instrumentation code exe-
cution, our technique makes residual test coverage monitoring[8]
more efficient. Our fast code coverage techniques also could be
modified to sample the frequency of execution of program seg-
ments to provide additional information to a feedback-directed
dynamic code optimization system.
Besides dynamic deletion of instrumentation code, we explore the
use of more sophisticated binary analysis techniques to reduce the
number of places instrumentation code needs to be inserted. Most
existing code coverage tools insert instrumentation code at the
beginning of each basic block. However, by automatically gener-
ating and using the dominator tree of a control flow graph, we can
reduce the number of instrumentation points required.
We also explore the use of incremental function instrumentation
to insert the necessary instrumentation code when a function is
called for the first time during program execution. Existing code
coverage tools conservatively insert all possibly needed instru-
mentation code even though it may never be executed in future
runs. Thus, the overhead of instrumentation is significant for large
programs containing a few frequently executed paths. Using in-
cremental instrumentation of functions during program execution,
we eliminate the instrumentation time for uncalled functions.
The rest of the paper is organized as follows: Section 2 describes
the extensions made to dyninstAPI, a runtime code patching sys-
tem, to implement our dynamic code coverage tool, Section 3
explains how dominator tree information is used to reduce the
number of instrumentation points needed, Section 4 explains the
steps of our algorithm for code coverage, Section 5 presents the
results of a series of experiments conducted to evaluate our ap-
proach, Section 6 presents the related work. Section 7 summarizes
our results and describes where to download the software.

 2

2. OVERVIEW OF dyninst API
DyninstAPI is an Application Program Interface to a library that
permits the insertion of code into a running program. This library
provides a machine independent interface to permit the creation of
tools and applications that use runtime code patching. The unique
feature of this interface is that it makes it possible to insert and
change instrumentation in a running program[7]. Implementations
of dyninst are currently available for Alpha, Sparc, Power, Mips
and x86 architectures.
Figure 1 shows the structure of dyninstAPI. A mutator process
generates machine code from the high-level instrumentation code
and transfers it to an application process. To insert new code,
dynamic code patches, called trampolines, are placed at the point
where the new code is to be inserted (shown in Figure 2).

Mutator Application

API

ptrace/procfs

Machine
Dependent

Code

Dyninst
Code

Mutator Mutatee

Application Code

Snippets

Run-time Library

Figure 1. Structure of dyninstAPI

A base trampoline contains the relocated instruction(s) from the
application address space and has slots for calling mini-
trampolines both before and after the relocated instructions. Mini-
trampolines store the machine code for high-level instrumentation
code.

Program Base Tramp Mini-tramp

foo()

Pre

Post

Relocated
Instruction

Save
Registers

Set up
Args

Snippet

Restore
Registers

Figure 2. Instrumentation Code Insertion into a Program

The library also allows instrumentation code to be deleted. In-
strumentation code deletion is a two-phase process that first re-
moves the branch into the instrumentation code and then later
deletes the trampoline to ensure that the instrumentation code
being deleted is not executing.
To implement a code coverage tool using dyninst, we extended
the API to provide information about control flow graphs, basic
blocks, and the ability to map source code line numbers to ma-
chine instructions. To create the control flow graph of a function

we use a variation on the two-pass algorithm presented in [5]. We
then create the dominator tree of a control flow graph using the
algorithm in [13]. In addition we extended the system to allow per
instruction instrumentation.
Originally, dyninst only supported function level instrumentation.
That is, the points to which instrumentation code can be inserted
were function entry, function exit and call sites. For a code cover-
age tool, however, we need finer grained instrumentation. We
added arbitrary instrumentation points to the library. At arbitrary
instrumentation points, we need to preserve the machine’s condi-
tion codes that are not live (and thus not saved) in function level
instrumentation. We changed the base trampoline structure to save
the processor state before the execution of instrumentation code,
and then restore it after the instrumentation code but before exe-
cuting any other user instructions.
Another enhancement to the dyninst API involves its memory
allocator. Dyninst performs a number of optimizations when the
memory is allocated for base trampolines and instrumentation
code. One of these optimizations tries to allocate memory for code
snippets close to the instrumentation point itself. By keeping the
displacement to instrumentation code small, single word branch
instructions can be used. Since the reachable displacement using
one-word branch instructions is limited, when dyninst de-allocates
memory, it compacts the free blocks. However, this optimization
causes a significant instrumentation overhead when a large
amount of instrumentation code insertion repeatedly triggers the
compaction algorithm. Thus, we refined memory compaction to
trigger only when memory for snippets runs low to improve over-
all performance.

3. USING DOMINATOR TREES
In this section, we explain our techniques to reduce the number of
instrumentation points needed for our dynamic code coverage
tools. We use properties of the immediate dominator tree of a
control flow graph for instrumentation point selection.

3.1 Leaf Node Instrumentation
A dominator tree is a tree in which the root node is the entry basic
block, and each basic block d dominates only its descendants in
the tree. A basic block d of a flow graph dominates basic block n,
d dom n, if every path from the entry basic block of the flow graph
to n goes through d. Each basic block n has a unique immediate
dominator m that is the last dominator of n on any path from the
entry basic block to n.

0

4

32

1

Entry

Exit

CFG

4

0

1

2 3

Dominator Tree

Figure 3. A simple CFG and Its Dominator Information

 3

The key property of the dominator trees for our work is that for
each basic block n in a dominator tree if n is executed, all the
basic blocks along the path from root node to n in dominator tree
are also executed. Figure 3 gives an example of a control flow
graph and its dominator tree information.
Using the fact that coverage of a basic block might be inferred by
coverage of other basic block(s), we can increase the coverage
information obtained per instrumentation point by omitting the
instrumentation code from an internal node of the dominator tree.
That is, the instrumentation of the leaf nodes in the dominator tree
will produce enough information to compute the coverage of in-
ternal nodes in the dominator tree.

3.2 Non-Leaf Node Instrumentation
Leaf node instrumentation is necessary but not sufficient to pro-
duce correct code coverage results. This is because the flow of
control does not have to follow a path in the dominator tree. That
is we cannot guarantee that execution of basic block n is always
followed by the execution of another basic block that is domi-
nated by n. In some cases there will be cross edges in the domina-
tor tree for the execution path. If the cross edges originate at leaf
level basic blocks in the dominator tree, leaf level instrumentation
will be sufficient. However if there exists a cross edge originating
from internal node, n, the execution path may not include any leaf
level basic blocks of the sub-tree rooted at n.

0

3

4

2

1

CFG
Entry

Exit

Control Flow Edges

Execution Path

Information Propagation
Instrumented Basic
Blocks

0

4

2

Dominator Tree

1

3

Figure 4. Why leaf level instrumentation is not sufficient

Figure 4 gives an example for an execution path that creates a
cross edge originating from internal node in the dominator tree.
For this control flow graph, leaf level basic block instrumentation
is not sufficient for correct code coverage results. For example, if
we only instrument leaf level basic blocks 3 and 4 in the domina-
tor tree, when the flow of control leaves at the exit node of control
flow graph, only basic block 4 will be marked as executed. When
we propagate the information obtained from the execution of leaf
node towards the root, we infer that basic blocks 2 and 0 also
executed. However no information about basic block 1 will be
given, thus it is assumed to be unexecuted. Since the flow of con-
trol did not enter basic block 3, the leaf level instrumentation did
not give any information to us about the basic blocks that domi-
nate 3, which are 1 and 0.

To correctly capture this case, we also instrument basic block n if
n has at least one outgoing edge to a basic block m that n does not
dominate. In this example basic block 1 has an outgoing edge to 2

and 1 does not dominate 2. We choose basic block 1 to be instru-
mented besides basic blocks 3 and 4. We selected our approach
because it is fast to compute. With our online approach, binary
analysis time must be kept to a minimum.
Alternatively, a combination of dominator and post-dominator
tree information could be used to reduce the number of instrumen-
tation points needed compared to using only dominator tree in-
formation. That is, the execution of a basic block can also be de-
duced by execution of another basic block that is post-dominated
by the former. However, our goal is not to find the optimal num-
ber of instrumentation points[6][14], but to minimize the sum of
the analysis and instrumentation overhead. Although we use Lan-
gauer-Tarjan[13] algorithm that is linear in number of edges in a
control flow graph, dominator tree construction for a control flow
graph is an expensive computation relative to the limited benefit
we can expect. That is, additional post-dominator information
would double our binary analysis time without a significant reduc-
tion in instrumentation overhead. Thus we chose to use only
dominator tree information.

4. CODE COVERAGE ALGORITHM
We implemented two slightly different versions of our dynamic
code coverage algorithm: code coverage with pre-instrumentation
and code coverage with on-demand instrumentation. These algo-
rithms differ in what functions are instrumented and when the
instrumentation code is inserted. The selection of points to be
instrumented is based on the same criteria in both implementa-
tions. For both algorithms, during the execution of the program
being tested we determine if instrumentation code can be deleted,
and remove it. At program termination, we record the results of
code coverage by propagating line coverage information towards
the root of dominator tree.
The first step of our algorithm with pre-instrumentation is to cre-
ate the control flow graph and dominator tree for each function in
the application. Next, for each control flow graph we choose basic
blocks to be instrumented using the criteria explained in Section
3. For each basic block to be instrumented we create a Boolean
variable which is initialized to false indicating that the block has
not yet executed. We insert code at the beginning of the basic
block that sets the corresponding Boolean variable to true. Our
code coverage tool automatically creates the control flow graph,
generates the dominator tree and inserts the instrumentation code.
With on-demand instrumentation only breakpoints are inserted at
the beginning of each function in the application prior to the exe-
cution. During the execution of the program, when a breakpoint is
reached, the control flow graph of that function is generated and
the necessary instrumentation code is inserted. Thus, if the func-
tion is not called during the execution, neither the control flow
graph nor the instrumentation code is generated for it.
For better performance for long running programs with many hot
basic blocks and paths, we delete instrumentation code during the
execution of the program. Deletion of instrumentation code in-
cludes restoring original instructions and de-allocating base tram-
poline and min-trampoline space. However, there is a tradeoff in
instrumentation code deletion. Sometimes deletion may introduce
more overhead than the resulting performance improvement. This
is due to the fact that it takes time to check what is already exe-
cuted and what can be deleted. For example, if there is a lot of

 4

instrumentation code that never execute, the checks will mostly
introduce overhead instead of improvement.
Instrumentation code can be deleted using different policies. One
simple method is to delete instrumentation code at fixed time
intervals. Another possibility is to delete the instrumentation code
automatically just after the first time it is executed. In our current
implementation, instrumentation code is deleted at fixed time
intervals. It is a simple approach, easy to program and improves
the execution time of the program being tested significantly. The
deletion interval is a tunable parameter to our code coverage sys-
tems.
At program termination we record the results of code coverage.
For our code coverage algorithms that use dominator tree
information for instrumentation, we simply read the values of
variables assigned to basic blocks instrumented and propagate the
information along the path in the dominator tree towards the root.
If the variable for a basic block is set we mark all dominators as
executed. Our code coverage tool then either generates a binary
file that contains information about which lines were executed or
displays the coverage information through its user interface.
Relative to static instrumentation that can completely re-structure
a binary, our approach uses a base trampoline and a mini-
trampoline for each instrumentation code inserted. Therefore the
cost of each instrumentation point also includes the execution of
branch/call instructions from executable address space to the base
trampoline and from the base trampoline to the mini-trampolines.
However, the fact that we can remove instrumentation code at
runtime helps to offset this penalty.

5. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of our approach, we ran a workload
of test programs with and without using dominator information
and varying the dynamic code deletion interval. As a comparison,
we also ran the applications through purecov (version 4.1 Solaris
2.6), a commercial code coverage tool that uses static code edit-
ing. We measured the execution time of programs instrumented by
our dynamic code coverage tools including the setup time for
control flow graph generation, dominator tree construction, and
instrumentation code insertion. We tested code coverage for Post-
greSQL, an object-relational DBMS, using the Wisconsin[9] and
crashme[2] benchmarks, the C programs and two of the Fortran
programs from the SPEC95 benchmarks[4]. Experiments were
conducted on a SUN-SPARC ULTRA 10 with 500MB of main
memory, and compiled with gcc version 2.95.1 with debug option
enabled. We also measured the total number of basic blocks in the
program being tested and the number of instrumentation points
needed when dominator tree information is used. We ran the same
set of experiments for both code coverage with pre-
instrumentation and code coverage with on-demand instrumenta-
tion.

5.1 Reduction in Instrumentation Points
To quantify the benefits of using dominator tree information, we
calculated the number of instrumented basic blocks with and
without using dominator tree information. We repeated the ex-
periments using our on-demand instrumentation algorithm.
Figure 5 summarizes the ratio of the number of instrumented basic
blocks to the total number of basic blocks in the application for
the programs we tested. Details about the code coverage instru-

mentation statistics for all programs we tested are given in the
tables in Appendix A. For each program, there are four bars. The
bars labeled all blocks correspond to the code coverage tools with
all basic blocks instrumentation and the ones labeled dominator
indicate use of dominator tree information. The OD suffix indi-
cates our code coverage algorithms with on-demand instrumenta-
tion.
Figure 5 shows that using dominator tree information with pre-
instrumentation reduced the number of instrumentation points
needed by 34% to 49% compared to all basic blocks instrumenta-
tion. Similarly, it shows that using dominator tree information
with on-demand instrumentation, we reduced the number of in-
strumentation points needed from 33% to 49%, which corre-
sponds to 42% to 79% reduction in the total number of basic
blocks instrumented when all blocks instrumentation and domina-
tor tree information is used.
Figure 5 shows that the gain using dominator tree information is
less for gcc, perl, and vortex than the other programs tested. These
programs have lexical analyzers and parser functions in them.
These types of functions have complex control flow graphs con-
taining many basic blocks with few instructions and many control
flow edges. These properties result in a large number of leaf level
basic blocks in the dominator trees and also a large number of
internal basic blocks that require instrumentation (as described in
Section 3.2)

Ratio of Instrumented Basic Blocks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tom
cat

v

co
mpre

ss

hy
dro

2d li

m88
ksi

m
ijp

eg go pe
rl

vo
rte

x gc
c

wisc
on

sin

cra
shm

e

Ratio
all blocks all blocks OD dominator dominator OD

Figure 5. Ratio of Instrumented Basic Blocks to the Total
Number of Basic Blocks

Figure 5 also shows that using on-demand instrumentation, our
code coverage algorithm reduces the amount of instrumentation
code inserted compared to static instrumentation. Combining on-
demand instrumentation with dominator trees consistently results
in the fewest number of instrumented basic blocks. However, the
number of instrumentation points needed in tomcatv is not re-
duced by on-demand instrumentation, as tomcatv has no un-called
functions in its execution. Overall we were able to eliminate in-
strumentation from 42% to 79% of the basic blocks in the execu-
tables.

 5

5.2 Coverage Percentage Curves
In this section, we present the source code line coverage percent-
age versus time to show how rapidly various applications reach
certain levels of coverage. We measured the source code line cov-
erage percentage by stopping the running process at fixed time
intervals and calculating the percentage source lines executed.

Coverage Percentage for SPEC/compress

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

Time Interval

Pe
rc

en
ta

ge

Figure 6. Source Line Coverage Percentage for compress

Figure 6 shows the source line coverage percentage versus time
for compress from SPEC95 benchmark suite. The coverage per-
centage in Figure 6 steeply increases to 76% in the first 18% of
the execution time and stays at this level through the rest of the
execution. That is, most of the basic blocks that will execute are
covered at the beginning of the program and during the rest of its
execution mostly the same basic blocks are re-executed.

Coverage Percentage for PostgreSQL
with Wisconsin Benchmark

0

5

10

15

20

0 10 20 30 40 50 60 70 80

Time Interval

Pe
rc

en
ta

ge

Figure 7. Source Line Coverage Percentage for PostgreSQL

with Wisconsin Benchmark
Figure 7 shows the source code line coverage percentage for Post-
greSQL using Wisconsin benchmark queries. The Wisconsin
benchmark queries are designed to measure the query optimiza-
tion performance of database systems using selection, join, projec-
tion, aggregate, and simple update queries. We conducted the
experiments using a single-user version of PostgreSQL. The fact
that the database was in single user mode partially explains the
relatively low coverage percentage in Figure 7.
Unlike Figure 6, the source code line coverage percentage for
PostgreSQL using the Wisconsin benchmark increases gradually
to 19% through the whole execution, staying around 10% in the
first half. However, the source code line coverage percentage
mostly remains steady for several intervals during the execution

indicating the existence of many frequently executed paths and re-
execution of many basic blocks during these intervals.
Figure 7 also shows that, unlike compress, the time spent execut-
ing instrumentation code is distributed among these intervals
rather than being at the beginning of the program execution.

5.3 Execution Time
We next look at the impact of dynamic code deletion and domina-
tor information usage for the applications in Section 5.2. We pre-
sent the execution times using our techniques and compare it to
the commercial code coverage tool purecov.
Figure 8 shows the slowdown ratios of compress with respect to
original execution time. It has five kinds of bars. The bar labeled
PC shows the execution time slowdown ratio for compress in-
strumented using purecov. The rest of the bars are divided into
four categories; each category corresponds to slowdown ratios of
compress instrumented using one of our dynamic code coverage
algorithms. Categories labeled dominator use dominator tree in-
formation for instrumentation where the ones labeled all blocks
indicate our dynamic code coverage tools with all basic blocks
instrumentation. The suffix OD indicates use of on-demand func-
tion instrumentation. In each category, the bars are labeled with
numbers to represent different instrumentation code deletion in-
tervals (in seconds). Bars labeled 0 indicate that instrumentation
code is not deleted at all. Each bar is composed of two or three
segments.

Slowdown for SPEC/compress

0

1

2

3

4

5

6

7

8

9

10

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 8. Execution Time Slowdown Ratios for compress
Figure 8 shows that all of our code coverage tools significantly
outperform purecov execution for all deletion intervals studied. It
also shows that there is a significant decrease in execution time
when dynamic instrumentation code deletion is enabled. This is
due to two reasons; 1) Most of the instrumentation code is exe-
cuted at the beginning and deleted shortly after it is executed, and
2) There are few basic blocks in compress and the overhead of
checking whether instrumentation code is executed or not during
the deletion intervals is not significant. Even if we instrument all
basic blocks, after a couple deletion intervals most of the instru-
mentation code is deleted. This explains the relatively insignifi-
cant gain when using dominator tree information despite the fact
that dominators were able to eliminate instrumentation points for
over 55% of the basic blocks (as shown in Figure 5). Likewise on-

 6

demand instrumentation provides little benefit. Figure 8 also
shows that the execution times increase slightly for larger deletion
intervals for all of our code coverage tools due to re-execution of
some instrumentation code in the first couple deletion intervals.
Figure 8 also shows that without dynamic code deletion, our dy-
namic code coverage tools using dominator tree information out-
perform the ones using all basic blocks instrumentation. Surpris-
ingly, our techniques outperform purecov execution even without
code deletion when all basic blocks instrumentation is used. This
is due to the fact that sometimes purecov inserts more instrumen-
tation code than our code coverage tools with all basic blocks
instrumentation (An examination of purecov code indicates that
purecov inserts unnecessary instrumentation code around the
pseudo-instruction that implements integer division of the
SPARC).
Figure 8 also shows that, for compress, our dynamic code cover-
age tools with on-demand function instrumentation slightly out-
perform the ones with pre-instrumentation. This is due to the fact
that 89.1% of the total basic blocks in compress are executed
during the program execution and the setup time for compress is
not significant compared to the total execution time.
For compress instrumented by our dynamic code coverage tools,
the best execution time occurs using a 2-second deletion interval
and is 90% better than purecov execution time. The slowdown
ratio for our best execution time with respect to original execution
is 1.003. That is, our dynamic code coverage tool introduces only
a 0.3% run time overhead compared to the original execution of
compress.
Figure 9 presents the execution time slowdown ratios, with re-
spect to original execution time, of PostgreSQL for the Wisconsin
benchmark instrumented by purecov and our dynamic code cover-
age tools. The gray segment in each bar represents the setup time
for each tool where the bottom light colored segment is execution
time of the program. For our dynamic code coverage tools with
on-demand instrumentation, gray segment represents the control
flow graph generation and instrumentation time, which is distrib-
uted throughout the execution. The dark top segment represents
the time spent during instrumentation of breakpoints at function
entry points. (Although setup times were shown in Figure 8, they
were so insignificant for compress that they were not visible).
Figure 9 shows that setup times for our code coverage tools with
pre-instrumentation is significant due to the existence of many
complex control flow graphs and the large number of basic blocks
in PostgreSQL. That is, the control flow generation and instru-
mentation code insertion for all functions in PostgreSQL intro-
duces a significant overhead. The setup time for our code cover-
age tools with on-demand instrumentation is not significant since
it only requires inserting breakpoints at the beginning of the func-
tions. Figure 9 also shows that control flow graph generation and
instrumentation of functions for our dynamic code coverage tools
with on-demand instrumentation takes significantly less time
compared to our tools with pre-instrumentation.
Figure 9 shows that our code coverage tool with pre-
instrumentation and all basic blocks instrumentation is outper-
formed by purecov significantly. This is due to two reasons. First,
even though only 36% of the basic blocks are executed, pre-
instrumentation creates control flow graphs for un-called func-
tions and inserts instrumentation code for all basic blocks. Unlike
our code coverage algorithms, purecov does not suffer from con-

trol flow graph generation and instrumentation code insertion
during execution. Second, the deletion interval overhead, for
checking whether instrumentation code is executed or not, is sig-
nificant when many basic blocks are never executed. That is, most
of the checks during the deletion intervals are not profitable but
introduce overhead. Figure 9 shows that our code coverage tool
with pre-instrumentation and dominator tree information usage
performs slightly better than purecov since it introduces fewer
instrumentation points compared to all block instrumentation.

Slowdown for PostgreSQL with Wisconsin
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 9. Execution Time Slowdown Ratios for PostgreSQL
with Wisconsin Benchmark

Figure 9 also shows that our code coverage tools with on-demand
instrumentation outperform our code coverage tools with pre-
instrumentation since they do not generate control flow graphs for
un-called functions nor insert instrumentation code for basic
blocks that are not executed. Our on-demand instrumentation
technique also reduces the deletion interval overhead by introduc-
ing instrumentation code incrementally that eliminates the checks
that would otherwise be done in previous deletion intervals.
Like in Figure 8, the results in Figure 9 indicate that using dy-
namic code deletion produces faster code coverage results. Unlike
Figure 8, every-second deletion performs slightly worse than no
dynamic code deletion for pre-instrumentation case, since the
more instrumentation code must be checked.
Figure 9 shows that combining on-demand instrumentation and
dominator tree information usage is complementary. While using
dominator tree information reduces the number of instrumentation
points needed, using on-demand instrumentation reduces the
setup time and deletion interval overhead of checking whether the
instrumentation code can be deleted or not. Using both dominator
tree information and on-demand instrumentation, we reduced the
amount of instrumentation code inserted by 78.2% compared to
the total number of basic blocks in the program.
For this application, the best execution time occurs when a 15-
second deletion interval is used. The slowdown ratio for our best
execution time with respect to original execution is 1.31 and it is
44% better than purecov execution time.
We present execution time slowdown ratios for the rest of the
programs in Appendix B for the interested reader. The format of
the rest of the graphs is exactly same with the ones in this section.

 7

5.4 Overall Slowdown
We also calculated the slowdown ratio with respect to the original
execution time for programs instrumented using purecov and our
dynamic code coverage tool. We took the results for 2-second
deletion interval for our dynamic code coverage tools (We de-
cided to present the results for 2-second deletion interval as repre-
sentative of our techniques rather than using the best deletion
interval for each application).
Table 1 presents the execution time slowdown ratios (computed as
the ratio of instrumented execution time to un-instrumented exe-
cution time) for the programs we tested. In the second column we
give the original execution times in seconds. The next four col-
umns give the slowdown ratios of the programs instrumented by
our dynamic code coverage tools using dominator tree informa-
tion and all basic blocks instrumentation for both pre-
instrumentation and on-demand instrumentation. The results pre-
sented in Table 1 for our code coverage tools include setup time
for control flow graph generation, dominator tree construction and
instrumentation. The last column of the table gives the slowdown
ratios of the programs instrumented using purecov.
Table 1 shows that purecov slows down the execution from 1.8
for tomcatv to 19.8 times for perl. However our dynamic code
coverage tool with on-demand instrumentation slows down the
execution only a factor of 1.002 to 2.6 using dominator tree in-
formation Our code coverage tools with on-demand instrumenta-
tion frequently outperform the ones with pre-instrumentation.

Slowdown Using
Dominator Tree

Information

Slowdown Using
All Basic Blocks
Instrumentation

Original
Execution

Time
(sec) Pre-Inst.

On-
Demand

Inst.
Pre-Inst.

On-
Demand

Inst.

Slowdown
using

purecov

tomcatv 77.9 1.003 1.002 1.003 1.002 1.83
postgres
-crashme

254.4 1.80 1.43 2.16 1.56 2.09

postgres
-wisconsin

90.5 2.30 1.34 2.99 1.71 2.35

hydro2d 764.4 1.01 1.01 1.01 1.01 2.73
ijpeg 223.9 1.07 1.08 1.13 1.14 4.74
go 118.3 1.08 1.06 1.23 1.20 5.23
vortex 50.3 1.69 1.48 1.90 1.66 7.27
gcc 50.9 3.90 2.58 4.96 3.26 8.97
m88ksim 133.5 1.11 1.06 1.14 1.06 9.43
li 373.4 1.02 1.01 1.03 1.02 9.45
compress 219.4 1.03 1.003 1.04 1.02 9.88
perl 67.1 2.53 2.37 2.70 2.56 19.78

Table 1. Comparison of slowdown ratios with respect to
original execution times for our dynamic code coverage tools

with on-demand and pre- instrumentation, and purecov.
Table 1 shows that the difference between the slowdown ratios
using our tools with on-demand instrumentation and pre-
instrumentation is higher for gcc, postgres, vortex, and perl com-
pared to the other programs we tested. This is due to the fact that
these programs have many basic blocks and control flow edges
and a significant portion of these basic blocks are not executed.
That is, our code coverage algorithm with pre-instrumentation
spends a significant amount of time to create control flow graphs

and insert instrumentation code for un-called functions, and thus
introduces a significant amount of instrumentation code that is not
executed but must be checked during each deletion interval.

6. RELATED WORK
The two systems most closely related to our dynamic code cover-
age tool are the commercial code coverage tools, PureCoverage[3]
and C-Cover[1]. To locate untested areas of code, PureCoverage
uses Object Code Insertion (OCI) technology to insert usage
tracking instructions into the object code for each function and
block of code during a post compilation, pre-link pass. Addition-
ally PureCoverage also counts the number of function calls for the
functions and execution counts of each source line executed.
However, since they use a small number of bits for each counter,
only an approximate count is returned. Similarly, C-Cover auto-
matically adds probes to C and C++ source code by intercepting
calls to the compiler[1]. C-Cover also displays condition/decision
coverage and function coverage results. Unlike our dynamic code
coverage tool, these tools statically edit the source code or execu-
table and the code inserted remains inside the executable during
the executions. Moreover, these tools conservatively insert all
instrumentation code for each function in the application. Our
dynamic code coverage tool also uses dominator tree information
to reduce the number instrumentation points and incremental
function instrumentation to reduce the overhead of instrumenta-
tion for un-called functions.

Pavlopoulou and Young[8] present a prototype system that im-
plements residual test coverage monitoring for Java applications.
The purpose of residual test coverage monitoring is to provide
feedback from actual use of deployed software to developers,
helping developers to validate and refine the models they have
relied upon in quality assurance. However, it is unlikely to be
accepted by users unless monitoring performance impact is very
small. To reduce the cost of continued monitoring, the prototype
presented[8] selectively re-instruments the program under test to
monitor only the coverage obligations that remain unmet. How-
ever, our technique can be used to reduce monitoring overhead by
deleting instrumentation code during the program execution,
which will make residual test coverage monitoring more efficient.

Agrawal[6] also uses properties of dominator trees as part of
software testing. Agrawal presents techniques to find small sub-
sets of nodes in a control flow graph with the property that if the
subset is covered by a test case, the remaining nodes are automati-
cally covered. The technique finds the strongly connected compo-
nents of the union of pre- and post dominator trees of a control
flow graph. Unlike our work, this approach spends a significant
amount of time to find the nodes to be instrumented by running
two algorithms for dominator tree construction and one to find
strongly connected components. The role of dominator trees is
also different. Agrawal uses properties of dominator trees to pro-
vide programmers guidance about how to create test cases to pro-
vide significant code coverage for each case. In contrast, our use
of dominator trees is to efficiently measure code coverage.

Path Profiles[15] can be used to compute the code coverage via a
multi-phase algorithm. The key idea behind the path-profiling
algorithm is to identify the potential paths with states that are
represented as integers. A minimal number of edges in a DAG are
labeled with integer values such that each path from entry to the
exit of the DAG produces a unique sum of the edge values along

 8

that path. At the exit node of a DAG, the unique sum is used to
identify the executed path and increment the counter assigned to
it. At program termination, the non-zero counter values of the
paths can be used to identify covered lines in the executable after
regeneration of the executed paths. However, with complex con-
trol flow graphs and many executed paths, the path-profiling algo-
rithm requires many counters. Also the path regeneration phase
may introduce significant overhead before the execution termi-
nates. Unlike our code coverage algorithm, deletion of instrumen-
tation code is not possible as the labels assigned to edges are re-
quired throughout the execution to identify acyclic paths that will
possibly be executed. The results presented for path profiling in
[15] include only the run-time overhead of the instrumentation
code during the execution. That is, they do not include the time
spent for minimal edge labeling of DAGs, insertion of instrumen-
tation code and path regeneration from the unique identifiers of
executed paths. In contrast, the overhead of our code coverage
tools presented in this paper includes the analysis, setup and in-
strumentation time.

Digital Continuous Profiling Infrastructure (DCPI)[10, 11, 16] is
a suite of software profiling tools that provide transparent, low-
overhead profiling of complete systems. DCPI uses hardware
performance counters on the Alpha processors to sample the pro-
gram counter periodically, and can be setup to produce basic
block flow graphs annotated with approximate execution counts.
These execution counts, however, are approximate values and
may not exist for each instruction or basic block in the executable,
which makes it difficult to produce exact code coverage results.

Whole Program Paths (WPP)[12] can also be used to extract code
coverage results that give the dynamic behavior of a program.
WPP produces a trace of the acyclic paths from the execution of a
program and turns the sequence of acyclic paths into a context-
free grammar. The outcome of WPP, program paths or traces -
sequences of consecutively executed basic blocks, offer a clear
window into program’s dynamic behavior. However, in existence
many frequently executed paths, WPP introduces a significant
runtime overhead to compute the context free grammar.

7. CONCLUSIONS
Using dominator tree information for our dynamic code coverage
with pre-instrumentation and on-demand instrumentation reduces
the number of instrumentation points needed by 34-49% com-
pared to all basic blocks instrumentation. Moreover, combining
our dynamic code coverage with on-demand instrumentation us-
ing dominator tree information reduces by 42-79% the total num-
ber of basic blocks that must be instrumented. However, the most
significant gains come from removing instrumentation code once
a block is covered rather than from binary analysis algorithms to
optimize instrumentation placement.
Our dynamic code coverage always outperforms purecov execu-
tion for the programs we tested. Even if all basic blocks are in-
strumented, for most deletion intervals our dynamic code cover-
age algorithm outperforms purecov execution. That is, dynamic
deletion of instrumentation code reduces the overhead for pro-
grams with many infrequently executed (or even unexecuted)
paths as well as for those with many frequently executed paths.
Using a combination of dominator tree information and on-
demand function instrumentation, we reduce not only the setup
time but also the overhead during deletion intervals by eliminating

the instrumentation code insertion for un-called procedures. By
combining on-demand instrumentation and dominator tree infor-
mation usage, we reduce the runtime overhead by 38-90% com-
pared to purecov execution.
More importantly, for many applications, code coverage overhead
is now tens of percent of the original execution time rather than
several times the execution time. By reducing code coverage
costs, it is now possible to consider including it as part of produc-
tion code. Such an approach would greatly increase information
about the execution of extremely infrequent error cases and could
provide additional useful feedback to developers. Moreover, our
fast code coverage techniques could be modified to sample the
frequency of execution of basic blocks to provide additional in-
formation to a feedback-directed dynamic optimization system.
Our code coverage tools are fully automated and available for
download from the Internet. The binary distribution of dyninst
library and our dynamic code coverage tools can be obtained from
http://www.dyninst.org/rel3.0/index.html.

Acknowledgements
This work was supported in part by NSF awards ASC-9703212
and EIA-0080206, and DOE Grants DE-FG02-93ER25176 and
DE-FG02-01ER25510.

8. REFERENCES
[1] C-Cover Code Coverage Analyzer for C/C++, .

http://www.bullseye.com/ccover.html, Bullseye Testing
Technology.

[2] Crashme Benchmark by MySQL Database System, .
http://www.mysql.com/information/crash-me.php.

[3] Rational PureCoverage for Unix, .
http://www.rational.com/products/purecoverage/index.jtmpl,
Rational Software Corporation.

[4] SPEC newsletter, . September 1995,
http://www.specbench.org/osg/cpu95/CINT95.

[5] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques and Tools. 1986: Addison-Wesley Publishing
Com.

[6] H. Agrawal, "Dominators, Super Blocks and Program Cover-
age," POPL 94, Portland, Oregon, pp. 25-34.

[7] B. Buck and J. K. Hollingsworth, "An API for Runtime Code
Patching," The International Journal of High Performance
Computing Applications, 14, Winter 2000, pp. 317-329.

[8] C. Pavlopoulou and M. Young, "Residual Test Coverage
Monitoring," International Conference on Software Engin-
nering. 1999, Los Angeles, CA, pp. 277-284.

[9] D. Bitton, D. J. DeWitt, and C. Turbyfill, "Benchmarking
Database Systems - A Systematic Approach," Ninth Interna-
tional Conference on Very Large Data Bases. Oct. 31-Nov.
2, Florence, Italy.

[10] J. Dean, C. A. Waldspurger, and W. E. Weihl, "Transparent,
Low-Overhead Profiling on Modern Processors," Workshop
on Profile and Feedback-Directed Compilation. October,
Paris, France.

[11] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G.
Chrysos, "ProfileMe: Hardware Support for Instruction-

 9

Level Profiling on Out-of-Order Processors," 30th Sympo-
sium on Microarchitecture (Micro-30). December.

[12] J. Larus, "Whole Program Paths," PLDI '99. May 1999, At-
lanta, GA.

[13] S. S. Muchnick, Advanced Compiler Design and Implemen-
tation. 1997: Morgan Kaufmann, Publishers Inc.

[14] R. L. Probert, "Optimal Insertion of Software Probes in
Well-Delimited Programs," IEEE Transactions on Software
Engineering, January, 1981, pp. 34-42.

[15] T Ball and J. R. Larus, "Efficient Path Profiling," 29th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, Paris, France, pp. 46-57.

[16] W. E. Weihl, CPI: Continous Profiling Infrastructure,
DIGITAL Forefront Magazine 1997.

APPENDIX A
In this appendix, we present details of the instrumentation statis-
tics for our code coverage algorithms for all programs we tested.
We also present percentage reduction in number of instrumenta-
tion points needed when dominator information is used.

Instrumented Basic Blocks

Total
Basic

Blocks
Leaf Non-

Leaf
Total Reduction

tomcatv 53 27 4 31 41.5 %
compress 269 126 12 138 48.7 %
hydro2d 740 356 28 384 48.1 %
li 2,532 1,229 223 1,452 42.7 %
m88ksim 5,742 2,844 560 3,404 40.7 %
ijpeg 5,946 2,756 361 3,117 47.6 %
go 11,233 4,571 1,916 6,487 42.3 %
perl 13,181 6,695 1,432 8,127 38.3 %
vortex 19,047 8,137 4,442 12,579 34.0 %
gcc 68,458 28,915 13,866 42,781 37.5 %
postgres 45,140 23,011 3,353 26,364 41.6 %
Table 2. Pre-Instrumentation Points using All Basic Blocks vs.

Dominator Tree Information
Table 2 presents the results for the code coverage tool with pre-
instrumentation. The first column contains the programs we used
for experiments. In the second column we give the total number of
basic blocks in the executable. For instrumentation using domina-
tor tree information, we divide the number of instrumented basic
blocks in to two parts: Leaf node instrumentation and non-leaf
node instrumentation count. The last column of the table gives the
percentage reduction in the number of instrumentation points
needed for our dynamic code coverage with pre-instrumentation
using dominator tree information.
Table 2 shows that using dominator tree information reduced the
number of instrumentation points needed by 34% to 49% com-
pared to all basic blocks instrumentation.
Similarly, Table 3 presents the results for combining dominator
tree information with on-demand instrumentation. In the third
column, we give the total number of basic blocks in the executed
functions for the workload we used. That is, the third column is
the number of instrumentation points needed for all basic blocks
instrumented for our code coverage algorithm with on-demand
instrumentation.
Unlike Table 2, Table 3 contains two entries for postgres since the
number of instrumented basic blocks changes based on the work-
load. Similarly, the last column of the table gives the percentage
reduction in the number of instrumentation points needed com-

pared with instrumenting all basic blocks in the set of functions
executed.

Instrumented
Basic Blocks

Total
Basic

Blocks

Basic Blocks
in Executed
Functions Leaf Non-

Leaf
Total

Reduc-
tion

tomcatv 53 53(100%) 27 4 31 41.5 %
compress 269 237 (88%) 108 12 120 49.4 %
hydro2d 740 692 (94%) 332 28 360 48.0 %
li 2,532 1,700 (67%) 808 176 984 42.1 %
m88ksim 5,742 1,984 (35%) 959 243 1,202 39.4 %
ijpeg 5,946 2,665 (45%) 1,202 188 1,390 47.8 %
go 11,233 10,981 (98%) 4,466 1,872 6,338 42.3 %
perl 13,181 8,942 (68%) 4,582 1,065 5,647 36.8 %
vortex 19,047 13,993 (73%) 5,789 3,497 9,286 33.6 %
gcc 68,458 32,779 (48%) 13,998 6,678 20,676 36.9 %
postgres
-wisconsin

45,140 16,417 (36%) 8,587 1,254 9,841 40.1 %

postgres
-crashme

45,140 20,860 (46%) 10,775 1,601 12,376 40.7 %

Table 3. On-demand Instrumentation Points using All Basic
Blocks vs. Dominator Tree Information

APPENDIX B
In this appendix, we present execution time slowdown ratios for
the rest of the programs we tested. The format of the graphs pre-
sented in this appendix is exactly same with the ones presented in
Section 5.3.
Figures 10-19 present the execution time slowdown ratios for the
rest of the programs. All of the programs have source code line
coverage percentage graphs similar to Figure 6. That is, the source
code line coverage percentage steeply increases at the beginning
of their execution and stays steady during the rest of the execu-
tion.
For all programs except tomcatv, hydro2d and ijpeg, the best exe-
cution time occurs when instrumented by our code coverage tool
using on-demand instrumentation and dominator tree information.
For tomcatv, hydro2d and ijpeg, however, the best execution
times for our dynamic code coverage tool with on-demand in-
strumentation and dominator tree information usage differ from
the best execution time among all by less than 1%. We suspect
this difference is caused by the slight variations in the workload
while we were conducting our experiments.

 10

Slowdown for SPEC/m88ksim

0

2

4

6

8

10

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 10. Execution Time Slowdown Ratios for m88ksim

Slowdown for SPEC/li

0

2

4

6

8

10

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 11. Execution Time Slowdown Ratios for li

Slowdown for SPEC/tomcatv

0.0

0.5

1.0

1.5

2.0

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 12. Execution Time Slowdown Ratios for tomcatv

Slowdown for SPEC/hydro2d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 13. Execution Time Slowdown Ratios for hydro2d

Slowdown for SPEC/ijpeg

0

1

2

3

4

5

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 14. Execution Time Slowdown Ratios for ijpeg

Slowdown for SPEC/perl

0

4

8

12

16

20

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 15. Execution Time Slowdown Ratios for perl

Slowdown for SPEC/vortex

0

2

4

6

8

10

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 16. Execution Time Slowdown Ratios for vortex

Slowdown for SPEC/go

0

1

2

3

4

5

6

7

8

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 17. Execution Time Slowdown Ratios for go

 11

Slowdown for SPEC/gcc

0

2

4

6

8

10

12

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 18. Execution Time Slowdown Ratios for gcc

Slowdown for PostgreSQL with Crashme
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

Figure 19. Execution Time Slowdown for PostgreSQL with
Crashme Benchmark

Appendix C
Based on the data presented in Section 5.3, we suspected that the
overhead for our dynamic code coverage system would be bursty
throughout a program’s execution. To investigate this hypothesis,
we added meta-instrumentation code to each basic block to record
the number of times instrumentation code is executed. This ap-
pendix presents the instrumentation code execution frequencies
for PostgreSQL using the Wisconsin and crashme benchmark
queries when instrumentation code is deleted every second.
Figure 20 shows the distribution of instrumentation code execu-
tions using bars and source code line coverage percentage using
lines for PostgreSQL running the Wisconsin benchmark. For the
bars, y-axis gives instrumentation code execution frequencies
(log10 scale). The y-axis for the continuous curve shows the
source code line coverage percentage of the program. Figure 20
shows that whenever the source code line coverage percentage
increases, there are executions of instrumentation code. Figure 20
also shows that during the intervals that source code line coverage
percentage remains steady, there is no instrumentation code exe-
cuted. When the program enters a new phase, instrumentation

code is executed for the first time. Shortly after the instrumenta-
tion code is executed, it is deleted and never executed during the
rest of that phase.

PostgreSQL with Wisconsin Benchmark

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80
Time Interval

Ex
ec

ut
io

n
Fr

eq
ue

nc
y

(lo
g 1

0 s
ca

le
)

0

4

8

12

16

20

C
ov

er
ag

e
Pe

rc
en

ta
ge

Figure 20. Instrumentation Code Execution Frequency and
Source Code Line Coverage Percentage for PostgreSQL with

Wisconsin Benchmark
Figure 21 shows the distribution of instrumentation code execu-
tions and source code line coverage percentage for PostgreSQL
with crashme benchmark. Like Figure 20, Figure 21 shows that
the instrumentation code executions occur at the intervals where
the source code line coverage percentage increases and during the
intervals coverage percentage remains steady there are no instru-
mentation code executions.

PostgreSQL with Crashme Benchmark

0

1

2

3

4

5

6

7

0 50 100 150 200 250

Time Interval

Ex
ec

ut
io

n
Fr

eq
ue

nc
y

(lo
g 1

0 s
ca

le
)

0

5

10

15

20

25

30

C
ov

er
ag

e
Pe

rc
en

ta
ge

Figure 21. Instrumentation Code Execution Frequency and
Source Code Line Coverage Percentage for PostgreSQL with

Crashme Benchmark
Unlike Figure 20, Figure 21 shows occasional bursts of instru-
mentation code execution during the middle section of program
execution (from 75 to 225 seconds). However these bursts do not
affect source code line coverage percentage significantly.

	INTRODUCTION
	OVERVIEW OF dyninst API
	USING DOMINATOR TREES
	Leaf Node Instrumentation
	Non-Leaf Node Instrumentation

	CODE COVERAGE ALGORITHM
	EXPERIMENTS AND RESULTS
	Reduction in Instrumentation Points
	Coverage Percentage Curves
	Execution Time
	Overall Slowdown

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	APPENDIX A
	APPENDIX B
	Appendix C

