Kepler: An Extensible System for Design and Execution of Scientific Workflows

Ilkay Altintas', Chad Berkley?, Efrat Jaeger', Matthew Jones®, Bertram Ludéscher', Steve Mock'
'San Diego Supercomputer Center (SDSC), University of California San Diego
*National Center for Ecological Analysis and Synthesis (NCEAS), University of California Santa Barbara
{berkley, jones}@nceas.ucsb.edu, {altintas, efrat, ludaesch, mock}@sdsc.edu

1. Background

Most scientists conduct analyses and run models in
several different software and hardware environments,
mentally coordinating the export and import of data from
one environment to another. The Kepler scientific
workflow system provides domain scientists with an easy-
to-use yet powerful system for capturing scientific
workflows (SWFs). SWFs are a formalization of the ad-
hoc process that a scientist may go through to get from
raw data to publishable results. Kepler attempts to
streamline the workflow creation and execution process
so that scientists can design, execute, monitor, re-run, and
communicate analytical procedures repeatedly with
minimal effort. Kepler is unique in that it seamlessly
combines high-level workflow design with execution and
runtime interaction, access to local and remote data, and
local and remote service invocation.

SWFs are superficially similar to business process
workflows but have several challenges not present in the
business workflow scenario. For example, they often
operate on large, complex and heterogeneous data, can be
computationally intensive and produce complex derived
data products that may be archived for use in re-
parameterized runs or other workflows. Moreover, unlike
business workflows, SWFs are often dataflow-oriented as
witnessed by a number of recent academic systems (e.g.,
DiscoveryNet, Taverna and Triana) and commercial
systems (Scitegic/Pipeline-Pilot, Inforsense). In a sense,
SWFs are often closer to signal-processing and data
streaming applications than they are to control-oriented
business workflow applications.

2. Ptolemy II Features

Kepler builds upon the mature, dataflow-oriented
Ptolemy II system (Ptolemy) [3]. Ptolemy focuses on
visual, module-oriented programming with an emphasis
on multiple component interaction semantics. Ptolemy
precisely controls the execution model of a workflow via
so-called directors. To the best of our knowledge,
Ptolemy is the only available system which allows one to
plug in different execution models into workflows.
Individual workflow steps are implemented as reusable
actors that can represent data sources, sinks, data
transformers, analytical steps, or arbitrary computational
steps. An actor can have multiple input and output ports,
through which streams of data tokens flow. Additionally,
actors may have parameters to define specific behavior.

Ptolemy can perform both design-time (static) and run-
time (dynamic) type checking on the workflow and data.
Kepler inherits and extends these advanced features from
Ptolemy, adding numerous new features for scientific
workflows.

3. Kepler Features

Using Kepler, scientists can capture workflows in a
format that can easily be exchanged, archived, versioned,
and executed. Both Kepler’s intuitive GUI (inherited from
Ptolemy) for design and execution, and its actor-oriented
modeling paradigm make it a very versatile tool for SWF
design, prototyping, execution, and reuse for both
workflow engineers and end users. Kepler workflows can
be exchanged in XML using Ptolemy’s own Modeling
Markup Language (MoML). Kepler actors run as local
Java threads by default (from Ptolemy), but are extended
to spawn distributed execution threads via web and Grid
services, as well as through Java’s foreign language
interface (Java Native Interface). Kepler currently
provides the following features:

Prototyping workflows: Kepler allows scientists to
prototype SWFs before implementing the actual code
needed for execution. Kepler’s design actor can be seen
as a “blank slate” which prompts the scientist for critical
information about an actor, e.g., the actor’s name, and
port information. Once the user has prototyped an actor in
this way, a corresponding stub is compiled at run-time
and added to the user’s library. The user can then use this
stub on the workflow canvas to prototype a workflow.

Distributed Execution (Web and Grid-Services):
Kepler’s web and Grid service actors allow scientists to
utilize computational resources on the net in a distributed
scientific workflow. Kepler’s generic WebService actor
provides the user with an interface to seamlessly plug in
and execute any WSDL-defined web service. For
conveniently plugging in a whole set of (possibly related)
services, a web service harvester has been developed. It
can be used to instantaneously import all web services
found on a web page or in a UDDI repository. In addition
to generic web services, Kepler also includes specialized
actors for executing jobs on the Grid, e.g., actors for
certificate-based authentication (Proxylnit), grid job
submission (GlobusJob), and Grid-based data access
(DataAccessWizard, GridFTP). Third-party data transfer
on the Grid can be established using the EcoGrid actor
with Ecological Metadata Language (EML) support or
through GridFTP and SRB (Storage Resource Broker).



Database Access and Querying: Kepler includes
database actors, e.g., DBConnect which emits a database
connection token (after user login) to be used by any
down-stream DBQuery actor that needs it.

Other Execution Environments: Supporting foreign
language interfaces via the Java Native Interface (JNI)
gives the user flexibility to reuse existing analysis
components and to target appropriate computational tools.
For example, Kepler (through Ptolemy) already includes a
Matlab actor and a Python actor. Further actors for
execution of SAS and R (S+) code will be added.

Other Features: Kepler includes a suite of data
transformation actors (XSLT, XQuery, Perl, etc.) for
linking semantically compatible but syntactically
incompatible web services together. Also included is the
Ecological Metadata Language (EML) ingestion actor to
access and download EML described sources. The EML
ingestion actor allows Kepler to import a multitude of
heterogeneous data, making it a very flexible tool for
scientists who often deal with many data and file formats.
The browserUI actor is used for injecting user control and
input, as well as output of legacy applications anywhere
in a workflow via the user’s web browser. The Kepler
SWFs can also be run in batch mode using Ptolemy’s
background execution feature. A feature to allow the user
to configure his/her own actor libraries via a web
interface is also being implemented.

Flo Vew Edt G

raph Debug Help
A =R EDTEES R EEC

Modal Classification for Naming
Rock

on Points from the
taba:

OpenDBConnection %0 and dasifes

Virginia Rock Dataset

Figure 1. An example Geoscience Workflow in Kepler

The Kepler scientific workflow system has been used
to design and execute various workflows in biology,
ecology, geology, astrophysics and chemistry; see Fig.1
for an example workflow for rock type classification.

4. Related Systems

Other scientific workflow environments include
academic systems, for example, SCIRun [7], Triana [8],
Taverna [9], and commercial systems (Scitegic/Pipeline-
Pilot, Inforsense). SCIRun has extensive support for
large-scale simulation and data visualization. SCIRun,

Triana, and Taverna are all based on a single dataflow
execution model, while Ptolemy/Kepler allows many.
Triana supports distributed execution and interfaces with
the Gridlab Application Toolkit. In Taverna, all
computational workflow steps are web services. The
system provides tools for web service harvesting and
execution and numerous other novel features, e.g.,
automated insertion of iterators.
5. Implementation Status and Next Steps

Kepler inherits many advanced features such as
variable (director-based) execution models, nested
workflows and the Vergil GUI from the underlying
Ptolemy system. Since Ptolemy is open source and comes
with excellent and comprehensive documentation, the
Kepler team [2] was able to add numerous novel features
within a relatively short period of time. The extensions
are driven by actual needs for scientific workflows [5] in
scientific application projects such as GEON [1], SEEK
[4], and SciDAC/SDM [10]. The source code is freely
available through the project site [2], and the first official
pre-release, packaged for end users is planned for May
2004. For additional information on Kepler see [6].

Acknowledgments.
Kepler includes contributors from SEEK [4], SDM Center
[10], Ptolemy II [3] and Geon [1]. Work supported by
NSF ITRs 022567 (SEEK), 0225673 (GEON), DOE DE-
FC02-01ER25486 (SciDAC/SDM), and DARPA F33615-
00-C-1703 (Ptolemy).

References
[1] GEON: Cyberinfrastructure for the Geosciences,
http://www.geongrid.org

[2] Kepler: An Extensible System for Scientific Workflows,
http://kepler.ecoinformatics.org

[3] Ptolemy 11, http://ptolemy.eecs.berkeley.edu/ptolemyll/

[4] SEEK: Science Environment for Ecological Knowledge,
http://seek.ecoinformatics.org

[5] L. Altintas et al., A Modeling and Execution Environment for
Distributed Scientific Workflows, SSDBM’03, MIT/Cambridge.

[6] L. Altintas, C. Berkley, E. Jacger, M. Jones, B. Ludédscher, S.
Mock, Kepler: Towards a Grid-Enabled System for Scientific
Workflows, Workflow in Grid Systems, GGF10, Berlin, 2004.

[7] SciRUN http://software.sci.utah.edu/scirun.html

[8] Triana http://www.triana.co.uk

[9] Taverna http://taverna.sourceforge.net
[10]SciDAC/SDM: Scientific Data Management Center,
http://sdm.1bl.gov/sdmcenter/



