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Abstract 
 

The Center for Plasma Edge Simulation (CPES) is a 
recently funded prototype Fusion Simulation Project, 
which is part of the DOE SciDAC program. Our center is 
developing a novel integrated predictive plasma edge 
simulation framework, which is applicable to existing 
magnetic fusion facilities (D3D, NSTX, CMOD) and next 
generation burning plasma experiments, e.g. ITER. The 
success of this project will be in developing and 
understanding new models for the plasma edge in a 
kinetic regime with complex geometry.  

Because of the multi-scale nature of the problem, we 
will study the neoclassical physics time scale kinetically, 
and the fast and larger scale MHD modes via a fluid 
code. Our approach is to couple these codes via a 
scientific workflow system, Kepler-HPC. Kepler-HPC will 
enhance Kepler with capabilities such as code coupling 
and data redistribution, high volume data transfers and 
interactive (and autonomic) monitoring, steering and 
debugging, which will be necessary for scientific progress 
in this project. 
 
1. Introduction 
 

We are starting to develop new integrated predictive 
plasma edge simulation code package, applicable for the 
plasma edge region relevant to both existing magnetic 
fusion facilities and next-generation burning plasma 
experiments, such as the International Thermonuclear 
Experimental Reactor (ITER). Timely progress in this 
formidable scientific challenge demands a well-
coordinated effort involving experts in the plasma 
science, computer science, and applied mathematics areas 
– a research approach at the heart of the SciDAC Program 
[SciDAC]. 

 The plasma edge includes the region from the top of 
the pedestal to the scrape-off layer and divertor region 
bounded by a material wall, see Figure 1. A multitude of 
non-equilibrium physical processes on different spatio-
temporal scales present in the edge region demands a 
large scale integrated simulation. The low collisionality 
of the pedestal plasma, magnetic X-point geometry, 
spatially sensitive velocity-hole boundary, non-
Maxwellian nature of the particle distribution function, 
and particle source from neutrals, combine to require the 
development of a special kinetic transport code, XGC-
NT, for kinetic transport physics, using a particle-in-cell 

(PIC) approach on a massively parallel computing 
platform. For the study of large scale MHD phenomena, 
we will use the M3D code, which is a code used in the 
CEMM SciDAC project [M3D]. However, the kinetic and 
MHD codes must be integrated together for a self-
consistent simulation as a whole.   

 
Figure 1. The plasma edge 
 
The management of scientific data and information in 

a fusion simulation project will be an essential factor for 
this project. We are developing Kepler-HPC, a set of 
specialized HPC extensions for the Kepler scientific 
workflow system [LAB+06], and use it to couple the 
kinetic code to the fluid code, and to manage the data 
between these codes, along with the monitoring system 
which we are building. The workflow system includes 
provisions of services for exploring, analyzing and 
visualizing data and extracting information and features.  

Achieving efficient, flexible and scalable coupling of 
physics models and parallel application codes 
investigated in this project presents significant 
algorithmic, numerical and computational challenges. 
From the computational point of view, the coupled 
simulations, each typically running on a distinct parallel 
system or set of processors with independent (and 
possibly dynamic) distributions, need to periodically 
exchange information 

Specifically, in this project, the kinetic code, XGC-
NT, runs efficiently on thousands of processors [XGC-1]. 
This code will be weakly coupled to an MHD code, M3D, 
which for the type of problems investigated in this 
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project, will run on 64-128 processors. Because of the 
nature of the weak coupling, the workflow system must 
support hybrid execution combining coarse grain 
parallelism (running M3D and XGC-NT simultaneously) 
and fine grain parallelism (running each code on MPP’s).  
When these codes are coupled, they will pass several 2D-
3D variables from one code to another.  The information 
exchange will take place about every 600 seconds, but the 
exchange should take less than one second. This 
constraint is due to the fact that the codes running on the 
separate platforms must be “in-synch” with one another. 

 The kinetic code in this project will run on 2048+ 
processors on the Cray XT3 at ORNL. This system is 
connected to a 40Gbit link to a 160 processor PIV 
infiniband cluster, as shown in Figure 4. A challenging 
issue with using this platform is that the XT3 
computational nodes do not allow users to run sockets or 
threads. This constraint can be addressed by first sending 
data from the computational nodes to the I/O nodes using 
PORTALS [PORTALS]. The I/O nodes can then 
communicate to the infiniband cluster.  

 
Figure 2. Network connectivity between the ORNL 

Cray's and our workflow cluster. 
Given these constraints, typically used file-based data 

movement is likely not a feasible solution and memory to 
memory data movement must be investigated. Key 
requirements include: (1) interaction/communication 
schedules between individual processors executing each 
of the coupled simulation codes need to be computed 
efficiently, locally, and on-the-fly, without requiring 
synchronizations or gathering global information, and 
without incurring significant overheads on the 
simulations themselves; and (2) data transfers should also 
be efficient and should happen directly between the 
individual processors of each simulations via the 
intermediate IO nodes. Furthermore, specifying these 
coupling behaviors between the simulations codes using 
popular message-passing abstractions can be cumbersome 
and often inefficient, as these systems require matching 
sends and receives to be explicitly defined for each 
interaction. As the individual simulations become larger, 
more dynamic and heterogeneous and their couplings 
more complex, implementations using message passing 
abstractions can quickly become unmanageable. Clearly, 
realizing coupled simulations requires an efficient, 
flexible and scalable coupling framework and simple 
high-level programming abstractions. 

The primary goal of our effort is to simplify and 
automate the scientific investigation processes for large 
scale parallel codes. The core research issues addressed 
include (1) dynamic coupling of constituent models and 
simulation codes, (2) adaptive and automated application 
workflows, (3) efficient and transparent access to and 
transport of distributed data, (4) data analysis and 
visualization, and (5) runtime monitoring and interactive 
and autonomic control. This research leverages 
technologies developed at the Fusion SciDAC’s, PPPL, 
the Center for Advanced Information Processing (CAIP), 
and the Scientific Data Management (SDM) Center 
[SDM] to develop and deploy a framework for adaptive 
and automated workflows and integrated data analysis 
and visualization. In this paper we describe some aspects 
of the underlying scientific workflow system that will be 
used in this project and provide an overview of the code 
coupling, data redistribution and data transfer components 
that are being developed in this project.  

 
2. The Kepler-HPC Workflow System 

Kepler [ABB+05, Kep05, LAB+06] is a scientific 
workflow system extending the underlying Ptolemy II 
system [BLL+04] for heterogeneous modeling and design 
with a number of extensions that are necessary in many 
scientific applications. Extensions often take the form of 
components called actors that are independent of each 
other and typically execute as independent threads or 
processes. Kepler actors support access to and transport 
of distributed data via SRB (Storage Resource Broker), 
SRM (Storage Resource Manager), gridFTP, Sabul, BCC, 
and local and remote execution of legacy applications 
(e.g. via a command-line/shell actor  or via web services). 
Moreover Kepler features a novel hybrid type system 
[BL05] that combines structural and semantic type 
information to facilitate scientific workflow design via 
controlled vocabularies and community ontologies:  
whenever datasets and computational components have 
corresponding rich metadata, Kepler can exploit this 
information during design and static analysis of a 
workflow.  

 

 
Figure 3. Actor communication in Kepler-HPC. 
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Kepler-HPC is a set of specialized extensions to 

Kepler to enable high-performance computing 
workflows, in particular, for interactive and autonomic 
monitoring, steering and debugging, of remote HPC 
applications. Like other scientific workflow systems, 
Kepler workflows naturally support task parallelism 
(parallel branches are executed concurrently), and data 
parallelism (provided the individual jobs or codes 



“inside” of actors exploit data parallelism). Unlike most 
other systems, Kepler also comes with “built-in” support 
for data streaming, due to the underlying workflow 
execution model for dataflow process networks [LP95]. 
This feature makes Kepler well-suited for high-end 
applications where file-based data transport might not be 
feasible. Actors are independent from one another, so that 
a data-consuming actor is decoupled from a data-
producing one (cf. Figure 2). The receiver is placed and 
controlled by an overall system component called 
“director” which can make use of specialized low-level 
communication channels such as sockets. Another feature 
of the Kepler-HPC architecture is that actors can be used 
to set-up, monitor, and steer remote HPC jobs.  Below, 
we show part of the workflow which we have been 
working on.  The major codes (XGC-NT, XGC-SOL) run 
on thousands of processors, and the M3D code will likely 
run on about 100+ processors. 

 

 
Figure 4. The XGC-M3D workflow 

 
3. Code Coupling 

In this project we are developing a coupling 
framework. The framework is based on the Seine 
geometry-based interaction model [ZP04], which is 
motivated by two observations about the targeted 
applications: (a) formulations of these scientific and 
engineering applications are based on multi-dimensional 
geometric discretizations of the problem domain (e.g., 
grid or mesh) and (b) couplings and interactions in these 
applications can be defined based on geometric relations 
in this discretization (e.g., intersecting or adjacent 
regions). Seine provides a geometry-based virtual shared 
space interaction abstraction. This abstraction derives 
from the tuple space model.  

However, instead of implementing a general and 
global interactions space (as in the tuple model), Seine 
presents an abstraction of transient geometry-based 
interaction spaces, each of which is localized to a sub-
region of the overall geometric domain. This allows the 
abstraction to be efficiently and scalability implemented 
and allows interactions to be decoupled at the application 
level. A Seine interaction space is defined to cover a 
closed region of the application domain described by an 
interval of coordinates in each dimension, and can be 

identified by any set of coordinates contained in the 
region. 
The architecture of the Seine geometry-based coupling 
framework is illustrated in Figure 5. It differs from 
existing approaches in several ways. First, it provides a 
simple but powerful abstraction for interaction and 
coupling in the form of the virtual geometry-based shared 
space. Processes register geometric regions of interest, 
and associatively read and write data associated with the 
registered region from/to the space in a decoupled 
manner. Second, it supports efficient local computation of 
communication schedules using lookups into directory 
implemented as a distributed hash table. The index space 
of the hash table is directly constructed from the 
geometry of the application using Hilbert space filling 
curves. Processes register their regions of interest with the 
directory layer, and the directory layer automatically 
computes communications schedules based on overlaps 
between the registered geometric regions. Registering 
processes do not need to know of or explicitly 
synchronize with other processes during registration and 
the computation of communication schedules. Finally, it 
supports efficient and low-overhead processor-to-
processor socket-based data streaming and adaptive 
buffer management. 
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Figure 5. Architecture of the Seine geometry based 
coupling/interaction framework. 
  

Data coupling in memory can be problematic in cases 
where the volume of data to be shared is too large. In 
such cases, data has to be moved partially to disk, and 
effective caching methods have to be deployed. A second, 
more compute intensive aspect of data coupling is the 
transformation required when output and input data 
formats do not match.  

In cases where the coupled component codes are not 
on the same system, data has to be moved from one 
system to another perhaps over a wide area network 
[Bhat04]. For example, the XGC and M3D codes 
currently require data volumes on the order of megabytes 
per minute to be streamed from the memory of one 
machine to the memory of another. As computational 
speeds increase, these volumes will increase significantly.  



The Seine model and the Seine-based coupling 
framework is designed to complement existing parallel 
programming models and can work in tandem with 
systems such as MPI, PVM and OpenMP. The design, 
implementation and experimental evaluation of a 
prototype implementation of the Seine based coupling 
framework based on the DoE Common Component 
Architecture (CCA) and enabling coupling within and 
across CCA-based simulations are presented in [ZP06].  
 
4. Runtime Monitoring via Workflows 

The scale, complexity and dynamism of these 
simulations coupled with similar scale and complexity of 
emerging parallel/distributed execution environments 
requires that these applications be accessed, monitored 
and controlled during their execution. This is necessary 
for us to ensure the correct and efficient execution of the 
simulations. Here, simulation component behaviors and 
their compositions can no longer be statically defined. 
Further, their performance characteristics can no longer 
be derived from a small synthetic run, as they depend on 
the state of the simulations and the underlying system. 
Algorithms that worked well at the beginning of the 
simulation may become suboptimal as the solution 
deviates from the space the algorithm was optimized for 
or as the execution context changes. This requirement 
presents a new set of deployment and runtime 
management challenges.  Further, as these simulations are 
long running and some, XGC-NT, will run as batch jobs, 
the monitoring and control activities must be automated 
based on user defined policies. 

We are investigating programming and runtime 
management solutions to support the development and 
deployment of applications that can be externally 
monitored and interactively or autonomically controlled. 
In particular, we are looking into programming and 
runtime systems that can support efficient and scalable 
implementations of our simulations. We are starting to 
design control networks to allow computational elements 
to be accessed and managed externally, both interactively 
and using automated policies, to support runtime 
monitoring, dynamic data injection and simulation 
control. Here, we are building on our current and prior 
research efforts and software projects including Accord 
[Liu06], and Discover [Liu05].  
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