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Abstract

Data-centric scientific workflows are often modeled as
dataflow process networks. The simplicity of the data-
flow framework facilitates workflow design, analysis, and
optimization. However, modeling “control-flow intensive”
tasks using dataflow constructs often leads to overly com-
plicated workflows that are hard to comprehend, reuse,
and maintain. We describe a generic framework, based
on scientific workflow templates and frames, for embed-
ding control-flow intensive subtasks within dataflow process
networks. This approach can seamlessly handle complex
control-flow without sacrificing the benefits of dataflow. We
illustrate our approach with a real-world scientific work-
flow from the astrophysics domain, requiring remote execu-
tion and file transfer in a semi-reliable environment. For
such workflows, we also describe a 3-layered architecture
based on frames and templates where the top-layer con-
sists of an overall dataflow process network, the second
layer consists of a tranducer template for modeling the de-
sired control-flow behavior, and the bottom layer consists
of frames inside the template that are specialized by embed-
ding the desired component implementation. Our approach
can enable scientific workflows that are more robust (fault-
tolerance strategies can be defined by control-flow driven
transducer templates) and at the same time more reusable,
since the embedding of frames and templates yields more
structured and modular workflow designs.

1 Introduction

Scientific workflow systems [21, 22, 23, 26] are increas-
ingly being used by scientists to construct and execute com-

plex scientific analyses. Such analyses are typically data-
centric and involve “gluing” together data retrieval, com-
putation, and visualization components into a single exe-
cutable analysis pipeline. The components may be part of
the workflow system, part of another application (invoked
through system calls, executing R or MATLAB scripts, etc.),
or even external, accessed via web or grid services. In ad-
dition to providing scientists with a mechanism to compose
and configure otherwise heterogeneous components, scien-
tific workflow systems aim to support end-to-end workflow
management,e.g., through tools for accessing external data
sources, archival of intermediate results, and monitoring of
workflow execution.

One common approach is to model scientific work-
flows as directed acyclic graphs (DAGs), where arcs denote
scheduling dependencies between computation tasks called
jobs[29, 7]. For example, scheduling these job-based work-
flows amounts to queueing and executing jobs based on the
partial order induced by the DAG. Alternatively, a number
of scientific workflow systems have adopted a more expres-
sive language for modeling scientific workflows based on
dataflow process networks[19, 15], a model of computa-
tion that comes with “built-in” support for stream-based and
concurrent execution.1

Dataflow is a natural paradigm for data-driven and data-
intensive scientific workflows such as,e.g., the terabyte-
sized Fusion Plasma Simulation [3] and the Terascale Su-
pernova Initiative [31]. Workflows expressed using data-
flow process networks can be efficiently analysed and
scheduled [17], and are also a simple and intuitive model
for workflow designers [4]. However, while dataflow has
become a standard model of scientific workflows, some

1Workflows modeled in this way are also not limited to DAGs,i.e., they
can contain loops.



amount of control-flow modeling is often necessary for en-
gineering fault-tolerant, robust, and adaptive workflows.
Here, control-flow refers to the use of constructs such as
branching via if-then-else and switch-case statements, and
iteration with multiple entry and exit points.

Another reason for the use of control-flow constructs
concerns the handling of complex data structures, often
found in scientific applications. In particular, workflows
must often “build in” support for accessing, combining, and
manipulating portions of these data structures explicitly.
Connecting independently created components (e.g., differ-
ent web-services or applications created by different organi-
zations) offers similar challenges, requiring additional sub-
processes to align component input and output data struc-
tures (schemas) [4]. These differences in structure can be
complex,e.g., involving different levels of representation
granularity and requiring structural transformations.

In this paper, we address the problem of combining data-
flow and control-flow for scientific workflows. It has been
noted [20] that modeling control-flow usingonly dataflow
constructs can quickly lead to overly complex workflows
that are hard to understand, reuse, reconfigure, maintain,
and schedule [17]. In particular, modeling control-flow
using dataflow involves inserting and linking various low-
level and specialized control components alongside data-
flow components, thus making it difficult to distinguish
control-flow from dataflow aspects (since they are “entan-
gled”).

The organization and contributions of the paper are as
follows: We describe a framework that “untangles” data-
flow and control-flow aspects and instead supports a struc-
tured embedding of control-intensive subtasks within data-
flow process networks (Section 2). Our approach is to
encapsulate generic behavioral specifications (i.e., control-
flow) in workflow templates. Templates are distinct and
separate components and thus can be easily reused in other
workflows. Templates are partial specifications and contain
“holes”, so-calledframes, that act as placeholders for in-
dependently defined subcomponents. Composing templates
with existing dataflow components results in applying the
associated behavior to the component in such a way that
the separation between control-flow and dataflow is main-
tained, thus allowing the underlying dataflow component to
be easily changed (typically through a configuration para-
meter of the template). This approach allows workflow de-
signers to change complex control-flow behavior by simply
using different templates. Our approach was inspired by
the notion of hierarchical finite state machines [11] and can
also be seen as an extension ofactor-oriented modeling[18]
with framesandtemplates(Figure 2).

In Section 3 we first present a specialized 3-layered ar-
chitecture of our framework. It allows the designer to se-
lect and reuse different control-flow intensive behaviors for

generic top-level components, by embedding inside of them
suitable transducer templates as the middle-layer. The con-
crete implementation of frames inside of transducer tem-
plates is independently selected via the bottom-layer.

We then describe a Generic Data Transfer (GDT) com-
ponent, which has been implementated on top of the open-
source KEPLER system [21], an extension of PTOLEMY II
[5] for scientific workflows. The GDT component was mo-
tivated by earlier work on a control-intensive astrophysics
workflow [31]. As shown in Figure 1, this workflow uses
dataflow constructs to implement a fault-tolerance scheme
(involving “retry”) for transfering files, resulting in a very
complex process network. In the new approach, the GDT
component encapsulates this and other transfer behaviors
as templates in which workflow designers can select from
a set of behaviors as well as the desired underlying trans-
fer protocols (e.g., scp , ftp , or using SRB [28]). Given
a particular behavior and protocol, the GDT automatically
composes these into the desired executable component. At
any time, the behavior and the underlying protocols can be
easily changed by simplyreconfiguringGDT. In the origi-
nal workflow this would be a complex and error-pronepro-
gramming task, involving the insertion, deletion, and re-
wiring of various control-flow and dataflow components.

In Section 3 we also describe a Generic remote eXecu-
tion (GX) component, whose middle-layer employs exactly
the same control-intensive behaviors (via transducer tem-
plates) as GDT to support fault-tolerance, demonstrating
the versatility of our approach and the improved component
reusability it creates.

Finally, we describe related work in Section 4 and con-
clude in Section 5.

2 Actor-Oriented Design Extensions

In KEPLER, users develop workflows by selecting ap-
propriate components calledactorsand placing them on a
design canvas, after which they can be “wired” together to
form the desired workflow graph (cf.Figure 1). Actors have
input and output ports which provide the communication
interface to other actors. Workflows can be hierarchically
structured, yieldingcomposite actorsthat encapsulate sub-
workflows (e.g., see the bottom-right in Figure 1). A novel
feature of KEPLER, inherited from PTOLEMY II, is that the
overall execution and component interaction semantics of a
workflow is not defined by the components, but is factored
out into a separate component called adirector. Taken to-
gether, workflows, actors, ports, connections, and directors
represent the basic building blocks ofactor-oriented mod-
eling and design[18].

In this section we define scientific workflows as data-
flow process networks and describe two extensions to actor-
oriented modeling,i.e., frames and templates. Frames form



Figure 1. Control-flow intensive astrophysics workflow in KEPLER [31]. “Retry”, a composite actor
for fault-tolerant data transfer (top), contains a subworkflow (bottom), which itself contains a “Con-
ditionalLoop” subworkflow (inside not shown). Complex feedback loops and the use of boolean
switches illustrate the complexity of modeling control-flow directly in a dataflow process network.

the basis of our approach for embedding control-flow inten-
sive behaviors (viaworkflow templates) inside of dataflow
process networks.

2.1 Scientific Workflows as Process Networks

An actor-orientedworkflow graphW = 〈A,D〉 consists
of a setA of actorsrepresenting components or tasks and
a set of directed dataflow connectionsD (see below), rep-
resenting communication channels that connect actors via
ports, and along which actors communicate by passingto-
kens.

Letports(A) denote the set ofportsof actorA. Each port
p ∈ ports(A) is designated as eitherinput or output. Some
input ports may be distinguished asparameterspars(A) ⊆
in(A) which can be used for configuringA’s behavior. For
convenience, we writeA.p to emphasize that portp belongs
to actorA. The signatureΣA of an actor is given by its
ports; we writeΣA = in(A) → out(A).

Actors are wired together through their ports via data-
flow connections. Adataflow connectiond ∈ D is a di-
rected hyperedged = 〈o, i〉, connectingn output ports
o = {o1, . . . , on} with m input portsi = {i1, . . . , im}. A

dataflow connectiond = 〈o, i〉 corresponds to amergestep
of output tokens fromo, followed by acopystep, delivering
all tokens to the input portsi.

A composite actorAW encapsulates asub-workflowW .
The (external) ports ofAW consist of a distinguished set of
ports fromW , i.e., AW might not expose all of its subwork-
flow’s ports. Ahierarchical workflowis a workflow graph
that contains at least one composite actor. Since subwork-
flows can themselves be hierarchical, any level of nesting
can be modeled.

A port p may have astructural data typeconstraining the
allowed set of values accepted byp (if p is an input port) or
produced byp (if p is an output port). The PTOLEMY II type
system includes simple types (e.g., string andint ) and
complex types (such as nestedrecord and list struc-
tures). A portp may also have asemantic type, denoting a
concept from a description logic ontology [4]. For example,
a semantic type is:

MEASUREMENTu ∀ITEM.SPECIESOCCURRENCE

indicating that the corresponding port accepts (or produces)
data tokens that denote measurements where the measured



item is a species occurrence (as opposed to,e.g., a temper-
ature). In addition to port semantic types, an actorA itself
may also be associated with a semantic type, describing the
overall function or purpose ofA.While structural (i.e., data)
type safety ensures that actors can “work with” incoming
data tokens at runtime, semantic type safety avoids actor
connections at design time that are not meaningful in terms
of their concept annotations (e.g., occurrence data cannot be
used where temperature data is expected).

So far, the execution semantics of a workflow graphW
has not been specified. Indeed, in PTOLEMY II and thus
in KEPLER, the workflow designer can choose among dif-
ferent models of computation, each one being represented
by a so-calleddirector. A director specifies and mediates
all inter-actor communication, separating workflow orches-
tration and scheduling (the director’s concern) from indi-
vidual actor execution (the actor’s concern). This separa-
tion achieves a form ofbehavioral polymorphism[18], re-
sulting in more reusable actor components and subwork-
flows. KEPLER (through PTOLEMY II) provides a variety
of directors that implement process network (PN and SDF),
discrete event (DE), continuous time (CT), and finite state
transducer (FST) semantics.

In PN, e.g., the director executes each actor in a work-
flow as a separate process (or thread). Connections (or
channels) are used to send (i.e., stream) sequences of data
tokens between actors, and actors map input sequences to
output sequences. Actors communicate asynchronously in
process networks through buffered channels implemented
as queues of effectively unbounded size. Thus, the PN di-
rector can be used to pipeline data tokens through scientific
workflows, enabling highly concurrent execution.

2.2 Frames

Actors in actor-oriented modeling and design are al-
ways concrete: they correspond to particular implemen-
tations and can be directly executed in a workflow. We
extend actor-oriented modeling with a new entity called
frame, which is an abstraction that denotes a set of alterna-
tive actor implementations (or templates) with similar, but
not necessarily identical functionality.2 For workflow de-
signers, frames are placeholders for components that will
be instantiated and specialized later. Thus, a designer can
place a frameF on the design canvas, and connect it with
other workflow components, without prematurely specify-
ing which componentC is to be used. For component de-
velopers, frames can be used as abstractions for a family of
components (actors or templates) with similar function.

Formally, a frame is a named entityF that acts as a

2Here the term frame symbolizes a notion akin to a picture frame—
allowing different “pictures” (i.e., components) so long as they conform to
the constraints imposed by the “frame.”
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Figure 2. a) Embedding of component C in
frame F; b) workflow template T(F 1,F2); c) fi-
nite state transducer template T(F).

placeholder for a componentC to be “plugged into”F (see
Figure 2 a). When devising a frameF , a family of compo-
nentsCF is envisioned, with eachC ∈ CF being a possible
alternative for embedding intoF . Like an actor, a frame has
input, output, and parameter ports, structural types, and se-
mantic types; taken together they form theframe signature
ΣF . This signature represents the common API of the fam-
ily CF of components thatF abstracts.

An embeddingF [C] of a componentC into a frameF is
a set of pairs associating (or “wiring”) ports ofC with ports
of F , i.e., F [C] ⊆ ports(F ) × ports(C). We indicate the
wiring type of a pair(x, y) ∈ F [C] as follows:

• F.x I C.y; if x ∈ in(F ), y ∈ in(C) (input)

• F.x J C.y; if x ∈ out(F ), y ∈ out(C) (output)

• F.x H C.y; if x ∈ pars(F ), y ∈ pars(C) (parameter)

The embedded componentC may also introduce new ports
not inports(F ). We denote these ports asBC.y, CC.y, and
OC.y for input, output, and parameter portsy, respectively.

Similarly, an embeddingF [C] may not use all the ports
of C. We denote these unused ports asF.xC, F.xB, and
F.xO for input, output, and parameter portsx, respectively.
We note that parameter portsF.x can also be connected to
input portsC.y and vice versa. However, other connection



types(x, y) ∈ F [C] are not allowed. Here we assume that
all the ports ofF are used in the embedding.

An embeddingF [C] is well-formedif the input and out-
put port directions are observed,i.e., F ’s inputs (outputs)
are wired only to inputs (outputs) ofC (Figure 2 a). A
well-formed embeddingF [C] is structurally well-typedif
the structural types align, andsemantically well-typedif the
semantic types align. We require for each connection be-
tween a port ofF and a port ofC having (structural or
semantic) typesτF and τC that: (1) τF � τC for input
structural types; (2)τC � τF for output structural types; (3)
τF v τC for input semantic types; and (4)τC v τF for out-
put semantic types.3 Thus, we use contra-variant subtyping
for both structural and semantic types: when embedding a
componentC in a frameF , C should be able to handleF ′s
inputs. Conversely,F should be able to handle outputs ofC
(or, equivalently,C should not produce output that is more
general than whatF anticipates). The signatureΣF [C] after
embeddingC in F includes (unless specified otherwise by
the designer) the ports ofF plus the new ports introduced
by C.

In some cases, the above typing rules can be “loosened”
when the frame occurs within a workflow. In particular, if
an input port ofF is connected to the output port of an actor
having a typeτA � τF (similarly, τA v τF ), then we only
require for a corresponding input port ofC that τA � τC

(similarly,τA v τC). Thus, it may be possibly thatτC ≺ τF

if τA ≺ τF (and similarly,τC @ τF if τA @ τF ). This
situation is only possible whenF has such a “context,”i.e.,
is part of a larger workflow.

When a workflow designer chooses a componentC to
embed within a frameF , we can use the port types ofC and
F to semi-automatically compute the appropriate connec-
tions forF [C]. A similar approach has been implemented
within KEPLER for validating that a workflow’s actor con-
nections are both structurally well-typed and semantically
meaningful [2]. In addition, component types can be used
to help workflow designers search repositories for plausible
components to be embedded within a given frame.4

Finally, we note that frames also provide a natural mech-
anism to execute a number of different actors associated
with the frame in parallel. For example, for a frame defin-
ing a certain type of clustering approach, a scientist may de-
sire to execute multiple specific algorithms associated with
the frame simultaneously over the same input data within
a workflow. Frames may similarly be embedded with ad-
ditional, generic capabilities in addition to their component
embeddings. For example, they may transparently apply
higher-order functions such asfoldl (foldr ), scanl

3“�” denotes the standard subtyping relation between data types, while
“v” denotes concept subsumption in description logics.

4Such a search is a particular form of semantic web-service “match-
making” [24].

(scanr ), zipWith , until , iterate , and so on to em-
bedded components, serving to reduce certain types of iter-
ation control-flow complexities.

2.3 Workflow Templates

A frame F imposes some constraints on the setCF

of components for which it stands. In particular, embed-
dingsF [C] should be well-formed and well-typed for any
C ∈ CF as explained above. However, no assumptions
can be made about the “inner workings” ofC. A workflow
templateT provides a similar level of abstraction for a set
of workflowsWT . Unlike a frame, however, a templateT
(partially) specifies the behavior of the workflows it repre-
sents.

Like actors and frames, a templateT has the usual port
signatureΣT : in(T ) → out(T ). In addition, a template
includes an “inner” workflow graphWT , where some of
the components ofWT are not concrete actors, but frames
(Figure 2 b). LetF1, . . . , Fn be the frames that occur in
WT , either directly, or indirectly through nested templates.
Then we can viewT as a partial workflow specification
T (F1, . . . , Fn), whose framesFi can be independently spe-
cialized by embedded components (actors or templates)Ci.
The resulting embeddingT (F1[C1], . . . , Fn[Cn]) is a con-
crete, executable workflow if noCi has itself a frame; oth-
erwise the embedding is a (more refined) template.

In addition to providing input/output constraints through
the port signatureΣT and behavioral constraints through
the workflow graph structureWT (with frames acting as
placeholders), a templateT can also constrain the intended
model(s) of computation by providing one or more direc-
tors: In Figure 2 c, atransducer templateT (F ) is shown.
This template includes a workflow graphWT with a frame
F . Moreover, an FST director is inscribed inT , meaning
that the workflow graph is to be executed as a finite state
transducer5. A director dictates the execution model of a
workflow graphWT (e.g., SDF or PN for synchronous data-
flow and process network execution, respectively; or here:
FST), and may also impose constraints on the graph struc-
ture. In the case of FST, nodes (components) are not called
actors butstates(depicted as circles in Figure 2 c); connec-
tions are called statetransitions(depicted as curved arcs).
In response to a state transition, the FST director calls a
state implementationif one has been associated with the
state [11, 18]. In our case, we can create a more generic
behavior for the finite state transducer by delaying the spec-
ification of a concrete actor to implement a state, and in-
stead introducing a frame. In this way the same control-
flow driven behavior can be reused with different underly-
ing state implementations.

5a kind of finite state machine that not only consumes input tokens but
that also produces output tokens
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3 Applying Templates and Frames for Data
Transfer and Remote Exection

Here we consider a particular design pattern6 for struc-
turing frames and templates into generic workflow compo-
nents that can be executed using alternative control behav-
iors and alternative task implementations. We define the
Generic Data Transfer (GDT) and Generic eXecution (GX)
components using this pattern. We also describe our imple-
mentation of the GDT and GX components within KEPLER.

3.1 A Generic Control-Flow Component Pattern

The generic control-flow component pattern consists of
three levels, as shown in Figure 3. The top level is rep-
resented as a frame within a dataflow graph and denotes a
particular task (e.g., data transfer or remote execution). This
top-level frame can be embedded with one of many finite
state transducer templates (the middle level), each of which
defines a control-flow behavior for the task. A transducer
template has one or morestate framesthat can be embedded
with a particular task implementation (e.g., scp or ssh ).
The various frame implementations form the bottom-level
of the pattern.

We use finite state transducers for modeling embedded
control-flow because they offer a more natural, intuitive,
and typically more succinct language for specifying con-
trol behavior, compared to dataflow process networks. Fi-

6similar in spirit to software design patterns [9]

nite state machines (or transducers) are often used to model
business workflows [1], which are primarily control-flow
oriented (as opposed to dataflow oriented), and underpin
many of the web-service orchestration languages [6].

We define a finite state transducer (FST) in the normal
way: An FST is a tupleM = 〈I, O,Q, q0, T 〉, whereI and
O are sets of input and output events, respectively,Q is a fi-
nite set of states,q0 is the initial state, andT is a finite set of

transitions, each of which has the formt : q
c/a−→ q′. Here,

c is an optionalconditionthat guards the transitiont (i.e., t
can only be executed ifc is true), anda is an optionalaction.
The FSTM starts in the initial state. WhenM is “called”
from the outside, it transitions from the current stateq to
the next stateq′, based on the current input eventsI and
the conditions of transitions emminating fromq. In addi-
tion, we consider FST states that can be associated with a
subworkflow (calledstate refinementsin PTOLEMY II [11]),
where the subworkflow is executed upon entry into the state.

Components that implement this generic control-flow
pattern enable workflow designers to easily configure both
the behavior and underlying implementation of the compo-
nent. A workflow designer can (i) insert into a workflow
the generic component (as shown at the top of Figure 3),
(ii) select a behavior from the available transducer templates
associated with the component, and (iii) select task imple-
mentations from those avilable for the state frames of the
template. The behaviors and implementations that a work-
flow designer selects from may originally be specified by
the component developer or can potentially be reused and
repurposed from other generic components.

3.2 Generic Components for Data Transfer and
Remote Execution

A common task in scientific workflows is data transfer
between hosts. Current solutions “hardwire” into the overall
workflow both the underlying transport protocol (e.g., scp )
and the dynamic behavior used to operate the protocol (e.g.,
reactions to exceptions and number of retries). For exam-
ple, the astrophyhsics workflow previously discussed (see
Figure 1) hardcodes the transfer of local simulation data
from one host to the host in which a particular analysis is
performed. Data transfer is also commonly performed in
scientific workflows to store and archive the results of an-
alytical processes, certain provenance information, and in-
termediate data products.

Data transfer using our framework can instead be spec-
ified as follows. The designer first selects the GDT com-
ponent whose signature specifies the common inputs and
outputs such as source and target hosts, file names and
locations, and user information. Using the GDT, the de-
signer can then select a transducer template with the de-
sired data-transfer behavior (e.g., from a library of prede-
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Figure 4. The Generic Data Transfer component (top left), its underlying modal model implementation
in KEPLER (top right), two compatible transducer templates (middle), and two possible embeddings
(bottom)

fined transducer templates). The designer may choose,e.g.,
a retry-failover template that: (1) attempts a trans-
fer protocolp1 up to n times, (2) if p1 is not successful,
attempts an alternative transfer protocolp2 up tom times,
and (3) if p2 also fails, reports a failure condition. Note
that n, m, p1, andp2 are configuration parameters of the
template wherep1 andp2 denote state-frame implementa-
tions. The designer can then select appropriate state-frame
implementations through the GDT. The designer might se-
lect, e.g., anscp state implementation forp1 and anftp
state implementation forp2. Finally, based on the signa-
tures and configured parameters of the GDT component,
retry-failover template, and the state implementa-
tions (scp andftp ), the proper embeddings are performed
resulting in a fully instantiated (i.e., “ground”) GDT com-
ponent that can then be executed from within the overall
workflow.

Using KEPLER we have implemented an initial version
of the GDT component, as shown in Figure 4. In this im-
plementation, the GDT component (top, left) is a special
actor (more precisely, an extension of a composite actor)
that provides necessary frame functions for supporting the
generic control-flow pattern. The GDT component contains

an intermediate subworkflow (upper-right). This subwork-
flow contains a “modal model” actor, which is required in
PTOLEMY II for nesting FSTs within dataflow process net-
works. This subworkflow also permits multiple executions
of the transducer template on each firing of the GDT com-
ponent.

Two transducer templates are shown in Figure 4 for the
GDT component. The selected template (middle, left) is
a simple retry loop, which executes the desired protocol
maxRetry times before entering a fail state. Note that
this template performs an equivalent function as the con-
trol components of Figure 1. The other template (middle,
right) of Figure 4 provides a simple fail-over behavior in
which an initial protocol is attempted, and if it fails, a fail-
over protocol is used. Finally,scp and SRBsput 7 state
implementations are shown at the bottom of Figure 4. In
the figure, thescp implementation has been selected, and
its signature propagated to the GDT component.

In our current implementation, all configuration includ-
ing the selection of templates and state implementations is
performed by assigning specific attributes of the GDT com-

7similar to theput operation offtp
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Figure 5. The Generic eXecution component (top left), its underlying modal model implementation
in KEPLER (top right), two compatible transducer templates (middle), and two possible embeddings
(bottom); note the templates are reused from the Generic Data Transfer component

ponent.8 For example, when a workflow designer config-
ures the GDT component, a dialog box is presented that
contains a drop-down list of available templates. Once a
template is selected, the user can also select an associated
state implementation (note that at anytime after selecting a
template it can be navigated to within the KEPLER GUI).
The GDT actor reacts to these attribute changes dynami-
cally, assigning the transducer to the modal model, refining
the appropriate transducer states, and making the appropri-
ate port connections. A workflow designer can also eas-
ily reconfigurethe GDT component by assigning different
templates or state implementations (in contrast,e.g., to the
workflow of Figure 1).

Finally, in addition to the GDT component, we have
also implemented the Generic eXecution (GX) component,
shown in Figure 5. The GX component is similar to the
GDT component, but is tailored for remote execution (e.g.,
ssh ) as opposed to file transfer. The GX component, how-
ever, can directly reuse the control-flow templates defined
for the GDT component (middle of Figure 5). The ability to
reuse control-flow in this way is a significant advantage of
this approach. Indeed, the ability to reuse both control-flow
and dataflow components via templates and frames can lead
to more robust, intuitive, and ultimately reusable scientific
workflows.

8In PTOLEMY II, andattribute is a static property.

4 Related Work

Scientific workflow systems [26, 23, 21, 22] are often
based on a dataflow model, due to the data-centric and
data-driven nature of many scientific analyses. In con-
trast, business workflow systems [1], workflow-patterns ap-
proaches [30], and systems for web-service composition
(e.g., BPEL4WS [6] and OWL-S [24]) often use control-
based models such as finite state machines or Petri nets as
their primary model of computation. Few systems seam-
lessly integrate both control-flowanddataflow within a sin-
gle model. Our approach for embedding control-flow into
dataflow was inspired by hierarchical finite state machines
[11] in PTOLEMY II and more generally, PTOLEMY ’s abil-
ity to nest heterogeneous compution models [18, 5]. The
notion of templates and frames offer novel extensions to
existing semantic web-service frameworks [24, 26] and
composition approaches [1, 14], and are inspired by exist-
ing approaches in conceptual business workflow modeling
[27, 10, 25] and software engineering [9].

The need for adaptive and reusable workflows has been
an active research issue in business workflow systems since
the late 90’s [13]. To achieve adaptability, [16] proposed
decoupling of conceptual workflow specifications (WSFL)
from the individual tasks (TSL) that make up a workflow.
In this work, control flow within a task (task execution be-



havior) is modeled by a generic state transition diagram.
More recently, web-service composition [14] approaches
have applied similar techniques, supporting separate inter-
face declarations from underlying control-flow models. In
CMI [27, 25], task execution behavior is further enhanced
by introducing state hierarchy, application specific states,
and operations. This approach resulted in two advanced
activity modeling concepts in CMI called “service” and
“placeholder” activities. Service activities provide an ab-
straction for complex coordination with external entities
and placeholder activities provide a mechanism for dynamic
binding to an activity implementation. The main contribu-
tion of CMI’s service activity is its ability to separate the
service interface declaration from its concrete implemen-
tation. Each service interface declaration has an associ-
ated state machine that is used as a guide for matching to
a compatible concrete implementation. CMI’s placeholder
activity further restricts binding of services based on user-
defined policies and criteria. This feature is critical in im-
plementing complex control flow without having to exhaus-
tively list all the potential activities within a process. The
use of service and placeholder activities has enabled the
construction of a complex and adaptive workflow at a much
faster pace as demonstrated in [25]. Frames and templates
are related to placeholders and services, respectively, how-
ever, our model is more powerful in that it allows arbitrary
nesting of frames and templates as well as hierarchal com-
position of different execution behavior (i.e., both control
and dataflow).

In general, our approach extends KEPLER and
PTOLEMY by providing higher-level configuration mech-
anisms through frames and templates. While PTOLEMY

provides a number of base capabilities that make workflow
specification easier—including the notion of actor-oriented
modeling, domain polymorphism [8, 5], and composite
actors—the task of replacing a component with a similar
component can be a daunting task, especially for scientific
workflows with control-flow aspects, making this type of
reusability even more challenging (see Figure 1). Our ap-
proach can significantly reduce this effort, and provides a
more conceptual set of primitives for modeling workflows,
e.g., by allowing certain decisions on particular implemen-
tations to be defered including the control-flow and dataflow
behavior.

The development of “rigid” workflow modeling and de-
sign frameworks have recently been identified as a ma-
jor bottleneck for scientific workflow reuse and repurpos-
ing (i.e., reconfiguring existing workflows for new pur-
poses) [12]. New design primitives such as templates and
frames can significantly enhance reusability in scientific
workflows. Moreover, the use of frames and templates to-
gether with semantic types also yields improved discovery
mechanisms for scientific workflow repositories and can en-

able more automated approaches for supporting workflow
reusability.

5 Concluding Remarks

While scientific workflows are primarily dataflow-
oriented, certain workflow tasks can be control-intensive,
e.g., procedures for providing fault-tolerant and adaptive
distributed data transfer. Modeling these tasks directly
using dataflow constructs can lead to workflows that are
overly complex and difficult to maintain and reuse. In
this paper, we have described a framework to support the
structured embedding of generic control-flow components
within dataflow process networks. In particular, we have
introduced (actor)frames and (workflow) templatesand
shown how they can be used to develop robust workflows
via reusable control-intensive subtasks. We have also de-
scribed a simple three-layer architecture pattern that we
have found useful in practice for modeling certain control-
flow behavior, where (1) a high-level frame defines a cer-
tain generic type of procedure (such as data transfer); (2)
the high-level frame can be embedded with one of many
transducer templates, encapsulating a particular “strategy”
of control-flow (e.g., “retry”); and (3) each transducer tem-
plate consists of one or more frames that can be embedded
with the particular task implementations for carrying out the
high-level procedure (e.g., secure-copy).

As future work, we intend to extend our prototype of the
generic data transfer and remote execution components in
a number of ways. First, we want to fully integrate frames
and templates as first-class modeling constructs within KE-
PLER. We also intend to develop additional transducer tem-
plates and lower-level implementation components for data
transfer and remote execution, based on the needs of the
workflow of Figure 1. Another goal is to populate KEPLER

with new generic components, including both frames and
templates, to support a wide range of scientific workflows.
Finally, we want to explore mechansisms for easily com-
bining transducer templates (in addition to dataflow tem-
plates). For example, we want to allow a workflow engineer
to select two or more existing templates and easily combine
them to dynamically create a new, more complex template
further enabling reuse of scientific workflows.
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