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Abstract plex scientific analyses. Such analyses are typically data-
centric and involve “gluing” together data retrieval, com-
Data-centric scientific workflows are often modeled as putation, and visualization components into a single exe-
dataflow process networks. The simplicity of the data- cutable analysis pipeline. The components may be part of
flow framework facilitates workflow design, analysis, and the workflow system, part of another application (invoked
optimization. However, modeling “control-flow intensive” through system calls, executing R omlVLAB scripts, etc.),
tasks using dataflow constructs often leads to overly com-or even external, accessed via web or grid services. In ad-
plicated workflows that are hard to comprehend, reuse, dition to providing scientists with a mechanism to compose
and maintain. We describe a generic framework, basedand configure otherwise heterogeneous components, scien-
on scientific workflow templates and frames, for embed- tific workflow systems aim to support end-to-end workflow
ding control-flow intensive subtasks within dataflow process managemeng.g, through tools for accessing external data
networks. This approach can seamlessly handle complexsources, archival of intermediate results, and monitoring of
control-flow without sacrificing the benefits of dataflow. We workflow execution.
illustrate our approach with a real-world scientific work- One common approach is to model scientific work-
flow from the astrophysics domain, requiring remote execu- flows as directed acyclic graphs (DAGs), where arcs denote
tion and file transfer in a semi-reliable environment. For scheduling dependencies between computation tasks called
such workflows, we also describe a 3-layered architecture jobs[29,[7]. For example, scheduling these job-based work-
based on frames and templates where the top-layer con-flows amounts to queueing and executing jobs based on the
sists of an overall dataflow process network, the secondpartial order induced by the DAG. Alternatively, a number
layer consists of a tranducer template for modeling the de- of scientific workflow systems have adopted a more expres-
sired control-flow behavior, and the bottom layer consists sive language for modeling scientific workflows based on
of frames inside the template that are specialized by embed-dataflow process networ&9, [15], a model of computa-
ding the desired component implementation. Our approachtion that comes with “built-in” support for stream-based and
can enable scientific workflows that are more robust (fault- concurrent executidf.
tolerance strategies can be defined by control-flow driven  pataflow is a natural paradigm for data-driven and data-
transducer templates) and at the same time more reusablejntensive scientific workflows such as,g, the terabyte-
since the embedding of frames and templates yields moresized Fusion Plasma Simulatidri [3] and the Terascale Su-
structured and modular workflow designs. pernova Initiative [[31]. Workflows expressed using data-
flow process networks can be efficiently analysed and
scheduled([17], and are also a simple and intuitive model
1 Introduction for workflow designers[[4]. However, while dataflow has
become a standard model of scientific workflows, some

. Scier_ltific workflow _SySt_emS [21. 22, 23.126] are increas-  1yorkflows modeled in this way are also not limited to DAG, they
ingly being used by scientists to construct and execute com-can contain loops.



amount of control-flow modeling is often necessary for en- generic top-level components, by embedding inside of them
gineering fault-tolerant, robust, and adaptive workflows. suitable transducer templates as the middle-layer. The con-
Here, control-flow refers to the use of constructs such ascrete implementation of frames inside of transducer tem-
branching via if-then-else and switch-case statements, andlates is independently selected via the bottom-layer.
iteration with multiple entry and exit points. We then describe a Generic Data Transfer (GDT) com-

Another reason for the use of control-flow constructs ponent, which has been implementated on top of the open-
concerns the handling of complex data structures, oftensource KEPLER system[[21], an extension offBLEMY I
found in scientific applications. In particular, workflows [5] for scientific workflows. The GDT component was mo-
must often “build in” support for accessing, combining, and tivated by earlier work on a control-intensive astrophysics
manipulating portions of these data structures explicitly. workflow [31]. As shown in Figur¢]1, this workflow uses
Connecting independently created componeats, differ- dataflow constructs to implement a fault-tolerance scheme
ent web-services or applications created by different organi-(involving “retry”) for transfering files, resulting in a very
zations) offers similar challenges, requiring additional sub- complex process network. In the new approach, the GDT
processes to align component input and output data struccomponent encapsulates this and other transfer behaviors
tures (schemas)[4]. These differences in structure can beas templates in which workflow designers can select from
complex, e.g, involving different levels of representation @ set of behaviors as well as the desired underlying trans-
granularity and requiring structural transformations. fer protocols €.g, scp, ftp , or using SRBI[28]). Given

In this paper, we address the problem of combining data-2 particular behayior and pro_tocol, the GDT automatically
flow and control-flow for scientific workflows. It has been COMposes these into the desired executable component. At
noted [20] that modeling control-flow usiranly dataflow ~ @ny time, the behavior and the underlying protocols can be
constructs can quickly lead to overly complex workflows €asily changed by simplseconfiguringGDT. In the origi-
that are hard to understand, reuse, reconfigure, maintain@l workflow this would be a complex and error-prqpe-
and schedule[[17]. In particular, modeling control-flow 9ramming taskinvolving the insertion, deletion, and re-
using dataflow involves inserting and linking various low- Wiring of various control-flow and dataflow components.
level and specialized control components alongside data- N SectiorlB we also describe a Generic remote eXecu-
flow components, thus making it difficult to distinguish tion (GX) component, whose middle-layer employs exactly

control-flow from dataflow aspects (since they are “entan- the same control-intensive behaviors (via transducer tem-
gled”). plates) as GDT to support fault-tolerance, demonstrating

The organization and contributions of the paper are asthe versatility of our approach and the improved component

follows: We describe a framework that “untangles” data- reus_ab lity it creates_. .
flow and control-flow aspects and instead supports a struc- Flnglly, we describe related work in Section 4 and con-
tured embedding of control-intensive subtasks within data- clude in Sectioftls.
flow process networks (Sectigy 2). Our approach is to
encapsulate generic behavioral specificatioms control- 2 Actor-Oriented Design Extensions
flow) in workflow templates Templates are distinct and
separate components and thus can be easily reused in other |n KepLER, users develop workflows by selecting ap-
workflows. Templates are partial specifications and containpropriate components calletttorsand placing them on a
“holes”, so-calledframes that act as placeholders for in-  design canvas, after which they can be “wired” together to
dependently defined subcomponents. Composing templategorm the desired workflow graplef, Figurg1). Actors have
with existing dataflow components results in applying the input and output ports which provide the communication
associated behavior to the component in such a way thafnterface to other actors. Workflows can be hierarchically
the separation between control-flow and dataflow is main- structured, yieldinggomposite actorshat encapsulate sub-
tained, thus allowing the underlying dataflow component to workflows (.g, see the bottom-right in Figufé 1). A novel
be easily changed (typically through a configuration para- feature of KEPLER inherited from ROLEMY lI, is that the
meter of the template). This approach allows workflow de- overall execution and component interaction semantics of a
signers to change complex control-flow behavior by simply workflow is not defined by the components, but is factored
using different templates. Our approach was inspired by out into a separate component calledigector. Taken to-
the notion of hierarchical finite state machines/[11] and can gether, workflows, actors, ports, connections, and directors
also be seen as an extensiorofor-oriented modelinflL8] represent the basic building blocks axtor-oriented mod-
with framesandtemplategFigure[2). eling and desigifiL8].

In Sectior 8 we first present a specialized 3-layered ar-  In this section we define scientific workflows as data-
chitecture of our framework. It allows the designer to se- flow process networks and describe two extensions to actor-
lect and reuse different control-flow intensive behaviors for oriented modelingi,e., frames and templates. Frames form
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Figure 1. Control-flow intensive astrophysics workflow in KEPLER [31]. “Retry”, a composite actor

for fault-tolerant data transfer (top), contains a subworkflow (bottom), which itself contains a “Con-
ditionalLoop” subworkflow (inside not shown). Complex feedback loops and the use of boolean
switches illustrate the complexity of modeling control-flow directly in a dataflow process network.

the basis of our approach for embedding control-flow inten- dataflow connectiod = (o, i) corresponds to mergestep
sive behaviors (viavorkflow templatésinside of dataflow  of output tokens frone, followed by acopystep, delivering

process networks. all tokens to the input portis
A composite actory, encapsulates sub-workflowil.
2.1 Scientific Workflows as Process Networks The (external) ports afly consist of a distinguished set of

ports fromWV, i.e., Ay, might not expose all of its subwork-
An actor-orientedvorkflow graphiV = (A, D) consists ~ flow’s ports. Ahierarchical workflowis a workflow graph
of a setA of actorsrepresenting components or tasks and that contains at least one composite actor. Since subwork-
a set of directed dataflow connectiobs(see below), rep-  flows can themselves be hierarchical, any level of nesting
resenting communication channels that connect actors viacan be modeled.
ports, and along which actors communicate by pasting A portp may have a&tructural data typeonstraining the
kens allowed set of values accepted byif p is an input port) or
Letports(A) denote the set gfortsof actorA. Each port produced by (if p is an output port). The FOLEMY Il type
p € ports(A) is designated as eith@rput or output Some system includes simple types.§, string andint ) and
input ports may be distinguished parametersgars(A) C complex types (such as nesteztord andlist  struc-
in(A) which can be used for configuring's behavior. For  tures). A portp may also have aemantic typedenoting a
convenience, we writd.p to emphasize that poptbelongs concept from a description logic ontology [4]. For example,
to actorA. ThesignatureX 4 of an actor is given by its  a semantic type is:
ports; we writeX 4 = in(A) — out(A).
Actors are wired together through their ports via data- MEASUREMENTI VITEM.SPECIESOCCURRENCE
flow connections. Adataflow connectior € D is a di-
rected hyperedged = (o,i), connectingn output ports indicating that the corresponding port accepts (or produces)
o ={o01,...,0,} With m input portsi = {i1,...,im}. A data tokens that denote measurements where the measured



item is a species occurrence (as opposeeé.m, a temper- Y '

ature). In addition to port semantic types, an actdtself pLF v v 13
may also be associated with a semantic type, describing the - o P .
overall function or purpose of.While structural i e., data) bl > NS
type safety ensures that actors can “work with” incoming

data tokens at runtime, semantic type safety avoids actor a). Embedding F[C]

connections at design time that are not meaningful in terms
of their concept annotations.@, occurrence data cannot be
used where temperature data is expected).

So far, the execution semantics of a workflow graph
has not been specified. Indeed, imdREMY Il and thus
in KEPLER, the workflow designer can choose among dif-
ferent models of computation, each one being represented b). Workflow Template T(F1,F2)
by a so-calleddirector. A director specifies and mediates

all inter-actor communication, separating workflow orches- ¥ T
tration and scheduling (the director’'s concern) from indi- el ! . t3
vidual actor execution (the actor’s concern). This separa- ’

tion achieves a form dbehavioral polymorphisriiLg], re- IEI t2 .‘

sulting in more reusable actor components and subwork-
flows. KEePLER (through FroLEMY IlI) provides a variety c). Transducer Template T(F)
of directors that implement process network (PN and SDF),
discrete event (DE), cont_inuous time (CT), and finite state Figure 2. a) Embedding of component C in
transducer (FST) semantics. _ frame F; b) workflow template T(F 1,F,); c) fi-

In PN, e.g, the director executes each actor in a_work- nite state transducer template T(F).
flow as a separate process (or thread). Connections (or
channel} are used to send.€., stream) sequences of data
tokens between actors, and actors map input sequences to
output sequences. Actors communicate asynchronously irplaceholder for a componegtto be “plugged into’F (see
process networks through buffered channels implementedFigure]2 a). When devising a franig a family of compo-
as queues of effectively unbounded size. Thus, the PN di-nentsCr is envisioned, with eacti' € Cr being a possible
rector can be used to pipeline data tokens through scientificalternative for embedding intB. Like an actor, a frame has

workflows, enabling highly concurrent execution. input, output, and parameter ports, structural types, and se-
mantic types; taken together they form fineme signature
2.2  Frames Y . This signature represents the common API of the fam-

ily Cr of components thak’ abstracts.

Actors in actor-oriented modeling and design are al- AN embedding”[C] of a component’ into a framer” is

ways concrete they correspond to particular implemen- & Set Of pairs associating (or “wiring”) ports 6fwith ports
tations and can be directly executed in a workflow. We Of, F e, F[C) PortS(F) x ports(C). We indicate the
extend actor-oriented modeling with a new entity called Wiring type of a pairz, y) € F[C] as follows:
frame which is an abstraction that denotes a set of alterna-
tive actor implementations (or templates) with similar, but
not necessarily identical functionalffy.For workflow de-
signers, frames are placeholders for components that will
be instantiated and specialized later. Thus, a designer can o .y C.y; if z € pars(F), y € pars(C) (paramete)
place a frameF on the design canvas, and connect it with
other workflow components, without prematurely specify- The embedded componefitmay also introduce new ports
ing which componen€' is to be used. For component de- notinports(F). We denote these ports a€”.y, <iC.y, and
Velopers, frames can be used as abstractions for a famlly Ovay for input, output, and parameter pog;srespectivew_
components (actors or templates) with similar function. Similarly, an embedding”[C] may not use all the ports
Formally, a frame is a named entity that acts as a  of ¢'. We denote these unused portsfas<, F.zr>, and
2Here the term frame symbolizes a notion akin to a picture frame— F.zv forinput, output, and parameter postsrespectively.
allowing different “pictures” e, components) so long as they conformto VW€ note that parameter pott$x can also be connected to
the constraints imposed by the “frame.” input portsC.y and vice versa. However, other connection

o Faw Cuy;ifx €in(F),y €in(C) (input)

o F.x 4Cuy;if x € out(F),y € out(C) (outpu)




types(x,y) € F[C] are not allowed. Here we assume that (scanr ), zipWith ,until ,iterate ,andsoontoem-

all the ports ofF' are used in the embedding. bedded components, serving to reduce certain types of iter-
An embeddingF'[C] is well-formedif the input and out-  ation control-flow complexities.

put port directions are observeidk., F’s inputs (outputs)

are wired only to inputs (outputs) af' (Figure[2a). A 2.3 Workflow Templates

well-formed embeddind”[C] is structurally well-typedif

the structural types align, asgmantically well-typed the A frame I imposes some constraints on the €&t

semantic types align. We require for each connection be-of components for which it stands. In particular, embed-

tween a port off” and a port ofC' having (structural or  dings F[C] should be well-formed and well-typed for any

semantic) typesy and7c that: (1)7p =< 7c forinput ¢ ¢ Cr as explained above. However, no assumptions

structural types; (2jc < 7 for output structural types; (3)  can be made about the “inner workings"@f A workflow

7r £ 7¢ forinput semantic types; and (4 C 7 forout-  templatel” provides a similar level of abstraction for a set

put semantic typeg& Thus, we use contra-variant subtyping of workflows W Unlike a frame, however, a templafe

for both structural and semantic types: when embedding a(partially) specifies the behavior of the workflows it repre-

component’ in a frameF, C should be able to handlg's sents.

inputs. Conversely’ should be able to handle outputs@f Like actors and frames, a templdfehas the usual port
(or, equivalentlyC’ should not produce output that is more  signatureX; : in(T) — out(T). In addition, a template
general than what’ anticipates). The signatuber () after  includes an “inner” workflow graphV;-, where some of

embedding” in F" includes (unless specified otherwise by the components off’ are not concrete actors, but frames
the designer) the ports df plus the new ports introduced  (Figure[2 b). LetF, ..., F, be the frames that occur in

by C. W, either directly, or indirectly through nested templates.
In some cases, the above typing rules can be “loosened"Then we can viewl’ as a partial workflow specification
when the frame occurs within a workflow. In particular, if T(Fy, ..., F,), whose frame#; can be independently spe-
an input port ofF" is connected to the output port of an actor cialized by embedded components (actors or templétges)
having a typery < 7 (similarly, 74 C 7r), then we only  The resulting embedding(F[C1], ..., F,[C,]) is a con-
require for a corresponding input port 6fthatT4 < 7¢ crete, executable workflow if n6; has itself a frame; oth-
(similarly, 74 C 7¢). Thus, it may be possibly that < 77 erwise the embedding is a (more refined) template.
if 74 < 77 (and similarly,7c C 77 if 74 T 7p). This In addition to providing input/output constraints through
situation is only possible whef has such a “contextj’e., the port signaturésr and behavioral constraints through
is part of a larger workflow. the workflow graph structur&/’; (with frames acting as

When a workflow designer chooses a compongrb placeholders), a templafe can also constrain the intended
embed within a framé’, we can use the port types©fand model(s) of computation by providing one or more direc-
F' to semi-automatically compute the appropriate connec-tors: In Figure[p c, dransducer templatd’(F') is shown.
tions for F'[C]. A similar approach has been implemented This template includes a workflow grapti; with a frame
within KEPLER for validating that a workflow’s actor con- F. Moreover, an FST director is inscribed Ty meaning
nections are both structurally well-typed and semantically that the workflow graph is to be executed as a finite state
meaningful [2]. In addition, component types can be used transduc& A director dictates the execution model of a
to help workflow designers search repositories for plausible workflow graphi¥r (e.g, SDF or PN for synchronous data-
components to be embedded within a given fr&]ne. flow and process network execution, respectively; or here:

Finally, we note that frames also provide a natural mech- FST), and may also impose constraints on the graph struc-
anism to execute a number of different actors associatedure. In the case of FST, nodes (components) are not called
with the frame in parallel. For example, for a frame defin- actors bustates(depicted as circles in Figufé 2 c); connec-
ing a certain type of clustering approach, a scientist may de-tions are called statansitions(depicted as curved arcs).
sire to execute multiple specific algorithms associated with In response to a state transition, the FST director calls a
the frame simultaneously over the same input data within State implementatioif one has been associated with the
a workflow. Frames may similarly be embedded with ad- state [11/ 18]. In our case, we can create a more generic
ditional, generic capabilities in addition to their component behavior for the finite state transducer by delaying the spec-
embeddings. For example, they may transparently applyification of a concrete actor to implement a state, and in-
higher-order functions such dsldl  (foldr ), scanl stead introducing a frame. In this way the same control-
flow driven behavior can be reused with different underly-

3“<” denotes the standard subtyping relation between data types, while ing state implementations.
“CC" denotes concept subsumption in description logics.

4Such a search is a particular form of semantic web-service “match-  5a kind of finite state machine that not only consumes input tokens but
making” [24]. that also produces output tokens
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3 Applying Templates and Frames for Data
Transfer and Remote Exection

Here we consider a particular design pa@a‘m struc-
turing frames and templates into generic workflow compo-

nents that can be executed using alternative control behav
iors and alternative task implementations. We define the

Generic Data Transfer (GDT) and Generic eXecution (GX)

nite state machines (or transducers) are often used to model
business workflows [1], which are primarily control-flow
oriented (as opposed to dataflow oriented), and underpin
many of the web-service orchestration languages [6].

We define a finite state transducer (FST) in the normal
way: An FST is atupleVl = (1,0, Q, g0, T), wherel and
O are sets of input and output events, respectivglig a fi-
nite set of stategy is the initial state, and’ is a finite set of

c/a
—

transitions, each of which has the form ¢ q'. Here,
c is an optionakonditionthat guards the transition(i.e., ¢
can only be executed fis true), and: is an optionahction
The FSTM starts in the initial state. Whel is “called”
from the outside, it transitions from the current stato
the next state/, based on the current input everdtand
the conditions of transitions emminating fram In addi-
tion, we consider FST states that can be associated with a
subworkflow (calledtate refinemenia PToLEMY 1 [L1]),
where the subworkflow is executed upon entry into the state.
Components that implement this generic control-flow
pattern enable workflow designers to easily configure both
the behavior and underlying implementation of the compo-
nent. A workflow designer can (i) insert into a workflow
the generic component (as shown at the top of Figlre 3),
(ii) select a behavior from the available transducer templates
associated with the component, and (iii) select task imple-
mentations from those avilable for the state frames of the
template. The behaviors and implementations that a work-
flow designer selects from may originally be specified by
the component developer or can potentially be reused and
repurposed from other generic components.

components using this pattern. We also describe our imple-3-2  Generic Components for Data Transfer and

mentation of the GDT and GX components withig ®LER
3.1 A Generic Control-Flow Component Pattern

The generic control-flow component pattern consists o

three levels, as shown in Figur¢ 3. The top level is rep-

resented as a frame within a dataflow graph and denotes
particular taské€.g, data transfer or remote execution). This

top-level frame can be embedded with one of many finite . ) . S
hfrom one host to the host in which a particular analysis is

state transducer templates (the middle level), each of whic

defines a control-flow behavior for the task. A transducer ¥~ "™ .
d scientific workflows to store and archive the results of an-

template has one or mosgate framesghat can be embedde
with a particular task implementatioe., scp or ssh).
The various frame implementations form the bottom-level
of the pattern.

We use finite state transducers for modeling embedded

control-flow because they offer a more natural, intuitive,
and typically more succinct language for specifying con-

trol behavior, compared to dataflow process networks. Fi-

Ssimilar in spirit to software design patterfis [9]

Remote Execution

A common task in scientific workflows is data transfer
between hosts. Current solutions “hardwire” into the overall

f workflow both the underlying transport protoceld, scp )

and the dynamic behavior used to operate the protecg) (

éeactions to exceptions and number of retries). For exam-

ple, the astrophyhsics workflow previously discussed (see
Figure[1) hardcodes the transfer of local simulation data

performed. Data transfer is also commonly performed in

alytical processes, certain provenance information, and in-
termediate data products.

Data transfer using our framework can instead be spec-
ified as follows. The designer first selects the GDT com-
ponent whose signature specifies the common inputs and
outputs such as source and target hosts, file names and
locations, and user information. Using the GDT, the de-
signer can then select a transducer template with the de-
sired data-transfer behavice.§, from a library of prede-
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Figure 4. The Generic Data Transfer component (top left), its underlying modal model implementation

in KEPLER (top right), two compatible transducer templates (middle), and two possible embeddings
(bottom)

fined transducer templates). The designer may ch@oge, an intermediate subworkflow (upper-right). This subwork-

a retry-failover template that: (1) attempts a trans- flow contains a “modal model” actor, which is required in
fer protocolp; up ton times, (2) ifp; is not successful, PTOLEMY Il for nesting FSTs within dataflow process net-
attempts an alternative transfer protopglup tom times, works. This subworkflow also permits multiple executions

and (3) if po also fails, reports a failure condition. Note of the transducer template on each firing of the GDT com-
thatn, m, p;, andp, are configuration parameters of the ponent.

template where, andp, denote state-frame implementa-  Two transducer templates are shown in Fidgre 4 for the
tions. The designer can then select appropriate state-fram&pT component. The selected template (middle, left) is
implementations through the GDT. The designer might se- 3 simple retry loop, which executes the desired protocol
lect, e.g, anscp state implementation fgs; and anftp maxRetry times before entering a fail state. Note that
state implementation fop,. Finally, based on the signa- this template performs an equivalent function as the con-
tures and configured parameters of the GDT component,rol components of Figurg] 1. The other template (middle,
retry-failover template, and the state implementa- right) of Figure[4 provides a simple fail-over behavior in
tions (scp andftp ), the proper embeddings are performed hich an initial protocol is attempted, and if it fails, a fail-
resulting in a fully instantiated.g., “ground”) GDT com-  over protocol is used. Finallgcp and SRBsput [ state
ponent that can then be executed from within the overall implementations are shown at the bottom of Fiddre 4. In
workflow. the figure, thescp implementation has been selected, and

Using KEPLER we have implemented an initial version Its signature prop.agated 0 th? GDT com;.)onen.t. _
of the GDT component, as shown in Fig{ife 4. In this im- In our current implementation, all configuration includ-
plementation, the GDT component (top, left) is a special ing the selection of templates and state implementations is
actor (more precisely, an extension of a composite actor)Performed by assigning specific attributes of the GDT com-
that provides necessary frame functions for supporting the
generic control-flow pattern. The GDT component contains  similar to theput operation ofitp
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Figure 5. The Generic eXecution component (top left), its underlying modal model implementation
in KEPLER (top right), two compatible transducer templates (middle), and two possible embeddings
(bottom); note the templates are reused from the Generic Data Transfer component

ponenff| For example, when a workflow designer config- 4 Related Work
ures the GDT component, a dialog box is presented that
contains a drop-down list of available templates. Once a  ggientific workflow systems [26, 23, 21,122] are often
template is selected, the user can also select an associatgthsaq on a dataflow model. due to the data-centric and
state impI.ementation (qote that at_an_ytime after selecting ay5ta-driven nature of many scientific analyses. In con-
template it can be navigated to within theeKLER GUI). a5t husiness workflow systers [1], workflow-patterns ap-
The GDT actor reacts to these attribute changes dynam"proaches [30], and systems for web-service composition
cally, assigning the transducer to the modal model, refining e.g BPEL4WS [6] and OWL-S[[24]) often use control-
the appropriate transducer states, and making the appropripaseq models such as finite state machines or Petri nets as
ate port connections. A workflow designer can also eas-iqir primary model of computation. Few systems seam-
ily reconfigurethe GDT component by assigning different  |o5q)y integrate both control-floand dataflow within a sin-
templates or state implementations (in contred, to the 416 model. Our approach for embedding control-flow into
Workflow Of, Flgurq].). dataflow was inspired by hierarchical finite state machines
Fmally, in addition to the_ GDT component, we have [L1] in PToLEMY I and more generally, FOLEMY's abil-
also implemented the Generic eXecution (GX) component, iy, 14 nest heterogeneous compution modglg [18, 5]. The
shown in Figurg¢ p. The GX component is similar to the hqtion of templates and frames offer novel extensions to
GDT component, but is tailored for remote executierg(  gyisting semantic web-service frameworks1[24] 26] and
ssh) as opposed to file transfer. The GX component, h_ow— composition approaches| [1,]14], and are inspired by exist-
ever, can directly reuse thc_a control—_ﬂow templates q_eflnedmg approaches in conceptual business workflow modeling
for the GDT component (middle of Figuré 5). The ability to [27.[10/25] and software engineering [9].
reuse control-flow in this way is a significant advantage of The need for adaptive and reusable workflows has been
this approach. Indeed, the ?b""y to reuse both control-fiow an active research issue in business workflow systems since
and dataflow components via templates and frames can lea e late 90's[[I8]. To achieve adaptability, [16] proposed
to more robust, intuitive, and ultimately reusable scientific decoupling of‘conceptual workflow specifiéations (WSFL)
workflows. from the individual tasks (TSL) that make up a workflow.
8|n PToLEMY II, andattributeis a static property. In this work, control flow within a task (task execution be-




havior) is modeled by a generic state transition diagram. able more automated approaches for supporting workflow
More recently, web-service composition [14] approaches reusability.
have applied similar techniques, supporting separate inter-
face declarations from underlying control-flow models. In .
CMI [27, [28], task execution behavior is further enhanced > ConC|Ud|ng Remarks
by introducing state hierarchy, application specific states,
and operations. This approach resulted in two advanced While scientific workflows are primarily dataflow-
activity modeling concepts in CMI called “service” and oriented, certain workflow tasks can be control-intensive,
“placeholder” activities. Service activities provide an ab- e.g, procedures for providing fault-tolerant and adaptive
straction for complex coordination with external entities distributed data transfer. Modeling these tasks directly
and placeholder activities provide a mechanism for dynamic using dataflow constructs can lead to workflows that are
binding to an activity implementation. The main contribu- overly complex and difficult to maintain and reuse. In
tion of CMI's service activity is its ability to separate the this paper, we have described a framework to support the
service interface declaration from its concrete implemen- structured embedding of generic control-flow components
tation. Each service interface declaration has an associwithin dataflow process networks. In particular, we have
ated state machine that is used as a guide for matching tantroduced (actorfframesand (workflow) templatesand
a compatible concrete implementation. CMI’'s placeholder shown how they can be used to develop robust workflows
activity further restricts binding of services based on user- via reusable control-intensive subtasks. We have also de-
defined policies and criteria. This feature is critical in im- scribed a simple three-layer architecture pattern that we
plementing complex control flow without having to exhaus- have found useful in practice for modeling certain control-
tively list all the potential activities within a process. The flow behavior, where (1) a high-level frame defines a cer-
use of service and placeholder activities has enabled thdain generic type of procedure (such as data transfer); (2)
construction of a complex and adaptive workflow at a much the high-level frame can be embedded with one of many
faster pace as demonstrated[in/[25]. Frames and templatetfansducer templates, encapsulating a particular “strategy”
are related to placeholders and services, respectively, howof control-flow (e.g, “retry”); and (3) each transducer tem-
ever, our model is more powerful in that it allows arbitrary plate consists of one or more frames that can be embedded
nesting of frames and templates as well as hierarchal com-with the particular task implementations for carrying out the
position of different execution behaviok €., both control  high-level procedureg(g, secure-copy).
and dataflow). As future work, we intend to extend our prototype of the
In general, our approach extendsE®LER and generic data transfer and remote execution components in

PTOLEMY by providing higher-level configuration mech- & number of ways. First, we want to fully integrate frames
anisms through frames and templates. WhileoBEMY and templates as first-class modeling constructs within K
provides a number of base capabilities that make workflow PLER We also intend to develop additional transducer tem-
specification easier—including the notion of actor-oriented Pates and lower-level implementation components for data
modeling, domain polymorphisnil[8] 5], and composite fransfer and remote execution, based on the needs of the
actors—the task of replacing a component with a similar Workflow of Figure[1. Another goal is to populateERLER
component can be a daunting task, especially for scientificVith new generic components, including both frames and
workflows with control-flow aspects, making this type of templates, to support a wide range of scientific workflows.
reusability even more challenging (see Figre 1). Our ap- Finally, we want to explore mechansisms for easily com-

proach can significantly reduce this effort, and provides g bining transducer templates (in addition to dataflow .tem—
more conceptual set of primitives for modeling workflows, Plates). For example, we want to allow a workflow engineer

e.g., by allowing certain decisions on particular implemen- © select two or more existing templates and easily combine

tations to be defered including the control-flow and dataflow theém to dynamically create a new, more complex template
behavior. further enabling reuse of scientific workflows.

The development of “rigid” workflow modeling and de-

sign frameworks have recently been identified as a ma-Acknowledgements. This work supported in part by
jor bottleneck for scientific workflow reuse and repurpos- NSF/ITR 0225673 (GEON), NSF/ITR 0225676 (SEEK),
ing (i.e, reconfiguring existing workflows for new pur- NIH/NCRR 1R24 RR019701-01 (BIRN-CC), and DOE
poses)[[12]. New design primitives such as templates andDE-FC02-01ER25486 (SDM); and performed under the
frames can significantly enhance reusability in scientific auspices of the U.S. Department of Energy by University
workflows. Moreover, the use of frames and templates to- of California Lawrence Livermore National Laboratory un-
gether with semantic types also yields improved discovery der contract No. W-7405-Eng-48, number UCRL-CONF-
mechanisms for scientific workflow repositories and can en- 215235.
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