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Abstract | The closely related research areas management of semistructured data and languages
for querying the Web have recently attracted a lot of interest. We argue that languages supporting
deduction and object-orientation (dood languages) are particularly suited in this context: Object-
orientation provides a 
exible common data model for combining information from heterogeneous
sources and for handling partial information. Techniques for navigating in object-oriented databases
can be applied to semistructured databases as well, since the latter may be viewed as (very simple)
instances of the former. Deductive rules provide a powerful framework for expressing complex queries
in a high-level, declarative programming style.
We elaborate on the management of semistructured data and show how reachability queries involving
general path expressions and the extraction of data paths in the presence of cyclic data can be handled.
We then propose a formal model for querying structure and contents of Web data and present its declar-
ative semantics. A main advantage of our approach is that it brings together the above-mentioned
issues in a uni�ed, formal framework and|using the Florid system|supports rapid prototyping and
experimenting with all these features. Concrete examples illustrate the concise and elegant program-
ming style supported by Florid and substantiate the above-mentioned claims.

Copyright c
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1. INTRODUCTION

Models and languages for semistructured data (ssd) have recently attracted a lot of interest [Abi97,
AQM+97, BDHS96, Suc97]. One motivation for studying ssd is the immense growth and impact
of the World-Wide Web, a new \drosophila" for studying issues related to semistructured data.
Moreover, there is a growing need for integration of data from heterogeneous sources (e.g., legacy
systems or data available from the Web), for which ssd provides a common data model. Typical
features attributed to ssd include the following: the structure is irregular, partial, unknown, or
implicit in the data, and typing is not strict but only indicative [Abi97]. Since the distinction
between schema and data is often blurred, semistructured data is sometimes called \self-describing"
[Bun97].

The Web is the most immediate and probably also the most exciting example for ssd: almost
all degrees of structure from highly structured data to completely chaotic data happily coexist
in the Web|often only a mouse click apart. The main techniques for accessing Web data are
browsing, i.e., \manual" navigational access, and searching, where the potentially relevant pages
are found using search engines (which act as keyword indexes, e.g., AltaVista or HotBot) or
Web guides (like InfoSeek, Excite, or Yahoo) with their prede�ned categories. In both cases,
Web exploration is data-driven, i.e., the continuation of a search depends on the information which
has been acquired so far. Clearly, navigation is an important issue for querying semistructured
data in general, and querying the Web in particular.

In order to overcome the limitations of simple browsing and searching, several Web query
languages and systems have been proposed which allow to extract and reorganize data from the
Web. Since the Web o�ers access to an enormous number of database servers, it also opens a
challenging application �eld for approaches to information integration, where the task is to provide
uniform access to heterogeneous information sources. Most of the common integration architectures
comprise wrappers for translating from di�erent local languages into a common language shared
between all sources, and mediators which provide|on a higher conceptual level|an integrated
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view on the heterogeneous data. Since rules are a powerful means for de�ning views, several
approaches for mediator speci�cation make use of rule-based languages. On top of the mediator
language, there may be a further user language for querying the integrated data.

Since the �eld is rapidly growing and changing, semantically rich, 
exible, and adaptable frame-
works are required to cope with the evolving needs. In this paper, we argue that languages sup-
porting deduction and object-orientation (dood languages) are particularly suited in this context:
Object-orientation provides a 
exible and rich data model, e.g., for combining information from
heterogeneous sources and for handling partial information. Techniques for navigating in object-
oriented databases can be applied to semistructured databases as well, since the latter are just
(very simple) instances of the former. Deductive rules provide a powerful framework for expressing
complex queries in a high-level, declarative programming style, e.g., for specifying mediators, or
for data-driven Web exploration.

Thus, a main advantage of the dood approach is that it integrates all above-mentioned issues
related to semistructured data in a uni�ed, formal framework. We substantiate this claim using
Florid, a prototype implementing the declarative dood language F-logic. The sytem can be
used for rapid prototyping of applications, e.g., for extracting, analyzing, and restructuring Web
data, possibly attuning it with information from other sources. Since Florid also contains built-
ins for extracting data from Web documents, an impedance mismatch due to separate languages
for wrappers, mediators, and user queries is avoided. Clearly, specialized languages can be much
more e�cient in solving their speci�c tasks; however, the strength of our approach lies in its easy
extensibility by means of rules. For example, in a �rst stage, a certain method for analyzing data
or navigation on semistructured data may be de�ned by rules without changing the system. Then,
when this method is recognized as central to an application it may be provided as built-in by the
system.

Outline

The paper is structured as follows: The basic formal framework of F-logic with path expressions
is introduced in Section 2. In Section 3, we elaborate on the representation and management of
semistructured data using F-logic. For navigation, a powerful and intuitive language for general
path expressions and its executable speci�cation is presented. In Section 4, we propose a formal
model for querying structure and contents of Web data and present its declarative semantics.
An example which illustrates how Web data is queried and restructured with Florid is given in
Section 5. Section 6 contains a short conclusion and outlook.

Related Work

In order to overcome the limitations of simple browsing and searching, severalWeb query languages
and systems have been proposed which allow to extract and reorganize data from the Web: e.g.,
the SQL extensions WebSQL [MMM96] and W3QL [KS95], the languages from the Araneus
project [ARA98], or PIQL [LSCS97], a language incorporating ideas from information retrieval.
More closely related to our framework are WebLog [LSS96] and ADOOD [GMNP97], logic-based
languages borrowing from ideas of F-logic. However, [LSS96] and [GMNP97] do not provide a
formal semantics for Web access and navigation on semistructured data, as we do. Abiteboul and
Vianu [AV97] introduce theoretical foundations to investigate the computability of Web queries,
based on so-called Web machines, but do not present a concrete Web query language. Mendelzon
and Milo [MM97] present a formal model of Web queries which is closely related to [AV97], in
which especially the e�ects of limited access to data and the lack of concurrency are discussed.

In [Bun97] and, more detailed in [Abi97], basic issues and notions related to semistructured
data are introduced. Two prominent query languages for semistructured data are Lorel [AQM+97]
and UnQL [BDHS96]. Both use a data model based on labeled graphs. Lorel is an extension
of OQL [Cat94], providing additional features such as coercion and general path expressions.
The use of coercion relieves the user from specifying the precise types of objects. An important
feature of UnQL is a construct called traverse that allows tree restructuring up to arbitrary depth.
UnQL can be translated into UnCal, a calculus enabling certain optimization techniques. Path
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expressions as used in languages for semistructured data (see, e.g., [CCM96, AQM+97, FS98])
have been considered earlier in the context of object-oriented databases (e.g., in [KKS92, VdBV93,
GPVdBVG94, FLU94]).

Semistructured data also arises in the context of information integration. In the Tsimmis
project [TSI98], the Mediator Speci�cation Language (MSL) [PAGM96, PGMU96] is proposed, a
variant of Datalog extended with \semantic oid's". MSL uses information provided by wrappers,
which represent their data in the Object Exchange Model (OEM). Due to its object-oriented
features, F-logic may also be used for information integration and mediation: some approaches use
F-logic directly, e.g., [CRD94, LBT92], whereas others use specialized variants [LSS93].

2. THE DOOD FRAMEWORK OF FLORID

Florid1 is a prototypical deductive object-oriented database system, which has been recently ex-
tended to provide declarative rule-based access for querying the Web [HLLS97, HLLS98]. Florid's
formal foundation is F-logic [KLW95], a prominent dood language providing complex objects, rule-
de�ned classes and signatures, multiple inheritance, and a uniform handling of data and metadata.
In particular, reasoning about schema information is supported using variables at method and class
positions. In this section, we brie
y review the basic features of F-logic and its extension by path
expressions [FLU94] as needed for our exposition.

2.1. Syntax and Object Model of F-logic

� Symbols : The F-logic alphabet comprises sets F , P, and V of object constructors (i.e., func-
tion symbols), predicate symbols (including

:
=), and variables, respectively. Variables are

denoted by capitalized symbols (e.g., X;Name), whereas all other symbols, especially con-
stants (0-ary object constructors) are denoted in lowercase (e.g., a; john). An expression is
called ground if it involves no variables. In addition to the usual �rst-order connectives and
symbols, there are a number of special symbols2: ], [, g, f, !, !!, ), )), : , :: .

� Id-Terms/Oids :

(0) First-order terms over F and V are called id-terms, and are used to name
objects, methods, and classes. Ground id-terms correspond to logical object
identi�ers (oids), also called object names.

� Atoms : Let O;M;Ri; Xi; C;D; T be id-terms. In addition to the usual �rst-order atoms like
p(X1; : : : ; Xn), there are the following basic types of atoms:

(1) O[M!R0] (2) O[M!!fR1; : : : ; Rng] (3) C[M)T ] (4) C[M))T ]:

(1) and (2) are data atoms, specifying that a method M applied to an object O yields the
result object Ri. In (1), M is a single-valued (or scalar) method, i.e., there is at most one R0

such that O[M!R0] holds. In contrast, in (2), M is multi-valued, so there may be several
result objects Ri. For n = 1 the braces may be omitted.
(3) and (4) denote signature atoms, specifying that the (single-valued and multi-valued,
respectively) method M applied to objects of class C yields results of type T .

The organization of objects in classes is speci�ed by isa-atoms :

(5) O :C (6) C ::D:

(5) de�nes that O is an instance of class C, while (6) speci�es that C is a subclass of D.

� Parameters : Methods may be parameterized, soM@(P1; : : : ; Pk) is allowed in (1){(4), where
P1; : : : ; Pk are id-terms; e.g., john[salary@(1998)!50000].

1F-LOgic Reasoning In Databases; available from [FLO98].
2We do not deal with inheritance in this paper, so we omit the symbols for inheritable methods [KLW95].
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� Programs : F-logic literals, rules, and programs are de�ned as usual, based on F-logic atoms.

As a concise notation for several atoms specifying properties of the same object, F-molecules are
used: e.g., instead of john:person^ john[age!31]^ john[children!!fbob,maryg], we may simply write
john : person[age!31; children!!fbob,maryg].

2.1.1. Object Model

An F-logic database (instance) is represented by a set of facts (i.e., atoms and molecules). Object-
oriented databases often admit a natural graph-like representation, which is, e.g., exploited in
GOOD [GPVdBVG94]. Similarly, F-logic databases can be represented as labeled graphs where
nodes correspond to logical oids, and where the di�erent kinds of labeled edges (!, !!, ), )))
are used to represent di�erent relations among objects (at the class or instance level).

Example 1 (Publications Database) In Figure 1, a fragment of an object-oriented publica-
tions database is depicted. The uppermost part shows classes (rectangles) linked via double-shafted
arrows (denoting the signatures of methods). Below, individual objects (oval nodes) are depicted.
Instance and subclass relationships are denoted by dotted and dashed edges, respectively. At
the instance level, methods are denoted by edges which are labeled with the respective method
names; following F-logic's notation, edges are single-headed and double-headed for single-valued
and multi-valued methods, respectively. The F-logic equivalent of the graph is sketched in the
lower part of the �gure.

2.2. Path Expressions in F-logic

In addition to the basic F-logic syntax, the Florid system also supports path expressions to
simplify object navigation along single-valued and multi-valued method applications and to avoid
explicit join conditions [FLU94]. The basic idea is to allow the following path expressions wherever
id-terms are allowed:3

(7) O:M (8) O::M

The path expression in (7) is single-valued and refers to the unique object R0 for which O[M!R0]
holds; (8) is a multi-valued path expression and refers to each Ri for which O[M!!fRig] holds. O
and M may be id-terms or path expressions; moreover,M may be parameterized, i.e., of the form
M@(P1; : : : ; Pk).

In order to obtain a unique syntax and to specify di�erent orders of method applications,
parentheses are used: By default, path expressions associate to the left, so a:b:c is equivalent to
(a:b):c and speci�es the unique object o such that a[b!x] ^ x[c!o] holds (note that x = a:b).
In contrast, a:(b:c) is the object o0 such that b[c!x0] ^ a[x0!o0] holds (here, x0 = b:c); generally,
o0 6= o. Note that in (a:b):c, b is a method name, whereas in a:(b:c) it is used as an object name.
Further note that function symbols can also be applied to path expressions, since path expressions
(like id-terms) are used to reference objects.

As path expressions and F-logic atoms may be arbitrarily nested, a concise and very 
exible
speci�cation language for object properties is obtained:

Example 2 (Path Expressions) Consider again the schema given in Figure 1. Given the name
n of a person, the following path expression references all editors of conferences in which n had a
paper:4

: conf p[authors!!f [name!n]g].at conf..editors

Therefore, the answer to the query

3However, to avoid semantical problems, the use of path expressions in rule heads is restricted; see Section 2.2.2.
4Each occurrence of \ " denotes a distinct don't-care variable (which is existentially quanti�ed at the innermost

level).
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a�l@(...)

[title!\Records, Relations, Sets,
Entities, and Things"]

[title!\DIAM II and Levels
of Abstraction"]

[number!1;
volume!1;
year!1975]

[name!\Information Systems"]

[year!1976] [name!\Very Large Databases"]

[name!\Michael E. Senko"]

[name!\Edward B. Altman"]

[name!\ Matthias Jarke"]

[name!\Peter C. Lockemann"]

[name!\Erich J. Neuhold"]

[name!\Uni Karlsruhe"]

[name!\RWTH Aachen"]

[name!\GMD Darmstadt"]

paper[authors))person; title)string]. conf p ::paper. journal p ::paper.
journal p[in vol)volume]. conf p[at conf)conf proc].
journal vol[of )journal; volume)integer; number)integer; year)integer].
journal[name)string; publisher)string; editors@(integer)))person].
conf proc[of conf)conf series; year)integer; editors@(integer)))person].
conf series[name)string]. publisher[name)string].
person[name)string; a�l@(integer))institution]. institution[name)string; address)string].

oj1 : journal p[title!\Records, Relations, Sets, Entities, and Things"; authors!!fomesg; in vol!oi11].
odi : conf p[title!\DIAM II and Levels of Abstraction"; authors!!fomes; oebag; at conf!ov76].
oi11 : journal vol[of!ois; number!1; volume!1; year!1975].
ois : journal[name!\Information Systems"; editors@(...)!!fomjg].
ov76 : conf proc[of!vldb; year!1976; editors!!fopcl; oejng].
ovldb : conf series[name!\Very Large Databases"].
omes :person[name!\Michael E. Senko"]. omj :person[name!\Matthias Jarke"; a�l@(: : : )!orwt].
orwt : institution[name!\RWTH Aachen"]. : : :

Fig. 1: Publications Object Base: Schema/Instance Data in Graph and F-logic Representation

?- P : conf p[authors!!f [name!n]g].at conf[editors!!fEg].

is the set of all pairs (P,E) such that P is (the logical oid of) a paper written by n, and E is the
corresponding proceedings editor. If one is interested in the a�liations of the above editors at
publishing time, the query can be adjusted easily:

?- P : conf p[authors!!f [name!n]g].at conf[year!Y]..editors[a�l@(Y)!A].

Thus, Florid's path expressions support navigation and speci�cation of object properties along
two dimensions: the \depth" dimension corresponds to navigation along method applications (\."
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and \.."), while the bracketed speci�cation list of molecules de�nes properties of intermediate
objects in the \breadth" dimension. Note that constraints within the expressions can be stated
using variables.

In order to access objects which are implicitly de�ned in the middle of path expressions, one
may de�ne the method self by x[self!x] for all relevant objects x. Then one can simply write
: : : [self!O] : : : anywhere in a complex path expression in order to bind the name of the current
object to the variable O.5

Example 3 (Path Expressions with self) Recall the second query in Example 2. If the user
is also interested in the respective conferences, the query can be reformulated as

?- P : conf p[authors!!f [name!n]g].at conf[self!C; year!Y]..editors[a�l@(Y)!A].

2.2.1. References: Truth Value vs. Object Value

Id-terms, F-logic atoms, and path expressions can all be used to reference objects. This is obvious
for id-terms (0) and path expressions (7{8). Similarly, F-logic atoms (1{6) not only have a truth
value, but also reference objects, i.e., yield an object value. For example, o : c[m!r] is a reference
to o, additionally specifying o's membership in c and its value for m.

Consequently, all F-logic expressions of the form (0{8) are called references. F-logic references
have a dual reading: Given an F-logic database I (see below), a reference has

� an object value, which yields the name(s) of the objects reachable in I by the corresponding
reference, and

� a truth value like any other literal or molecule of the language; in particular, a reference r
evaluates to false if there exists no object which is referenced by r in I.

Thus, a path expression may be conceived as a logical formula (deductive perspective), or as a name
for a number of objects (object-oriented perspective).

Consider the following path expression and its equivalent (wrt. the truth value) 
attened rewrit-
ing:

a::b[c!!fd:eg] , a[b!!fXabg] ^ d[e!Xde] ^Xab[c!!fXdeg]: (�)

In this way, using the 
attened equivalent, the truth value of arbitrarily complex path expressions
in the body of rules can be easily determined. The object values obj of a path expression are the
names of the referenced objects: e.g., for (�) we have

obj(a::b) = fxab j I j= a[b!!fxabg]g and obj(d:e) = fxde j I j= d[e!xde]g ;

where I j= ' means that ' holds in I. Observe that obj(d:e) contains at most one element because
the single-valued method e is applied to the unique oid d. In general, for an F-logic database I, the
object values of ground expressions are given by the following mapping obj from ground references
to sets of ground references:

obj(t) := ft0 j t0 = t and I j= t0g; for a ground id-term t (0)
obj(o[: : : ]) := fo0 2 obj(o) j I j= o0[: : : ]g (1); :::; (4)
obj(o : c) := fo0 2 obj(o) j I j= o0 : cg (5)
obj(c :: d) := fc0 2 obj(c) j I j= c0 :: dg (6)
obj(o:m) := fr0 2 obj(r) j I j= o[m!r]g (7)
obj(o::m) := fr0 2 obj(r) j I j= o[m!!frg]g (8)

Observe that obj(t) = ; for a ground id-term t which does not hold (i.e., occur) in I . Conversely,
a ground reference r is called active if obj(r) 6= ;. r can be classi�ed as either single-valued or
multi-valued:

5A similar feature is used in many other languages, e.g., in XSQL [KKS92] and in Lorel [AQM+97].
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� r is called multi-valued if

{ it has the form o::m, or

{ it has one of the forms o[: : : ], o : c, c :: d, or o:m, and any of the underlined subexpressions
is multi-valued;

� in all other cases, r is single-valued.

2.2.2. Object Creation

Single-valued references can create anonymous objects when used in the head of rules (this feature
will be crucial for our approach to data-driven Web exploration with Florid):

Example 4 (Spouse Invention)
Consider the following rule with a single-valued path expression in the head:

X.spouse : person  married(X : person).

For every married person X, a new object X.spouse is created and inserted into class person (if
X[spouse!Y] already holds, then X.spouse=Y). Note the seamless and natural integration of Dat-
alog atoms (married(: : : )) with F-logic constructs (X : person).

In contrast to single-valued references, multi-valued references may lead to semantical problems
and ambiguities when used in the head:6 e.g., the meaning of the following facts is unclear:

john..children[age!24]. john..children[lives in!berlin].

It is unclear how many children of John are 24 years old: at least one, or all? Do all of them
live in Berlin, or only those who are 24 years old? To avoid such problems, we disallow the use of
multi-valued references in the head of rules.

2.3. F-logic Semantics

For simplicity, we con�ne ourselves to the features of F-logic with path expressions which are
essential for our exposition; see [KLW95] for details on inheritance, typing, and negation. Similar
to �rst-order logic, formulas are interpreted over semantic structures in F-logic. As usual, we focus
on special Herbrand-style structures, called H-structures7 over a suitable universe:

As usual, given the set F of object constructors, the Herbrand universe U (=U(F)) consists
of all ground id-terms over F . The Herbrand base HB consists of all ground atoms over U , and
every subset of HB induces a Herbrand interpretation.

In the presence of path expressions, U is not su�cient as H-universe since single-valued path
expressions can create new logical oids when used in rule heads. Thus, single-valued path expres-
sions behave like Skolem function symbols, and U has to be closed wrt. application of single-valued
path constructors; the resulting closure is denoted by U?:

De�nition 1 (H-Universe, H-Base)
Let F and P denote the sets of object constructors and predicate symbols, respectively.

� The (extended) H-universe U? (=U?(F)) is the least set U? � U such that:

{ if m; t0; : : : ; tn 2 U?, then (t0:m) and (t0:m@(t1; : : : ; tn)) are in U
? for every n 2 IN.

The elements of U? are called pure references.

� The (extended) H-base HB? (=HB?(F ;P)) consists of all ground atoms (i.e., Datalog, F-
logic, and

:
= atoms) and ground pure references over P and U?.

6See the section scalarity and well-formedness of references in [FLU94] for details.
7H-structures can be mapped to F-structures, whose domain are the equivalence classes of equality on the H-

universe [KLW95, Sec. 9].
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Note that U? and HB? are generally in�nite, i.e., provided the language comprises at least one
constant t0.

Since HB? contains the set U? of pure references, every subset of HB? also assigns a truth
value to every r 2 U?. Due to the inherent semantics of the class hierarchy and object identity,
we are only interested in interpretations which satisfy certain properties:

De�nition 2 (H-Interpretation) A subset H � HB? is an H-interpretation if it satis�es the
following axioms for all pure references c; d; e; o;m; r; r0 2 U?:

� The closure axioms of F-logic (cf. [KLW95, Sec. 7]), restricted to active names:

{ c :: c 2 H, (subclass re
exivity)

{ if c :: d 2 H and d :: e 2 H then c :: e 2 H, (subclass transitivity)

{ if c :: d 2 H and d :: c 2 H then c
:
=d 2 H, (subclass acyclicity)

{ if o : c 2 H and c :: d 2 H then o : d 2 H, (subclass inclusion)

{ if o[m!r] 2 H and o[m!r0] 2 H then r
:
=r0 2 H, (scalarity of \!")

{ re
exivity, transitivity, and symmetry of
:
=,

substitutability of equal objects. (equality axioms)

� The path expression axioms :

{ if o:m 2 H then o[m!o:m] 2 H,

{ if o[m!r] 2 H then o:m
:
=r 2 H.

� The active name axiom:

{ for every r 2 H and every r0 2 U? occurring in r: r0 2 H.

(analogously for m@(t1; : : : ; tn) instead of m).

The last axiom allows a simple declaration of the set UH of active names of H, namely UH :=
U? \ H. For an arbitrary I � HB?, we denote by C̀ (I) the closure of I wrt. the above axioms.

Example 5 The active names of the closure of I := fjohn[wife!jane]; jane[husband!john]g are:
U? \ C̀ (I) = fjohn(:wife:husband)n(:wife)f0;1g; jane(:husband:wife)n(:husband)f0;1g j n2INg.

Moreover, C̀ (I) includes, e.g., the sets
fjane(:husband:wife)n[husband!jane(:husband:wife)n:husband] j n 2 INg and
fjane(:husband:wife)n:husband

:
=john j n 2 INg, and many equality atoms.

In the Florid system, Herbrand structures are represented as F-structures ([KLW95, Sec. 9]),
i.e., active names are mapped to equivalence classes of objects. In this way, a �nite database
I whose closure results in an in�nite H-interpretation C̀ (I) can still be represented by a �nite
F-structure. For instance, for I from Example 5, the equivalence class for john subsumes all active
names fjohn(:wife:husband)n j n 2 INg, and can be represented by the equalities john:wife = jane
and jane:husband = john.

The semantics of a (negation-free) F-logic program P can now be de�ned as the minimal H-
interpretation H for which H j= P , called the canonical model of P .8 The standard semantics
of Florid is in
ationary [AHV95] and thus always yields a unique PTIME-computable model
provided no new oids are invented (or at most a �xed number of them, independent of the given
database). Additionally, Florid supports user-strati�ed negation which allows a more natural
de�nition of certain queries.9 In [MLL97], it has been shown how F-logic programs with negation
can be evaluated in Florid wrt. well-founded semantics via a program rewriting technique.

8The problem of choosing a canonical model in the presence of negation is dealt with in [KLW95].
9E.g., the complement of transitive closure is trivial to specify with strati�ed semantics but not so with in
a-

tionary semantics.
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3. MANAGING SEMISTRUCTURED DATA

Object-oriented data models like the one of F-logic provide 
exible modeling capabilities due to
their rich structure, e.g., class hierarchies, (possibly parameterized) single-valued and multi-valued
methods, and strict typing constraints. However, data is often available only in unstructured
or semistructured form, especially, when retrieved from the Web. Not surprisingly, the enormous
success of the Web has recently lead to an increasing interest in models and languages for semistruc-
tured data (ssd) [Abi97, AQM+97, BDHS96, Suc97]. Typical features attributed to ssd include the
following: the structure is irregular, partial, unknown, or implicit in the data, and typing is not
strict but only indicative [Abi97]. Since the distinction between schema and data is often blurred,
semistructured data is sometimes called \self-describing" [Bun97].

In this section, we recast a prototypical model for ssd in F-logic and illustrate how general path
expressions (used for reachability queries on ssd) may be speci�ed and implemented in an elegant
and declarative way within a dood framework. Moreover, we show how derived equalities may be
used in Florid for extracting data paths on cyclic structures.

3.1. Semistructured Data Model

Since in semistructured data there may be very little structure, or the structure is contained in
the data and has to be discovered, the underlying data model has to be simple and 
exible. Here,
we adopt the fairly standard model where ssd is represented as a labeled graph:

De�nition 3 (Semistructured Database) Let N be a set of nodes and L a set of labels. A
semistructured database1 (ssdb) D is a �nite subset of the set of labeled edges E = N �L�N .

The main di�erences between di�erent models for ssd concern the kind of data stored in nodes
and labels, and the location where the data is stored: One can classify data of a ssdb very roughly
as simple data (e.g., 1970, "E.F. Codd") or schema-like data, i.e., corresponding to attribute or
class names (e.g., year, person). In the terminology of [Bun97], the latter are called symbols.
Note however that the distinction between simple and schema data is often blurred. Therefore, we
adopt a very generic, initially untyped framework, where labels are strings and where nodes may
or may not hold additional data. In the former case, nodes are called complex, otherwise opaque.

The other di�erence concerns the location where the data is stored. For example, in the ssd

model of UnQL [BDHS96], all information (simple data and symbols) is contained in labels only. In
contrast, in the OEM data model underlying Lorel, labels contain symbols, whereas simple data is
stored in leaves (internal nodes correspond to oids without further information) [AQM+97, Bun97].
In contrast, we do not impose any restrictions on the location of data, i.e., nodes may be complex
or opaque.

Semistructured Data in F-logic

The graph representation of F-logic databases (cf. Figure 1) contains the ssd model as a special
case: Nodes of a ssdb D correspond to oids, whereas labeled edges correspond to multi-valued
method applications. More precisely, for a labeled edge in D, an equivalent graph notation and a
representation in F-logic syntax can be given as follows:

(x; `; y) 2 D , x
`
!! y , x[`!!fyg] :

Thus, for a given ssdb D, we obtain the following natural representation in F-logic:

X : node, Y : node, L : label, X[L!!fYg]  ssdb(X,L,Y).

Here, it is essential that L is viewed as a multi-valued method, since there may be several distinct
edges emanating from x which share the same label `.

A proverbial example for ssd is the link structure of a set of Web documents: nodes correspond
to Web documents and edges to labeled hyperlinks between documents. In this case, if nodes are

1Sometimes also called graph database [BDFS97].
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opaque, i.e., when no information apart from the link structure is available, we speak of the (Web)
skeleton2 of a set of Web documents:

Example 6 (DBLP Skeleton) Consider the labeled graph depicted in Figure 2 which represents
a fragment of the skeleton of the DBLP server [DBL98]: In the skeleton view, the only information
available is contained in labels (represented as strings), whereas nodes are opaque. Thus, the
skeleton covers the structural aspect of Web documents but not their contents. Figure 8 depicts a
generic skeleton extractor for Florid.

dblp
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...
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Fig. 2: Fragment of the Skeleton of the DBLP Database

3.2. Querying Semistructured Data

Relational databases can be queried using formalisms like relational algebra or calculus, or de-
ductive rules in the style of Datalog. In contrast, semistructured databases lend themselves to a
navigational access where one starts at a distinguished root node xo and tries to �nd all nodes
reachable from xo such that the encountered labels match a given sequence of labels. Since ssdb's
may be considered as specialized object-oriented databases, languages for navigating in object-
oriented databases are also applicable in the context of ssd. In particular, F-logic path expressions
as described in Section 2.2 can be employed without change:

3.2.1. Simple Path Expressions

Following the terminology of Lorel [AQM+97], an object name x0 followed by a sequence of labels
`1; : : : ; `n is called a simple path expression. Moreover, a data path is a sequence (x0; `1; x1; `2; : : : ; xn)

such that xi�1
`i!! xi is a labeled edge in the given ssdb for all i = 1; : : : ; n. The F-logic equivalent

of a simple path expression is given by the following multi-valued reference:

x0::`1::`2:: � � � ::`n (��)

2For a completely di�erent \Web skeleton" see http://www.m-w.com/mw/art/skeleton.htm.
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The dual (truth-value and object-value) semantics of (��) is given by the semantics for path
expressions in F-logic (Section 2.2). Clearly, there are in general several data paths which match
a given (simple) path expression. In contrast, if a single-valued path expression of the form
x0:`1:`2: � � � :`n were used, at most one data path would be de�ned.

Using the method self (de�ned byX [self!X ], cf. Example 3), the intermediate objectsX1; : : : ; Xn

in the data path can be returned in the query answer:3

x0::`1[self!X1]::`2[self!X2]:: � � � ::`n[self!Xn]: (���)

Note that the above simple path expression (��) is valid F-logic syntax (Section 2.2) even when
used with variables in place of x0 and `1; : : : ; `n:

Example 7 (Querying the DBLP Skeleton) Given the DBLP skeleton (see Figure 2), we may
ask for all labels ` reachable from the root node dblp after a link labeled "Inf. Systems" such that
the corresponding page contains a link to a given person P, say "Michael E. Senko" (the author of
the very �rst paper in Information Systems):

?- dblp.."Inf. Systems"..L.."Michael E. Senko".

For the DBLP skeleton, Florid returns two answers L="Volume 1, 1975" and L="Volume 5, 1980".
The object value of the path expression is the url of the author's page at DBLP.

The main power of such path expressions becomes apparent when more information than merely
the Web skeleton is available, i.e., when nodes are not opaque but contain additional information
about the object. Such additional information may be extracted from Web documents by querying
their contents (Section 4.1), or may stem from another information source or the local database.
For example, the Florid query

?- dblp.."Inf. Systems"..L..P, substr("Volume",L),
P : person.spouse[lives in!P.lives in].

returns all persons P who (i) have a paper in a volume of IS, and (ii) live in the same place as
their spouse.

As illustrated by this example, (simple) path expressions may be combined freely with other F-
logic constructs (single-valued path expressions, parameterized methods, class information, etc.),
thereby obtaining a very powerful language. The seamless integration of path expressions into
the dood framework of F-logic is possible mainly due to their dual reading, i.e., as truth-valued
expressions (deductive perspective) and as object-valued expressions (object-oriented perspective).

Computing Cycle-Free Data Paths

Path expressions are used to express reachability queries, i.e., for extracting the set of nodes which
are reachable from a source node via a sequence of labels. Therefore, on �nite structures, the
answer to a reachability query is �nite, even on ssdb's with cycles. On the other hand, for �nite
structures there may be in�nitely many data paths if the structure involves cycles. Although
a �nite representation of the in�nite set of data paths can be e�ectively constructed, in existing
systems like Lorel, the problem is handled in a pragmatic way by considering only those paths which
contain the same object at most once [AQM+97]. These simple data paths can be computed with
Florid by the following program:

[X,L,Y] : edge  ssdb(X,L,Y), not X = Y.
[X,L,Y] : path[member!!fX,Yg]  [X,L,Y] : edge.
[X,L,YjP] : path[member!!fX,Y,Zg]  

[YjP] : path[member!!fZg], [X,L,Y] : edge, not [YjP][member!!fXg].

Here we use Prolog's list notation [X1; : : : ; XnjXs], so the Xi are the �rst n elements and Xs is the
tail of the list. The last rule involves non-strati�ed negation and yields the desired results when
evaluated with Florid's in
ationary semantics.

3A shorthand notation, borrowed from XSQL [KKS92], is x0::`1[X1]::`2[X2]:: � � � ::`n[Xn]; cf. [FLU94].
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3.2.2. General Path Expressions

Although simple path expressions augmented with the features presented in Section 2.2 in com-
bination with rules already provide a powerful language for navigating on ssd, it is sometimes
convenient to consider more general path expressions in the spirit of regular expressions. Below
we consider an expressive language for general path expressions (gpe's) and show that they can
be speci�ed and implemented concisely and elegantly in the dood framework of Florid. Our
gpe's borrow from the general path expressions of Lorel [AQM+97], and are further extended with
features for simplifying path expressions in the spirit of [VdBV93].

De�nition 4 (General Path Expressions) Let L be a set of labels (strings). The set GPE of
general path expressions is the least set such that:

� L [ fanyg � GPE. (A)

� If M;N 2 GPE and n 2 IN0, then the following are in GPE :

(M �N), (M jN), (M)�, (M)+, (M)?, (M)�1, (M)n. (B)

� If ' is binary relation symbol, then if(') 2 GPE. (C)

� If ` 2 L and  is a unary relation symbol then µ(`); µ(`;  ) 2 GPE. (D)

The meaning of primitive gpe's in (A) and regexp-like gpe's in (B) should be clear. The intuition

of the conditional label \if(')" is as follows: given a binary predicate ', navigation along x
M
!! y

via if(') is allowed only if '(x;M) holds; the nodes reachable in this way are referenced by x::if(').
For example, if '(x;M) := \substr(M;x)" then we may move from x to y along an edge labeled
with M only if M is a substring of x (so x should also be a string). The basic idea of µ is to �nd
the closest reachable node whose incoming edge is labeled with ` (see below).

For notational convenience, parentheses may be omitted whenever operator precedence is clear
from the context.

Semantics of General Path Expressions

Let E 2 GPE be a general path expression. Again, we are interested in the object value of x0::E,
i.e., those nodes reachable from x0 via a sequence `1; : : : ; `n of labels `i 2 L such that `1; : : : ; `n
\matches" E. The meaning of GPE can be de�ned in an elegant way by viewing expressions
E 2 GPE as generalized labels. Since every label ` can be seen as a relation ` := f(x; y) 2
N �N j (x; `; y) 2 Dg, every gpe also de�nes a binary relation on D. These relations are de�ned
by structural induction as illustrated in Figure 3.

x y

L 2 L

any

x � y

M N

M �N

x y

M

MjN
NjM

x y

Mn; n�0

M�

x y

Mn; n�1

M+

x y

M

M?M?

x : : :
| {z }

n

y
M M

Mn

x y

M

M�1

x y

M

if(')

;
if '(x;M)
holds

Fig. 3: Graphical Semantics of gpe's

In addition to the operators speci�ed in Figure 3, \any" matches any label ` 2 L.
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Example 8 (Navigation on the DBLP Skeleton) Assume we are interested in all url's reach-
able from the root of the DBLP skeleton, and which are referenced by a label containing the
substrings "VLDB" or "SIGMOD". Using gpe's this may be expressed in Florid by the query

?- dblp�any��(if('vldb)jif('sigmod))

where the predicates 'vldb and 'sigmod are true if the label contains the corresponding strings
(e.g., 'vldb( ;M) holds i� substr("VLDB",M) holds). See Figure 4 for the concrete Florid syntax
of gpe's.

Finally, the expressions µ(`) and µ(`;  ) use an idea from [VdBV93] for simplifying path ex-
pressions by �nding the shortest paths ending in a given label: x::µ(`) yields those objects which
are reachable from x via a sequence `1; : : : ; `n; ` such that there is no other sequence `01; : : : ; `

0
k; `

with k < n. Thus, only the shortest sequences ending in ` are considered. µ(`;  ) is a generaliza-
tion which considers a data path x0; `1; : : : ; xn; `; xn+1 only if the penultimate object xn satis�es
a property  (xn). The motivation for using µ(`) and µ(`;  ) in ssdb's is that it will often match
the \conceptually closest" nodes reachable via a certain label:

Example 9 (Contact Address) Consider the conceptual object-oriented schema depicted in
Figure 1. Assume you want to know a contact address for a paper x (i.e., x : paper holds). This
can be either speci�ed as \if the address of one of the authors is known, take this address, else
look for the address of one of the editors of the proceedings. If this address cannot be found, ask
the conference series board ..." and so on. Or shorter: \look for a label address which is closest to
the paper":

?- x..µ(address) = Y.

Here, Y is bound to all result objects (i.e., addresses) having minimal distance from x.
This is also a standard situation when browsing through the Web: Assume you are on a Web

page and you want to send an e-mail to the author: Just look for the nearest \mailto"-link.

3.2.3. General Path Expression in F-logic

General path expressions immediately lend themselves to an intuitive and elegant speci�cation in
F-logic using rules and simple path expressions. There are several ways to represent the operators
of GPE in F-logic. Here, for notational simplicity, they are represented as id-terms:4 For example,
we denote (M �N) as \conc(M;N)" and (M)� as \star(M)", etc. Using this notation, De�nition 4
can be directly translated into an equivalent F-logic program with path expressions as shown in
Figure 4. The correctness of this translation is immediate for (A){(C). The rules (D) de�ning
µ(: : : ) make use of (non-strati�ed) negation in order to obtain the \nearest" possible result objects.
It should be clear that by applying an in
ationary semantics (as is the default in Florid), the
desired meaning is captured by the rules (D).5 Finally, note that the rules de�ning if(') and µ(`;  )
are in fact rule schemas, i.e., have to be instantiated with the corresponding predicate symbols '
(binary) and  (unary), respectively.

Bottom-Up Evaluation in FLORID

In order to ensure that Pgpe can be executed using standard bottom-up techniques as employed
in Florid, additional goals have to be added to the rules (B){(D): The �rst reason is that some

rules (e.g., for X
MjN
!! Y ) are not range-restricted, i.e., contain variables in the head which are not

bound by a positive literal in the body. Moreover, even if rules are range-restricted they may
de�ne|due to the use of function symbols in the head|an in�nite number of objects representing
the generalized labels.6 A simple cure to both problems is to constrain the rules by: (i) adding the

4Other more \object-oriented" encodings are possible, e.g., M:conc@(N) for M �N .
5... since ` 2 L. For nested applications like µ(M jµ(N)), other (more complex) rules have to be used.
6This mirrors the fact that GPE itself is in�nite.
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Pgpe: (A) X[L!!Y], X : node, Y :node, L : label  ssdb(X,L,Y). % X
L
!! Y

X[any!!Y]  X[L!!Y], L : label. % X
any
!! Y

(B) X[conc(M,nil)!!Y]  X[M!!Y]. % X
M��
!! Y

X[conc(M,N)!!Y]  X..M[N!!Y]. % X
M�N
!! Y

X[or(M,N)!!Y]  X[M!!Y]. % X
MjN
!! Y

X[or(M,N)!!Y]  X[N!!Y]. % X
MjN
!! Y

X[star(M)!!X]  X :node. % X
M�

!! X

X[star(M)!!Y]  X..star(M)[M!!Y]. % X
M�

!! Y

X[plus(M)!!Y]  X[M!!Y]. % X
M+

!! Y

X[plus(M)!!Y]  X..plus(M)[M!!Y]. % X
M+

!! Y

X[opt(M)!!X]  X :node. % X
M?

!! X

X[opt(M)!!Y]  X[M!!Y]. % X
M?

!! Y

X[inv(M)!!Y]  Y[M!!X]. % X
M�1

!! Y

X[to(M,0)!!X]  X :node. % X
M0

!! X

X[to(M,K1)!!Y]  X..to(M,K)[M!!Y], K1 = K + 1. % X
Mk+1

!! Y

(C) X[if(')!!Y]  X[M!!Y], '(X,M). % X
if(')
!! Y

(D) X[mu(L)!!Y]  X..star(any)[L!!Y], :X..mu(L). % X
µ(L)
!! Y

X[mu(L, )!!Y]   (X..star(any))[L!!Y], :X..mu(L, ). % X
µ(L; )
!! Y

Fig. 4: General Path Expressions in F-logic

goal E : gpe to the body, for every rule with a head of the form X [E!!Y ], and (ii) constraining
gpe to a �nite set.

For example, by applying (i) to M jN we obtain the rules

X[or(M,N)!!Y]  or(M,N) : gpe, X[M!!Y].
X[or(M,N)!!Y]  or(M,N) : gpe, X[N!!Y].

In this way, all rules (B){(D) are modi�ed. Requirement (ii) is accomplished by restricting the
class gpe to those expressions which are relevant for answering a given gpe query (see Figure 5):
Every expression E of class query is considered as an element of gpe. Program P# in Figure 5
computes the �nitely many subexpressions which are relevant for a given query E. Assuming there
is a class root containing all relevant root objects in the ssdb, all objects Y reachable from a root
object X via the gpe E are retrieved by executing the query

?- E : query, X : root, X..E = Y.

which highlights once more the usefulness and elegance of employing a dood framework.
Although the program Pgpe [ P# is already executable in Florid, further optimizations are

possible: To this end, instead of the simple class gpe, one has to de�ne a predicate relevant(X;E)
which computes from a given query Q 2 GPE only those intermediate objects X and gpe's E
applicable toX which are relevant for answeringQ. Observe that such optimizations use essentially
the same ideas as the well-knownMagic-Sets rewriting technique [BMSU86] developed for deductive
rules.

Alternatively, instead of implementing gpe's via deductive rules, they could be implemented
directly in the system, resulting in a more e�cient solution. However, an important advantage
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P# : conc(star(or(a,b)),mu(c)) :query. % Example query: ((ajb)��µ(c))

query :: gpe. % queries are gpe's

% Compute downward closure of gpe:

label :: gpe. any : gpe. % L [ fanyg � GPE

M : gpe, N : gpe  conc(M,N) : gpe. % M �N

M : gpe, N : gpe  or(M,N) : gpe. % M jN

M : gpe  star(M) : gpe. % M�

M : gpe  plus(M) : gpe. % M+

M : gpe  opt(M) : gpe. % M?

M : gpe  inv(M) : gpe. % M�1

M : gpe  to(M,0) : gpe. % M0

to(M,K1) : gpe  to(M,K) : gpe, K>0, K1=K{1. % Mk

M : gpe, star(any) : gpe  mu(M) : gpe. % µ(M)

M : gpe, star(any) : gpe  mu(M, ) : gpe. % µ(M; )

Fig. 5: Downward Saturation of Query Expressions

of the deductive approach taken in Florid is its 
exibility and extensibility: new rule-de�ned
methods can be added at any time without changing the system. For example, we may want
to extend the rules of Pgpe with path variables7 , i.e., variables holding data paths. This can be
accomplished by adding a parameter @(P ) for data paths (represented as lists) to the methods in
Figure 4 as follows:

X[L@([L,Y]) !!Y]  ssdb(X,L,Y).

X[any@(P)!!Y]  X[L@(P)!!Y], L : label.

X[conc(M,nil)@(P)!!Y]  X[M@(P)!!Y].
X[conc(M,N)@(P)!!Y]  X..M@(P1)[N@(P2)!!Y], append(P1,P2,P).

...
...

...

Note however that for a given ssdb of size n the number of data paths may be exponential in
n (even in the absence of cycles), so the unrestricted use of path variables may be prohibitively
expensive. In contrast, the original rules of Pgpe answer only reachability queries, i.e., the set
of reachable objects without actually constructing data paths. In this case, the rules provide a
PTIME-computable evaluation procedure for gpe's:

Theorem 1 (Complexity of GPE)
Let D be a ssdb. For any node x0 of D and every E 2 GPE, x0::E can be evaluated in time
polynomial in the size jEj+ jDj.

Proof. P# in Figure 5 (which depends on the given E : query) computes all proper subexpressions
of E, which clearly is polynomial in jEj. In particular, there are only polynomially many new
generalized labels M : gpe for which the rules of Pgpe apply. Since Pgpe [ P# is evaluated under
in
ationary semantics, it follows that the model of (Pgpe [ P# [ D) is computable in polynomial
time. 2

4. QUERYING THE WEB

An important example for semistructured data as described in the previous section is the link
structure (i.e., Web skeleton) of a set of Web documents. In this section, we describe an extension

7In contrast to the object variables X1; : : : ;Xn used in (���) in Section 3.2.1.
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of Florid for querying link structure and contents of Web documents: First, a dood model for
Web documents is proposed and data-driven Web exploration using Florid is introduced. We
then present the declarative semantics of the Web extension based on F-logic.

4.1. The Web Model

Every resource available in the Web has a unique address, called url (Uniform Resource Locator).
Typically, the document associated with an url contains hyperlinks to other url's which in turn
refer to further Web documents. Thus, in F-logic, url's and Web documents can be modeled as
shown in Figure 6 using two classes url and webdoc, respectively:

Every url is a string which provides a special single-valued method get (see below); the resulting
object is a Web document, i.e., an instance of webdoc. Web documents are (conceivable as) strings
which provide a parameterized multi-valued method hrefs@(Label), where Label is a string, yielding
instances of url.1 Moreover, the method url is applicable to Web documents and yields instances
of class url (note the dual use of url, i.e., as method name and as class name).

url :: string[get)webdoc].

webdoc :: string[url)url; hrefs@(string)))url].

wd1 :webdoc[url!"url1";
hrefs@("lbl")!!f"url2"g]

wd2 :webdoc[url!"url2"; ...]

"url1" :

<HTML><HEAD>...</HEAD>

...

<A HREF="url2">lbl</A>

...

</HTML>

| {z }

wd1

"url2" :

<HTML><HEAD>...</HEAD>

...

<A HREF=...">...</A>

...

</HTML>

| {z }

wd2

hrefs@("lbl")

Fig. 6: F-logic Web Model: Signature and Example Data

When retrieving a Web document, certain system-de�ned methods are automatically �lled in by
the system; additionally, user-de�ned methods can be de�ned via rules. In Florid, in addition to
url and hrefs@(: : : ), there are several other system-de�ned methods for Web documents, including
the following:

webdoc[author)string; type)string; length)integer; modif)string; errors))string; : : : ].

Here, the multi-valued method errors contains the reasons of the failure (e.g., server does not exist,
page not found, connection timed out, : : : ) if the Web access fails. On successful access, the methods
modif and type return the most recent modi�cation time and the document type (HTML, ASCII,
etc.), respectively.

Clearly, this schema re
ects only some very basic properties of Web documents, without further
exploiting the document type or structure. If necessary, the schema can be re�ned by declaring
subclasses of webdoc, e.g., for BibTEX �les, tables, etc. In particular, one may de�ne a subclass
sgmldoc such that the parse-tree of fetched SGML documents can be analyzed:2

sgmldoc ::webdoc[root)parsetree].

Here, instances of parsetree will have (usually parameterized) methods which can be used to navi-
gate on the parse-trees.

Remark

Note that the Web skeleton in Example 6 considers only the structural aspect of Web documents
and thus uses a simpli�ed Web model, i.e., which corresponds to the signature url[string))url]. In
contrast, in order to query the contents of Web documents, we have to distinguish between the
actual Web documents (instances of webdoc) and their url's (instances of url). Indeed, as will
be shown in Example 11, the Web skeleton of a number of Web documents can be automatically
extracted with Florid.

1For a more detailed modeling, one could also include e.g. the byte-position of the link as a parameter, resulting
in a single-valued method: webdoc[hrefs@(string,integer))url].

2This feature has recently been incorporated into Florid.
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4.2. Data-Driven Web Exploration

Although the Web is �nite, for obvious reasons it is practically impossible to have access to the
Web as a whole. The problem when integrating Web access into the F-logic framework lies in the
necessity to load a beforehand unknown number of Web documents in order to extract some of their
data which then has to be added to the logical model. In order to obtain a declarative semantics,
loading Web documents is completely data-driven: new documents are explored depending on
information and links found in already known documents.

The exploration strategy uses the semistructured data model given in Section 3, where nodes
and labels are instances of the classes node and label, respectively: Exploration follows the Web
skeleton whose nodes are url's and whose labeled edges are the corresponding hyperlinks. By
repeatedly accessing Web documents, analyzing them, and following those hyperlinks which are
expected to be relevant, the database is generated.

Exploration Cycle

Starting with a set of initial url's, data-driven Web exploration can be seen as repeated application
of an operator explore which maps url's to new knowledge:

explore(u) := analyze � access(u) :

In every step, the \known" area of the Web is extended and additional knowledge is added to the
database: A Web document is accessed using an already known url, then the document is loaded
into the database; by analyzing it, information is extracted and new url's become known.

Example 10 (Exploring the DBPL Server) Figure 7 illustrates the exploration process for
the DBLP server: Starting with the root url ?, its entry page dblp is accessed. By following the
links (cf. the skeleton given in Figure 2), among others, the Information Systems page and the
VLDB page are accessed. In the next step, the respective volumes or contents of the proceedings
are explored. The fourth step then extends the knowledge with the authors' data.

�
�

�
�

�

��

� �
�

�

�

�

WWW

?

dblp

vldb
is

76 v5 v1

� � senko
�
�

�
�

Database
access along hrefs=": : : "

load
analyze

Fig. 7: Exploring the Web by Iteration of access and analyze

Web Exploration with FLORID

Apart from primitive functions for analyzing the contents of Web documents (e.g., for matching
regular expressions), Web exploration involves accessing documents in the Web and adding them to
the local F-logic database. This is accomplished in Florid by calling the special method get for an
instance u of the class url in the head of a rule, thereby creating the new oid \u.get" for the fetched
Web document. After u.get has been created, system-de�ned methods are automatically \�lled
in" by Florid, and the Web document, now named u.get, becomes an ordinary F-logic object
whose contents may be conceived as a large string. In particular, u.get is \cached" and the url u
is accessed only once. Note that the potentially system-de�ned methods for class webdoc are �xed
in a given implementation|the actually system-de�ned (i.e., \�lled") methods for u.get depend
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on the result of accessing u. For example, if an error occurs, errors is de�ned and hrefs@(: : : ) is
unde�ned.

Extracting the Web Skeleton

As a typical and basic example, the Web skeleton can be automatically extracted with Florid
using the generic skeleton extractor Pext given in Figure 8:

Pext: root[src!!fu1; : : : ; ung]. % (1)
node :: url. % (2)

(U : node).get  root[src!!fUg]. % (3)

Y : node, L : label, X[L!!fYg]  % (4)
X : node.get[hrefs@(L)!!fYg], '.

Y.get  Y : node,  . % (5)

Fig. 8: A Generic Skeleton Extractor for Florid

First, the relevant source url's are de�ned (1), and the class node is declared a subclass of url (2).
Every source url u is made an instance of node (and thus of url), and the single-valued method get is
de�ned for u (3): u is accessed, u.get is assigned the respective Web document, and some additional
methods for u.get are de�ned, among them hrefs@(: : : ). Then, the exploration cycle is started:
Given an url (node) x, in rule (4), for all labels ` and referenced url's y s.t. x.get[hrefs@(`)!!y],

the labeled edge x
`
!! y is added to the F-logic ssdb and y is made a node. By constraining

(4) with an additional goal ', only those labeled edges are de�ned which are considered relevant.
Finally, (5) fetches the new Web document y.get of the node y, provided the condition  holds.
Thus, ' is a �rst constraint limiting the number of strings which are considered as nodes (and thus
url's). Additionally, only those url's y, for which  holds, are actually accessed and their contents
retrieved in y.get.

Example 11 (DBLP Skeleton Extractor) A fragment of the DBLP server skeleton is retrieved
(cf. Figure 2) when starting the skeleton extractor with

root[src!!fdblpg]. dblp = "http://www.informatik.uni-trier.de/~ley/db/".

and the constraints

� ' = substr("trier",Y), and (consider only url's containing \trier")

�  = substr("/db/journals/is/",Y), (restrict to IS journal)

After all relevant documents have been accessed, the query from Example 7 can be stated:
.
.
.

access : http://www.informatik.uni-trier.de/~ley/db/journals/is/is22.html ...

process: http://www.informatik.uni-trier.de/~ley/db/journals/is/is22.html (6588 bytes) ...

End evaluation

Answer to query : ?- dblp.."Inf. Systems"..L.."Michael E. Senko".

L/"Volume 5, 1980"

L/"Volume 1, 1975"

2 output(s) printed

It should be clear that there are many other ways of limiting the set of explored url's, which can
be easily incorporated into Pext. For example, for each node one may de�ne a method depth such
that source nodes have depth zero and a document referenced from another one with depth n has
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itself depth n+1. Observe that this implies that depth must be de�ned as a multi-valued method,
since each document may appear at di�erent depths.3

4.3. Semantics of Web Access

In order to connect the model-theoretic semantics of F-logic programs with the abstract Web model
explained above, the notion of a Web interface is de�ned:

De�nition 5 (Web Interface) Let URL be the set of all url's and R a set of reserved names
(0-ary functors). R contains the names for system-de�ned methods, here, at least the methods url,
get, hrefs, and errors. URL and R are included into the set F of object constructors. Then, a Web
Interface W is a tuple (R; explore), where

explore : URL ! 2HB
?

is a function mapping each u 2 URL to a set of new facts (representing what is known after
accessing and analyzing u).

De�nition 6 (H-Web-Interpretation) An H-Web-interpretation wrt. a Web interface W is an
H-interpretation H � HB? that additionally satis�es the Web access axiom:

for all u 2 U?; if u : url; u:get 2 H then explore(u) � H:

Thus, if the reference u.get representing the document associated with the url u is active in an
interpretation, then all information extracted by the analysis function explore is also contained
in the interpretation. Given a program P , an H-Web-interpretation H with H j= P is called
H-Web-model of P . Using these de�nitions it is easy to show [HLLS97]:

Theorem 2 Every negation-free program P has a unique minimal H-Web-model wrt. W.

Bottom-up Evaluation

In deductive databases and logic programming, the evaluation of a program P can be characterized
via the immediate consequences operator TP : Beginning with the empty interpretation, the rules
of the program are applied and the derived facts are added to the interpretation, until no new facts
can be derived anymore. For negation-free programs, TP is monotone, so the �xpoint T!

P (;) is the
minimal model. For Web-F-logic programs P , an H-Web-interpretation has to satisfy the axioms
given in De�nition 2 and the Web access axiom. To ensure this, the TP operator is extended as
follows:4

De�nition 7 For an F-logic program P and an H-interpretation H,

TWP (H) := H [ fh j (h body) 2 ground(P );H j= bodyg ;

T
W;0
P (H) := H ;

T
W;i+1
P (H) := C̀ ( TWP (TW;i

P (H)) [
S
fexplore(u) j u : url; u:get 2 TWP (TW;i

P (H))g )

Theorem 3 The �xpoint TW;!
P (;) is the minimal H-Web-model of a negation-free program P .

Note, that due to the presence of functors and path constructors, the �xpoint may be in�nite.
Florid's in
ationary bottom-up evaluation is based on the above TWP operator; if explore is not
used, the standard bottom-up evaluation is obtained.

3In principle, one could also use a single-valued method min depth. However, as more and more parts of the Web
are explored, the value of min depth may have to be updated, which is not easily expressed in a declarative language
like F-logic.

4Here, we use Florid's in
ationary semantics to also handle rules with negation.
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4.4. Implementation Issues

Florid does not work on H-interpretations but on semantic structures with a universe of oids: all
information about an object is stored in an object frame which can be accessed by the oid of that
object. Thus, for all references which adress the same object, there is only one oid and object
frame.

The integration of Web access to the evaluation component simply amounts to a special treat-
ment of the method get and the class url when adding new facts to the interpretation: Whenever
the method get becomes de�ned for an object u,it is checked whether u is a member of the class
url; and whenever a new instance is added to the class url, it is checked whether the method get is
de�ned for it. In both cases, the function explore is called for u and the resulting facts are added
to the interpretation. Web pages are loaded only when a new fact of this type is inserted. Thus,
no document is fetched more than once. Note that the Web interface part does not interfere with
program optimization techniques.

5. EXAMPLE: EXTRACTING AND RESTRUCTURING WEB DATA

In this section, a comprehensive example illustrates the concise and elegant programming style for
querying and restructuring Web data with Florid. Here, by restructuring we mean the reorgani-
zation of data extracted from the Web using logic rules. Again, the example is based on the DBLP
server.

Apart from extracting the skeleton of a set of Web documents (i.e., their link structure) via the
system-de�ned method hrefs@(: : : ) (see Example 11), also their contents may be queried. To this
end, built-in predicates for extracting and analyzing data from accessed Web documents have to
be provided. A simple, yet 
exible and powerful approach used in Florid and also in many other
systems, is to view Web documents as (large) strings. Then, using regular expressions, patterns in
Web documents can be easily exploited, e.g., to extract all strings between pairs of HTML tags like
<h2> and </h2> (level-2 headings), or to analyze tables or lists. The regular expressions employed in
Florid include groups and format strings thereby providing an already quite expressive language:
The predicate

match(Str, RegEx, Fmt, Res)

�nds all strings in the input string Str which match the pattern given by the (GNU) regular
expression RegEx. The format string Fmt describes how the matched strings should be returned
in Res. This feature is particularly useful when using groups (expressions enclosed in n(...n)) in
regular expressions. For example,

?- match("Time heals all wounds", "n(.*n) heals n(.*n) n(.*n)", "n1 n3 n2 heels", X).

yields X="Time wounds all heels". Instead of Fmt and Res, also lists of format strings and result
variables can be given. For example,

?- match("<li><a href="is22.html">Volume 22, 1997</a>",
"Volume n([0-9]+n), n([0-9]+n)", ["n1","n2"], [V,Y]).

binds the volume, 22, to V and the year, 1997, to Y. Since for an url u, the reference u.get denotes
the fetched Web document, u.get can be used as �rst argument to the match predicate.

In principle, by combining regular expressions with the power of recursive rules, arbitrary
complex parsing tasks can be handled with Florid. Fortunately, in many cases which we have en-
countered, there is no need to introduce recursion for parsing, and regular expressions of moderate
size are su�cient to extract the desired data. In order to directly exploit the document structure
of hypertext (or other structured) documents, their parse-trees could be made available to the user
using the corresponding built-ins.
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Populating the Publications Database

In Example 11, it is shown how to extract the skeleton of the DBLP server. In the sequel, we show
how (part of) the object-oriented publications database in Figure 1 can be populated using the
contents of the DBLP pages. We consider the following simpli�ed sub-schema:

paper[authors ))string; title )string].
journal p ::paper[in vol)journal vol].
journal vol[volume )integer; number ))integer; year ))integer; of )journal].
journal[name )string].

First, the url's of the DBLP server at Trier, Aachen, and a local (and incomplete) mirror are
de�ned for the object dblp:

dblp[trier !"http://www.informatik.uni-trier.de/~ley/db/index.html";
aachen !"http://sunsite.informatik.rwth-aachen.de/dblp/db/index.html";
local !"�le:/home/dbis/
orid/dblp/db/index.html" ].

To allow for easy substitution of the data source, a generic name dblp.root is de�ned and the
corresponding page is accessed:

dblp[root !dblp.trier]. % de�ne which source to use
(dblp.root:url).get. % get the root page

Now we may follow the link named "Journal" of the Web document dblp.root.get and retrieve the
(unique) journal page:

dblp[the journal page !U]  dblp.root.get[hrefs@("Journals") !!fUg].
(dblp.the journal page:url).get.

For each journal, we create a (logical) oid f(J,U) which depends on the name J and url U of the
corresponding journal. For every journal, the method page is de�ned which yields its url; the last
two goals select only links which lead to journals:

f(J,U):journal[name!J; page!U]  
dblp.the journal page.get[hrefs@(J) !!fUg],
substr("db/journals",U), not U = dblp.the journal page.

Now we may ask Florid to �nd all names of journals:

Answer to query : ?- :journal[name !J].

J/"(Office) Information Systems (TOIS)"

J/"AI Communications"

.

.

.

J/"Transactions on Software Engineering (TSE)"

J/"Wirtschaftsinformatik"

77 output(s) printed

Next we get all volumes of all journals (restricted to a class rel journal). Here, for the �rst time,
we use match with regular expressions to extract the number and year of the volume. Observe the
concise rule notation obtained due to Florid's path expressions and the use of match:

"Information Systems" : rel journal.

(J.page:url).get  J:journal[name!N:rel journal]. % get journal pages

U.get:journal vol[of !J; year !Y; volume !V]  
J:journal[name!N].page.get[hrefs@(Label) !!fUg],
match(Label, "Volume n([0-9]+n), n([0-9]+n)", ["n1","n2"], [V,Y]).
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Fig. 9: Querying the DBLP Server with Florid

Finally, we are in position to extract the individual papers together with the volume, number,
authors, title, and pages (pp) with the query given below. To this end, we make use of the textual
structure of volume pages: Given a volume v, the contents of each number can be found between
\Number" followed by the number ([0-9]+) and the next level-2 heading <h2> (see Figure 9). This
text is matched by the �rst regexp in the query below. The authors of the volume are the names
of the links which lead to url's in the /a-tree/, except the link to the authors index itself. For
each paper, the HTML source contains three lines: the authors, the title, and the pages. Given an
author, the last two subgoals extract this information.

f(V,T) : journal p[in vol !V; number !N; authors !!fAg; title !T; pp!P]  
V : journal vol,
match(V, "Number \([0-9]+\)\(\([^<]\|<[^h]\|<h[^2]\|<h2[^>]\)+\)",

["n1","n2"], [N,TS]),
V[hrefs@(A) !!fUg], substr("/a-tree/",U), not A = "Author",
strcat(A,".*\n\(.+\)\n\(.*\)",RegExp),
match(TS,RegExp, ["n1","n2"],[T,P]).

Observe that we use the volume V1 and the title T of a paper to create a unique f(V,T).

Restructuring Information

Assume we want to create the class of all authors of journal papers and de�ne a parameterized
method containing all relevant data about an author's journal papers. To do so, we simply have
to query the data extracted so far and reorganize it as follows:

1The volume V is a Web document, not a number!
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A : author[paper@(JN,V,N,Y,P)!!fTg]  
: journal p[number!N; title!T; authors!!fAg; pp!P]

.in vol[year!Y;volume!V].of[name!JN].

This rule exhibits again the power of path expressions for navigation on object-oriented databases.
In Florid's dood framework, also the computational power and elegance of deduction can be
used: The following rules �rst extract the (irre
exive) co-author relation (restricted to the given
journal papers) and then determine all \loners", i.e., authors who have no co-authors.

co author(A,B)  : journal p[authors!!fA,Bg], not A=B.
loner(X)  X : author, not co author(X, ).

Using the transitive closure of the co-author relation, we may determine whether two authors are
in di�erent connected components:

tc co author(A,B)  co author(A,B).
tc co author(A,B)  tc co author(A,C),tc co author(C,B).

?- sys.strat.doIt.

di� component(A,B)  A : author, B : author, not tc co author(A,B).

Here, the system query \?-sys.strat.doIt" prescribes that the rules below it are evaluated only after
the rules above it have reached a �xpoint.

Finally, we can determine the number of di�erent connected components by �rst collapsing
all authors reachable from each other into one object and then counting the number of resulting
equivalence classes:

f(A) = f(B)  tc co author(A,B).

components(N)  N=countfA; A=f(B)g.

6. CONCLUSION AND OUTLOOK

We have presented a deductive object-oriented perspective on management of semistructured data:
dood languages are well-suited for exploring, modeling and (re)structuring semistructured data,
due to (i) the semantical richness of the object-oriented model, and (ii) the concise, elegant, and
expressive programming style provided by deductive rules. We have employed the dood language
F-logic to show that both, navigation on semistructured data using general path expressions,
and querying and restructuring of Web data can be handled in a uni�ed formal framework. In
particular, the use of a single general dood language supports rapid prototyping and adaptability
to changing needs. The proposed framework is implemented in the Florid system [FLO98]. So far,
restructuring has been considered on the logical level only, i.e., using deductive rules, the extracted
Web data is reorganized into di�erent views. Florid is currently extended with built-ins that will
allow generation of XML [XML98] and HTML output so that restructuring is not only performed
at the logical level but also at the document and presentation level, respectively.

As is the case with other existing Web query languages, Web pages are queried using regular
expressions in Florid. Although the combination of regular expressions and recursive rules already
results in a very 
exible language for data extraction, even more powerful parsing techniques for
analyzing the document structure of arbitrary SGML documents will often simplify data extraction
(e.g., access to list and table entries in HTML, or analysis of the tree structure of XML documents).
To this end, a general SGML parser and a translator for mapping the parsed document structure
into the corresponding F-logic structure have recently been incorporated into Florid. Note that
the formal framework easily accomodates arbitrary new document types, simply by extending the
analyze function (Section 4) accordingly.
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