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As the size of today's supercomputers grow exponentialhuimbers of processors, the applications
that run on these systems scale to larger procesaant The majority of these applications
commonly use MPI; a trace of these MPI communicatiomtsvis an important input to the tools that
visualize, simulate for performance modeling, or enélohéing of parallel applications. We introduce
an efficient, accurate and flexible trace-driven panfance modeling and prediction tool, PMaC's
Open Source Interconnect and Network Simulator (PSINGMPI applications. A principal feature
of PSINS is its usability for applications that scaletagarge processor counts. PSINS generates
compact and tractable event traces for fast and efficgimulations while producing accurate
performance predictions. PSINS was incorporated into ®Mautomated performance prediction
framework and used to model three applications from the Highfolfnance Computing
Modernization Office’s (HPCMO) Technology-Insertion 2008-Q9) application suite.

1 Introduction

Performance models are calculable expressions that deseehlateraction of an application with the
computer hardware. The performance models provide valualftgmation for tuning of both
applications and systems [1]. An ongoing trend in High Peidoce Computing (HPC) is the increase in
the total system core count; this in turn has enaltating to tens and even hundreds of thousands of
cores in recent years enabled by performance modelsatbatised to guide application tuning [2-4].
Application performance is a complex function of manytdex such as algorithms, implementation,
compilers, underlying processor architecture and communicatitergonnect) technology and topology.
However as applications scale to larger processor coumsintierconnect becomes a more prevalent
factor in their performance. This requires improved toolefticiently measure and accurately model the
performance of applications.

We present an automated performance modeling framewatknitludes an efficient, accurate and
flexible trace-driven performance modeling toolM&C's Open_8urce _hterconnect and étwork
Simulator (PSINS), for MPI applications. PSINS includes major components, one for collecting
event traces during an application’s rlRBNS Tracer), and the other for the replay and simulation of
these event traceBPHNS Smulator) for the modeling of current and future HPC systems. Thelksign
goals for PSINS are 1) scalability 2) speed 3) exteiitgibllo meet the first goal, PSINS Tracer runs with
very low overhead to generate compact traces that do not uséitsthan needed for a complete record
of events. To meet the second goal, PSINS Simulator enadyday of events faster than real-time (a
replay does not normally take as long as the original applicatiop while still producing accurate
performance predictions. To meet the third goal, bottNBSracer and Simulator are provided freely as
open-source and include its built-in trace formats,etrBmmat conversion modules, communication
models, and a graceful API for extending the communication iadewell as input trace formats.

In this work, the addition of PSINS Tracer and SimulatorPtdaC's automated performance
prediction framework is tested by predicting the perforoeant a set of applications from the Department



of Defense’s (DoD) High Performance Computing Modernizatioogiam’s (HPCMP) Technology

Insertion 2009 (TI1-09) program. The remainder of the paper iolatids follows. Section 2 describes the
framework in details about how the PSINS Tracer and Bitmwu fit in. Section 3 presents the
experimental results. Section 4 describes the related amatiSection 5 presents conclusions.

2 Automated Performance Prediction Framework

The PMaC framework for performance prediction has thmeeary components, 1) benchmarks for
characterizing machines (collectively called Machin€ifs), 2) trace collection and simulation tools for
gathering information about applications (collectively callggplcation Signatures), and 3) a tool for
applying performance hypotheses on the second in light of stédalled the Convolver).

Figure 1 illustrates the layout of the automated performanesligiion framework and its
components. The framework is composed of two modelsgéegimocessor model and a communications
model. Each model is comprised of an application signaturaaehine profile, and a convolution
method. The application signature represents the work needed twne by the application, or the
fundamental operations required by the application indepewd#me machine. The application signature
is collected on a base HPC system. The machine prgfiiesents the capability of a target HPC system,
or its measured performance in executing fundamentadatipns, something that is measured by low-
level benchmarks such a€Bench, NetBench and MultiMAPS The convolution method is a way of
mapping the application’s needed work to the machine’s capedjilgpecifically, mapping application
trace data to measured benchmark data via simulationa(ireplay of the application running on the
target system).
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Figure 1. Automated perfor mance prediction framewor k

In the following subsections, we describe the new components Bf3INS Tracer (Section 2.1) to
gather the communications model’'s application signature, anB 3¢S simulator (Section 2.2) as the
overall convolution method for both the processor and communicataelmFor a more complete
description of the other pieces of the framework, pleas&raeely et al. [25], Carrington et al. [30] and
Tikir et al. [31].



2.1 PSINS Tracer for Collecting MPI Event Traces (Application Signature)

PSINS provides a tracer library based on MPI's profiimegrface (PMPI) [10]. PMPI provides the means
to replace MPI routines at link time allowing tool develgptr include additional instrumentation code
around the actual MPI calls. In addition, the PMPI igtegfenables gathering detailed information about
the arguments that are passed to each MPI call bynghtive same function signature as the actual
invocation.

The tracer library provides wrappers that serve as replects for the MPI routines in the code (i.e.
communication or synchronization events). For each MPImeueplacement, it uses additional code to
gather detailed information about the called MPI functod its arguments. The tracer also gathers the
time in between consecutive communication events, refesetthea computation time and labeled as
CPUBUrst. This CPUBuUrst time is used later in the convolution tmiporate the processor model with
the communication model. The PSINS tracer includes a nuoflmgtimizations to reduce trace size and
overhead of trace collection. These are discussed in defidkir et al. [32].

Besides tracing functionality, PSINS tracer provides tadditional libraries for performance
measurement and analysis that can be included in ttiagnaun or collected independent from the trace.
The first, calledPSINSLight, is a library to measure overall execution time of the agjtin and gather
some event counts from the performance monitoring hardwesieg PAPI [15]) in the underlying
processors such as FLOP rate and overall cache miss .cbbatsecond, callddSINS Count, is a library
to measure the execution times and frequencies of eachfuvi&tion in the application in addition to
those values collected by PSINS Light. PSINS Counmgas to IPM [14] and provides only a subset of
information IPM provides. PSINS Tracer library is alregaiyrted for several HPC systems and is
available at http://www.sdsc.edu/pmac/projects/psins.html

2.2 Simulator for Performance Prediction

PSINS Simulator takes the communication event traceaforapplication and a set of modeling
parameters for the target system and then replays th® &eee for the target system, essentially
simulating the execution of the parallel application ontéinget system. To simulate an MPI application
on a target system, PSINS Simulator models both computatidrtommunication times for each task in
the application.

To simulate the execution of a target system, the sitowheeds details about the configuration and
construction of the system. These modeling parameters cafisibe configurable components of a
parallel HPC system and are described by the machineepobfihe target machine.

PSINS Simulator consumes events from the input tracéN@ 8ace of application) in the order of
their execution within the simulator rather than consuntimggn on a per-task basis. The simulator uses
an event queue based on priority queues to replay thetrapat

The execution of an event during simulation depends on tledthe event and the state of the
system at each event execution. The state of a systamyagiven time is a combination of the best
achievable bandwidths and latencies, the bus load, canientaffic in the network and the underlying
network topology. If it is a CPU burst event, it is compddbg calculation of its time on the target system
using the data from the processor model. For blocking comniionioavents, it is kept in the queue until
its mate is posted. If the event is a global commumipait is kept in the queue until all participating
tasks post the same event. When all participating taskstpesevent for that communication, the
communication model is asked to calculate the bandwidth gentlaat the time of its execution and the
event is executed. Each event type can have a differedél based on network or system configuration.
For more complete details of the simulator and its comication models refer to Tikir et al [32].

PSINS Simulator includes a statistics module to colletailed information about the simulation of
an event trace on the target system. The statistics modlidets information about the event execution



frequencies, computation and communication times for eachagslkell as the execution time for each
event type on the target system. It also collects théing time for each event type to provide
information on load balancing during the execution. Moreadvgenerates histograms on message sizes
and on the ranges of bandwidths calculated by the communicatidel for the communication events.

Such information provides valuable feedback to users andagerslto help them understand the
interaction of applications with the target system, aardlme valuable to guiding optimization and porting
efforts for the application. More importantly, this anfnation is useful for verifying simulation accuracy
by comparing it to the same information measured during amlaoin on the target system using
performance monitoring tools such as IPM, TAU or PSIN8rt.o

3 Experimental Results

To demonstrate the usability, efficiency and accuracy of usindP818IS Tracer and Simulator in the
performance prediction framework described in section zhaxe conducted several experiments. We
used PSINS Tracer to collect MPI event traces foretts@entific applications: AVUS [17], HYCOM
[18] and ICEPIC [19] from the TI-09 Benchmark Suite [20]eTraces were then used in the framework
to simulate a set of target HPC systems and the pi@wicresulting from these simulations were
compared to the actual measurements gathered on the istgens

All the traces were collected on a base system, Navar@geaphic Office's IBM Cluster 1600
(3072 cores connected with IBM's High Performance SwitchljeatBabbage. We ran the scientific
applications with two input data sets, namgbndard andlarge, and processor counts ranging from 59
to 1280. The actual runtimes for the applications range fronmo@%thours where each application runs
for around half an hour at the highest processor countvasdscaled to that count using the same input
data set (i.e. strong scaling). For replay and simulaifahe collected traces, we ran the simulator on a
Linux box with two dual-core processors. In addition to pradicthe base system Babbage, we also
predicted the Maui High Performance Computing Center's (MHPDO€! Cluster, calledlaws (5120
cores connected with Infiniband) and Engineer Research ameldpenent Center’'s (ERDC) Cray XT3
system, calledsapphire (8320 cores connected with Cray SeaStar engine). In Table gregent the
detailed results of these experiments in terms of piediaccuracy.

Jaws Sapphire | Babbage

AbsoluteAverage Error 8.2 % 13.0 % 12.1 %
Per Machine

HYCOM AVUS ICEPIC

Absolute Average Error o 0 .
Per Application 14.0% 9.0 % 10.1 %

Table 1. Errors per machine over all applications and per application over all machines.

Table 1 summarizes the average absolute error for eachimaaaber all applications and CPU
counts and the average absolute error for each applicatioratbwveachines and CPU counts. Table 1
shows that overall average absolute prediction error for eachdy§t€m is under 13% and overall error
for each application is under 15%. We believe that the &orodYCOM over all machines is slightly
higher compared to the error for other applications dubéadarhbalance in computation times among its
tasks (as also shown in Figure 2).

To investigate the accuracy of the framework with theNl8Sools, it was used to collect traces and
predict the runtimes of AVUS, ICEPIC, and HYCOM on Ja8apphire, and Babbage. Table 2 presents
the comparison between the predicted runtime time, the measunéiche, and the relative error
compared to an actual run of each application and the H#*€esystems. Using the data from Table 2 we
calculate the overall average absolute relative error fahallpredictions to be 11.1% and the average



absolute relative error for each system to be below 13vitBthe majority of predictions resulting in an
absolute relative error below 20%. These results show thatithiene predictions are quite accurate with
the addition of PSINS to the automated framework.

# Jaws Sapphire Babbage
CPU| Runtime(s) % Runtime (s) % Runtime (s) %
Predicted| Real |Error |Predicted| Real |Error | Predicted | Real |EfTor
256 5,973 5,800 3.0 5,756 5,956 -3.4 5,399 5,910 -86
HYCOM| 504 2,816 3,002 -6.2 2,764 3,752 -26.3 2,719 2,987 -9.1
LRG 1006 1,483 1,751 -15.3 1,545 1,914 -19.3 1,524 1,918 -205
1267 1,206 1,483 -18.7 1,284 1,524 -15.7 1,278 1,693 -245
59 7,286 7,563 -3.7 6,987 9,280 -24.7 7,879 7,312 7.7
Hycom| 124 3,336 3,243 29 3,439 4,282 -19.7 3,941 3,336 18.1
STD 250 1,910 1,618 18.1 2,165 1,791 20.9 2,173 1,894 14.7
501 1,113 1,042 6.8 1,309 1,128 16.0 1,372 1,217 127
256 6,042 7,201 -16.1 6,576 7,533 -12.7 6,568 8,053 -18.4
AVUS 512 3,394 3,768 -9.9 3,721 4,018 -74 3,702 4,366 -15.2
LRG 1024 2,094 2,092 0.1 2,286 2,106 85 2,242 2,670 -16.0
1280 1,850 1,769 4.6 2,026 1,773 14.3 1,972 2,340 -157
64 7,062 7,835 -9.9 7,934 7,835 13 7,547 8,599 -12.2
AVUS 128 3,586 3,819 -6.1 4,115 4,102 0.3 3,906 4,244 -8.0
STD 256 1,923 1,918 0.2 2,243 2,036 10.2 2,119 2,180 -2.8
384 1,366 1,293 5.6 1,619 1,371 181 1,524 1,486 2.6
256 3,746 3,497 7.1 4,812 4,796 0.3 6,01 6,371 -5.6
ICEPIC | 512 2,251 2,563 -12.2 2,929 2,623 11.7 2,919 3,693 -21.0
LRG 1024 2,245 2,271 -11 2,224 1,797 23.8 2,346 1,993 17.7
1280 2,158 2,420 -10.8 2,143 1,772 20.9 1,936 2,245 -13.8
64 4,284 4,185 24 5,419 5,082 6.6 6,791 7,321 -7.2
ICEPIC | 128 2,469 2,97Q -16.9 3,199 3,079 3.9 3,980 4,037 -14
STD 256 2,683 2,545 15 2,635 2,118 19.7 2,252 2,567 -12.3
384 2,237 2,60Q -13.9 2,212 2,086 6.0 1,902 2,000 -4.9

Table 2. Predicted and measured runtimes (in seconds) and prediction errors.

More importantly, the PSINS Simulator enables usersvestigate the accuracy of the model
simulation at a finer granularity. Figure 2 illustrage$ine-grain comparison of the communication times
simulated (predicted) to the measured times for eask ¢f HYCOM for 124 processors on Babbage.
The red vertical bars are used to represent the measmexiwhereas the green horizontal line is used to
represent the simulated times. Figure 2 shows that debpitenbalance in communication times among
tasks in HYCOM, the framework is quite accurate indmtng the communication time for the
individual tasks.

In addition to comparing communication times for each talkk, riew framework enables an
additional break down of the communication time into the timensp each MPI routine. Using this
feature, we measured the time spent for each typeRifrbutine and compared the simulated times with
the measured times. Figure 3 (a) presents the measutess ¥at the percentages of time spent in each
MPI routine over the total communication time whereas Figu(b) presents the percentages for the
PSINS simulation. Figure 3 shows that the percentage efdpent in MPI routines from the simulation
closely matches the percentages from the actual run, imdjdie accuracy of the framework at a finer
granularity.
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4 Related Work

Early work on performance prediction of HPC apgimas was done in the Proteus simulator [21], an
execution-driven simulator which met many of theige goals that have been laid out for PSINS at the
time. Proteus was designed modularly so that itdcbe customized for the target system and tradeoff
could be made between accuracy and efficiency bggua different implementation of a certain
simulation component. Unfortunately Proteus intrekia slowdown of 2-35x for each process in the
target application, which renders it cumbersometl@r purpose of simulating long-running large-scale
applications at thousand of processors.

Later work, such as Parallel Proteus [21], LAPSE],[2MPI-SIM [23] and the Wisconsin Wind
Tunnel [24] improved the efficiency of the simutati required to make predictions by executing
simulations in parallel. Typically these tools aeecution-driven and perform parallel discrete éven
simulation and tend to be full machine simulattwst taddress many aspects of a target architecthee o



than the network. This causes them to be slower, morelegrapd less modular than PSINS for the
purpose of MPI scaling investigations.

The Dimemas project [7] uses the concept of largely divorcirtgrank prediction from the
prediction of serial computation portions of the code. Like PSINE user supplies Dimemas with a
speedup ratio for a target system. Dimemas uses thislgpeatio along with the MPI event trace (in
their case called an MPIDTrace) to perform a discestent simulation of the application on a target
system. Unlike PSINS, Dimemas is not open source, henaghhgseful it is not quite satisfactory as a
medium for community development in this arena. Dimemasiotly stores their MPI event traces as an
ASCII text file resulting in event traces files tha¢ annecessarily large.

5 Conclusions

Performance models can provide valuable information in turfitgtl applications and systems, enable
application-driven architecture design and extrapolate tHerpsnce of applications on future systems.
In the constantly changing and growing field of HPC, itngpartant to have a modeling tool that is
flexible enough to adapt to architectural changes andailde enough to grow with the constantly
increasing system sizes. PSINS adds this flexibilitg sacalability to the PMaC Performance Prediction
Framework.

Our results demonstrate that using PSINS within the prediramework results in high accuracy
when predicting the performance of three large scale Hpflications for a number of different input
decks and processor counts for three HPC systems.
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