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As the size of today’s supercomputers grow exponentially in numbers of processors, the applications 
that run on these systems scale to larger processor counts. The majority of these applications 
commonly use MPI; a trace of these MPI communication events is an important input to the tools that 
visualize, simulate for performance modeling, or enable tuning of parallel applications. We introduce 
an efficient, accurate and flexible trace-driven performance modeling and prediction tool, PMaC's 
Open Source Interconnect and Network Simulator (PSINS), for MPI applications. A principal feature 
of PSINS is its usability for applications that scale up to large processor counts. PSINS generates 
compact and tractable event traces for fast and efficient simulations while producing accurate 
performance predictions. PSINS was incorporated into PMaC’s automated performance prediction 
framework and used to model three applications from the High Performance Computing 
Modernization Office’s (HPCMO) Technology-Insertion 2009 (TI-09) application suite.   

1 Introduction 

Performance models are calculable expressions that describe the interaction of an application with the 
computer hardware. The performance models provide valuable information for tuning of both 
applications and systems [1]. An ongoing trend in High Performance Computing (HPC) is the increase in 
the total system core count; this in turn has enabled scaling to tens and even hundreds of thousands of 
cores in recent years enabled by performance models that are used to guide application tuning [2-4]. 
Application performance is a complex function of many factors such as algorithms, implementation, 
compilers, underlying processor architecture and communication (interconnect) technology and topology. 
However as applications scale to larger processor counts, the interconnect becomes a more prevalent 
factor in their performance. This requires improved tools to efficiently measure and accurately model the 
performance of applications.  

We present an automated performance modeling framework that includes an efficient, accurate and 
flexible trace-driven performance modeling tool, PMaC's Open Source Interconnect and Network 
Simulator (PSINS), for MPI applications. PSINS includes two major components, one for collecting 
event traces during an application’s run (PSINS Tracer), and the other for the replay and simulation of 
these event traces (PSINS Simulator) for the modeling of current and future HPC systems. The key design 
goals for PSINS are 1) scalability 2) speed 3) extensibility. To meet the first goal, PSINS Tracer runs with 
very low overhead to generate compact traces that do not use more bits than needed for a complete record 
of events. To meet the second goal, PSINS Simulator enables replay of events faster than real-time (a 
replay does not normally take as long as the original application run) while still producing accurate 
performance predictions. To meet the third goal, both PSINS Tracer and Simulator are provided freely as 
open-source and include its built-in trace formats, trace format conversion modules, communication 
models, and a graceful API for extending the communication models as well as input trace formats.  

In this work, the addition of PSiNS Tracer and Simulator to PMaC's automated performance 
prediction framework is tested by predicting the performance of a set of applications from the Department 



of Defense’s (DoD) High Performance Computing Modernization Program’s (HPCMP) Technology 
Insertion 2009 (TI-09) program. The remainder of the paper is laid out as follows. Section 2 describes the 
framework in details about how the PSiNS Tracer and Simulator fit in. Section 3 presents the 
experimental results. Section 4 describes the related work and Section 5 presents conclusions. 

2 Automated Performance Prediction Framework 

The PMaC framework for performance prediction has three primary components, 1) benchmarks for 
characterizing machines (collectively called Machine Profiles), 2) trace collection and simulation tools for 
gathering information about applications (collectively called Application Signatures), and 3) a tool for 
applying performance hypotheses on the second in light of the first (called the Convolver). 

Figure 1 illustrates the layout of the automated performance prediction framework and its 
components. The framework is composed of two models, a single-processor model and a communications 
model. Each model is comprised of an application signature, a machine profile, and a convolution 
method. The application signature represents the work needed to be done by the application, or the 
fundamental operations required by the application independent of the machine. The application signature 
is collected on a base HPC system. The machine profile represents the capability of a target HPC system, 
or its measured performance in executing fundamental operations, something that is measured by low-
level benchmarks such as ICBench, NetBench and MultiMAPS. The convolution method is a way of 
mapping the application’s needed work to the machine’s capabilities, specifically, mapping application 
trace data to measured benchmark data via simulation (i.e. a replay of the application running on the 
target system).  
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Figure 1. Automated performance prediction framework 

In the following subsections, we describe the new components of the PSiNS Tracer (Section 2.1) to 
gather the communications model’s application signature, and the PSiNS simulator (Section 2.2) as the 
overall convolution method for both the processor and communication model. For a more complete 
description of the other pieces of the framework, please see Snavely et al. [25], Carrington et al. [30] and 
Tikir et al. [31]. 



2.1 PSiNS Tracer for Collecting MPI Event Traces (Application Signature) 

PSINS provides a tracer library based on MPI's profiling interface (PMPI) [10]. PMPI provides the means 
to replace MPI routines at link time allowing tool developers to include additional instrumentation code 
around the actual MPI calls. In addition, the PMPI interface enables gathering detailed information about 
the arguments that are passed to each MPI call by sharing the same function signature as the actual 
invocation. 

The tracer library provides wrappers that serve as replacements for the MPI routines in the code (i.e. 
communication or synchronization events). For each MPI routine replacement, it uses additional code to 
gather detailed information about the called MPI function and its arguments. The tracer also gathers the 
time in between consecutive communication events, referred as the computation time and labeled as 
CPUBurst. This CPUBurst time is used later in the convolution to incorporate the processor model with 
the communication model. The PSiNS tracer includes a number of optimizations to reduce trace size and 
overhead of trace collection. These are discussed in detail in Tikir et al. [32]. 

Besides tracing functionality, PSINS tracer provides two additional libraries for performance 
measurement and analysis that can be included in the tracing run or collected independent from the trace. 
The first, called PSINS Light, is a library to measure overall execution time of the application and gather 
some event counts from the performance monitoring hardware (using PAPI [15]) in the underlying 
processors such as FLOP rate and overall cache miss counts. The second, called PSINS Count, is a library 
to measure the execution times and frequencies of each MPI function in the application in addition to 
those values collected by PSINS Light. PSINS Count is similar to IPM [14] and provides only a subset of 
information IPM provides. PSINS Tracer library is already ported for several HPC systems and is 
available at http://www.sdsc.edu/pmac/projects/psins.html.  

2.2 Simulator for Performance Prediction 

PSINS Simulator takes the communication event trace for an application and a set of modeling 
parameters for the target system and then replays the event trace for the target system, essentially 
simulating the execution of the parallel application on the target system. To simulate an MPI application 
on a target system, PSINS Simulator models both computation and communication times for each task in 
the application. 

To simulate the execution of a target system, the simulator needs details about the configuration and 
construction of the system. These modeling parameters consist of the configurable components of a 
parallel HPC system and are described by the machine profile of the target machine. 

PSINS Simulator consumes events from the input trace (PSiNS trace of application) in the order of 
their execution within the simulator rather than consuming them on a per-task basis. The simulator uses 
an event queue based on priority queues to replay the input trace.  

The execution of an event during simulation depends on the type of the event and the state of the 
system at each event execution. The state of a system at any given time is a combination of the best 
achievable bandwidths and latencies, the bus load, contention, traffic in the network and the underlying 
network topology. If it is a CPU burst event, it is completed by calculation of its time on the target system 
using the data from the processor model. For blocking communication events, it is kept in the queue until 
its mate is posted. If the event is a global communication, it is kept in the queue until all participating 
tasks post the same event. When all participating tasks post the event for that communication, the 
communication model is asked to calculate the bandwidth and latency at the time of its execution and the 
event is executed. Each event type can have a different model based on network or system configuration. 
For more complete details of the simulator and its communication models refer to Tikir et al [32]. 

PSINS Simulator includes a statistics module to collect detailed information about the simulation of 
an event trace on the target system. The statistics module collects information about the event execution 



frequencies, computation and communication times for each task as well as the execution time for each 
event type on the target system. It also collects the waiting time for each event type to provide 
information on load balancing during the execution. Moreover, it generates histograms on message sizes 
and on the ranges of bandwidths calculated by the communication model for the communication events. 

Such information provides valuable feedback to users and developers to help them understand the 
interaction of applications with the target system, and can be valuable to guiding optimization and porting 
efforts for the application. More importantly, this information is useful for verifying simulation accuracy 
by comparing it to the same information measured during an actual run on the target system using 
performance monitoring tools such as IPM, TAU or PSINS Count. 

3 Experimental Results 

To demonstrate the usability, efficiency and accuracy of using the PSINS Tracer and Simulator in the 
performance prediction framework described in section 2 we have conducted several experiments.  We 
used PSINS Tracer to collect MPI event traces for three scientific applications: AVUS [17], HYCOM 
[18] and ICEPIC [19] from the TI-09 Benchmark Suite [20]. The traces were then used in the framework 
to simulate a set of target HPC systems and the predictions resulting from these simulations were 
compared to the actual measurements gathered on the target systems.  

All the traces were collected on a base system, Naval Oceanographic Office's IBM Cluster 1600 
(3072 cores connected with IBM's High Performance Switch), called Babbage. We ran the scientific 
applications with two input data sets, namely standard and large, and processor counts ranging from 59 
to 1280. The actual runtimes for the applications range from 0.5 to 2.5 hours where each application runs 
for around half an hour at the highest processor count and was scaled to that count using the same input 
data set (i.e. strong scaling). For replay and simulation of the collected traces, we ran the simulator on a 
Linux box with two dual-core processors. In addition to predicting the base system Babbage, we also 
predicted the Maui High Performance Computing Center’s (MHPCC) Dell Cluster, called Jaws (5120 
cores connected with Infiniband) and Engineer Research and Development Center’s (ERDC) Cray XT3 
system, called Sapphire (8320 cores connected with Cray SeaStar engine). In Table 2 we present the 
detailed results of these experiments in terms of prediction accuracy. 

 
 Jaws Sapphire Babbage 

Absolute Average Error 
Per Machine 

8.2 % 13.0 % 12.1 % 

 HYCOM AVUS ICEPIC 
Absolute Average Error 

Per Application 
14.0 % 9.0 % 10.1 % 

Table 1. Errors per machine over all applications and per application over all machines. 

Table 1 summarizes the average absolute error for each machine over all applications and CPU 
counts and the average absolute error for each application over all machines and CPU counts. Table 1 
shows that overall average absolute prediction error for each HPC system is under 13% and overall error 
for each application is under 15%. We believe that the error for HYCOM over all machines is slightly 
higher compared to the error for other applications due to the imbalance in computation times among its 
tasks (as also shown in Figure 2). 

To investigate the accuracy of the framework with the PSiNS tools, it was used to collect traces and 
predict the runtimes of AVUS, ICEPIC, and HYCOM on Jaws, Sapphire, and Babbage. Table 2 presents 
the comparison between the predicted runtime time, the measured runtime, and the relative error 
compared to an actual run of each application and the three HPC systems. Using the data from Table 2 we 
calculate the overall average absolute relative error for all the predictions to be 11.1% and the average 



absolute relative error for each system to be below 13.1% with the majority of predictions resulting in an 
absolute relative error below 20%. These results show that the runtime predictions are quite accurate with 
the addition of PSiNS to the automated framework. 

 

 
# 

CPU 
 

Jaws Sapphire Babbage 

Runtime (s) % 
Error 

Runtime (s) % 
Error 

Runtime (s) % 
Error Predicted Real  Predicted Real Predicted Real 

HYCOM 
LRG  

256 5,973 5,800 3.0 5,756 5,956 -3.4 5,399 5,910 -8.6 

504 2,816 3,002 -6.2 2,764 3,752 -26.3 2,716 2,987 -9.1 

1006 1,483 1,751 -15.3 1,545 1,914 -19.3 1,524 1,918 -20.5 

1267 1,206 1,483 -18.7 1,284 1,524 -15.7 1,278 1,693 -24.5 

HYCOM 
STD 

59 7,286 7,563 -3.7 6,987 9,280 -24.7 7,875 7,312 7.7 

124 3,336 3,243 2.9 3,439 4,282 -19.7 3,941 3,336 18.1 

250 1,910 1,618 18.1 2,165 1,791 20.9 2,173 1,894 14.7 

501 1,113 1,042 6.8 1,309 1,128 16.0 1,372 1,217 12.7 

AVUS 
LRG 

256 6,042 7,201 -16.1 6,576 7,533 -12.7 6,568 8,053 -18.4 

512 3,394 3,768 -9.9 3,721 4,018 -7.4 3,702 4,366 -15.2 

1024 2,094 2,092 0.1 2,286 2,106 8.5 2,242 2,670 -16.0 

1280 1,850 1,769 4.6 2,026 1,773 14.3 1,972 2,340 -15.7 

AVUS 
STD 

64 7,062 7,835 -9.9 7,934 7,835 1.3 7,547 8,599 -12.2 

128 3,586 3,819 -6.1 4,115 4,102 0.3 3,906 4,244 -8.0 

256 1,923 1,918 0.2 2,243 2,036 10.2 2,119 2,180 -2.8 

384 1,366 1,293 5.6 1,619 1,371 18.1 1,524 1,486 2.6 

ICEPIC 
LRG 

256 3,746 3,497 7.1 4,812 4,796 0.3 6,016 6,371 -5.6 

512 2,251 2,563 -12.2 2,929 2,623 11.7 2,919 3,693 -21.0 

1024 2,245 2,271 -1.1 2,224 1,797 23.8 2,346 1,993 17.7 

1280 2,158 2,420 -10.8 2,143 1,772 20.9 1,936 2,245 -13.8 

ICEPIC 
STD 

64 4,284 4,185 2.4 5,419 5,082 6.6 6,791 7,321 -7.2 

128 2,469 2,970 -16.9 3,199 3,078 3.9 3,980 4,037 -1.4 

256 2,583 2,545 1.5 2,535 2,118 19.7 2,252 2,567 -12.3 

384 2,237 2,600 -13.9 2,212 2,086 6.0 1,902 2,000 -4.9 

Table 2. Predicted and measured runtimes (in seconds) and prediction errors. 

More importantly, the PSiNS Simulator enables users to investigate the accuracy of the model 
simulation at a finer granularity. Figure 2 illustrates a fine-grain comparison of the communication times 
simulated (predicted) to the measured times for each task of HYCOM for 124 processors on Babbage. 
The red vertical bars are used to represent the measured times whereas the green horizontal line is used to 
represent the simulated times. Figure 2 shows that despite the imbalance in communication times among 
tasks in HYCOM, the framework is quite accurate in predicting the communication time for the 
individual tasks. 

In addition to comparing communication times for each task, the new framework enables an 
additional break down of the communication time into the time spent in each MPI routine. Using this 
feature, we measured the time spent for each type of MPI routine and compared the simulated times with 
the measured times. Figure 3 (a) presents the measured values for the percentages of time spent in each 
MPI routine over the total communication time whereas Figure 3 (b) presents the percentages for the 
PSINS simulation. Figure 3 shows that the percentage of time spent in MPI routines from the simulation 
closely matches the percentages from the actual run, indicating the accuracy of the framework at a finer 
granularity. 



 

Figure 2. Measured and simulated communication times for all tasks. 

 

  

(a) (b) 

Figure 3. Communication time spent in MPI calls for HYCOM running with 124 tasks. 

4 Related Work 

Early work on performance prediction of HPC applications was done in the Proteus simulator [21], an 
execution-driven simulator which met many of the design goals that have been laid out for PSINS at the 
time. Proteus was designed modularly so that it could be customized for the target system and tradeoffs 
could be made between accuracy and efficiency by using a different implementation of a certain 
simulation component. Unfortunately Proteus introduces a slowdown of 2-35x for each process in the 
target application, which renders it cumbersome for the purpose of simulating long-running large-scale 
applications at thousand of processors. 

Later work, such as Parallel Proteus [21], LAPSE [22], MPI-SIM [23] and the Wisconsin Wind 
Tunnel [24] improved the efficiency of the simulation required to make predictions by executing 
simulations in parallel. Typically these tools are execution-driven and perform parallel discrete event 
simulation and tend to be full machine simulators that address many aspects of a target architecture other 



than the network. This causes them to be slower, more complex and less modular than PSINS for the 
purpose of MPI scaling investigations. 

 The Dimemas project [7] uses the concept of largely divorcing network prediction from the 
prediction of serial computation portions of the code. Like PSINS, the user supplies Dimemas with a 
speedup ratio for a target system. Dimemas uses this speedup ratio along with the MPI event trace (in 
their case called an MPIDTrace) to perform a discrete event simulation of the application on a target 
system. Unlike PSINS, Dimemas is not open source, hence though useful it is not quite satisfactory as a 
medium for community development in this arena. Dimemas currently stores their MPI event traces as an 
ASCII text file resulting in event traces files that are unnecessarily large. 

5 Conclusions 

Performance models can provide valuable information in tuning of both applications and systems, enable 
application-driven architecture design and extrapolate the performance of applications on future systems. 
In the constantly changing and growing field of HPC, it is important to have a modeling tool that is 
flexible enough to adapt to architectural changes and is scalable enough to grow with the constantly 
increasing system sizes. PSINS adds this flexibility and scalability to the PMaC Performance Prediction 
Framework. 

Our results demonstrate that using PSiNS within the prediction framework results in high accuracy 
when predicting the performance of three large scale HPC applications for a number of different input 
decks and processor counts for three HPC systems. 
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