
Grid Systems Deployment & Management using Rocks

Federico Sacerdoti1, Sandeep Chandra1, Karan Bhatia1

1San Diego Supercomputer Center, 9500 Gilman Drive, University of California, San

Diego, La Jolla, CA 92093

{fds, chandras, karan}@sdsc.edu

2

Abstract

Computational clusters have become the dominant platform for a wide range of scientific

disciplines. Cluster management software is available that allows administrators to

specify and install a common software stack on all cluster nodes, and enable centralized

control and diagnostics of components with minimal effort. While grid deployments have

similar management requirements, they have faced a lack of available tools to address

their needs. This paper describes the systems management solutions developed for one

such grid deployment, the GEON Grid, a domain-specific grid of clusters for geological

research. Machines in GEON grid are geographically dispersed, and must be connected

with wide-area networks. GEON provides a standardized software stack across all sites,

while allowing controlled local customization. This situation gives rise to a set of

requirements that are difficult to satisfy with existing cluster tools. In this paper we

describe extensions to the Rocks cluster distribution to satisfy several key goals of the

GEON Grid, and show how these wide-area cluster integration extensions satisfy the

most important of these goals.

3

1. Introduction

Computational clusters have become the dominant platform for a wide range of scientific

disciplines. Due to this pressure, cluster management software has risen to the challenge;

cluster tools exist that specify a common configuration base, install a software stack on

all nodes, enable centralized control of components, and provide diagnostics for failure

reporting, all with minimal effort. While cluster management toolkits have been

successfully applied to large-scale clusters operating in tightly coupled LAN

environments [1,2], current grid deployments with similar management requirements

have faced a lack of available tools. These grids seek to offer a common operating

environment for a community or scientific domain, and typically involve a diverse set of

resources operating in a geographically dispersed environment. Examples of such grid

deployments include GEON [3], BIRN [4], and GriPhyn [5] although many others exist

[6, 7, 8].

We present grid design from the perspective of GEON, although its similarity to other

grid efforts makes our results applicable to other projects. Figure 1 shows the GEON grid

architecture. A set of physically distributed clusters are located within the administrative

domain of each of sixteen participating sites. These clusters may have zero or more

compute nodes and may consist of different hardware architectures. The operation of this

virtual organization [9] requires the machines to run a common software stack that

enables interoperability with other GEON resources. We restrict our attention to

computational hardware resources. In addition to being geographically distributed, the

clusters at each partner site build upon the common software base to provide site-specific

applications and services. The challenge, therefore, is to manage the distributed set of

4

hardware resources, physically distributed at partner institutions and connected over the

commodity Internet, in a way that minimizes system administration costs while achieving

interoperability and local site autonomy. Although local cluster performance is important,

the main objective of the GEON systems component is to efficiently manage the grid in

the face of system upgrades, security patches, and new software components. A central

tenant of the design is to achieve this level of management with minimum administration.

Figure 1: GEON grid consists of distributed resources, both internal and external,

interoperating and connected over the commodity network and in some cases on Internet2.

We use the Rocks cluster distribution as a starting point for the GEON effort. Although it

did not initially provide the functionality to manage a grid of machines, Rocks has been

5

successfully used to manage large clusters consisting of more than 500 nodes. With our

direction, the Rocks toolkit has been modified to support wide-area deployment and

management of systems in a fashion appropriate for GEON. In this paper we present our

requirements for a grid management toolkit, and show how the new wide-area cluster

initialization capability in Rocks satisfies a majority of these requirements. We hope the

solutions explored for the GEON project can be directly applied to other grid

deployments in addition to our own.

Section 2 describes the overall Rocks architecture and summarizes its capabilities along

with other popular cluster management software. Section 3 discusses the specific

requirements for wide-area grid deployments and management using GEON as an

example. Section 4 describes the architecture and implementation changes made to

Rocks to support wide-area grid management. Section 5 discusses some initial

performance measurements and other feedback from using this system for real systems

deployment and management in GEON and identifies open issues and future directions.

Section 6 summarizes the paper.

2. Rocks Cluster Management

High-performance computing clusters have become the dominant computing platform for

a wide range of scientific disciplines. Yet straightforward software installation,

management, and monitoring for large-scale clusters has been a consistent and nagging

problem for non-cluster experts. The free Rocks cluster distribution takes a fresh

perspective on cluster installation and management to dramatically simplify version

tracking, cluster management, and integration.

6

The toolkit centers around a Linux distribution based on the Red Hat Enterprise line, and

includes work from many popular cluster and grid specific projects. Additionally, Rocks

allows end-users to add their own software via a mechanism called Rolls. Rolls are a

collection of packages and configuration details that modularly plug into the base Rocks

distribution. In this paper, for example, we demonstrate injecting software into a domain-

specific Grid via a GEON roll. Strong adherence to widely used tools allows Rocks to

move with the rapid pace of Linux development. The latest release of Rocks, version

3.2.0, supports commodity architectures including x86, IA64 and x86_64 Opteron.

2.1. Architecture

Figure 3 shows a traditional architecture used for high-performance computing clusters.

This design was pioneered by the Network of Workstations [10], and popularized by the

Beowulf project [11]. In this method the cluster is composed of standard high-volume

Figure 2: Rocks and Rolls. A node in the graph specifies a unit of packages and
configuration; a graph traversal defines software for a cluster appliance. Yellow nodes

are Rocks base, while colored nodes belong to various rolls.

apache

cluster-db

cluster-db-structure cdr

dhcp-server

sge

sge-globus

java

rocks-dist

condor

condor-server

condor-client

emacs

devel

fortran-development docbook

globus

server

i386
ia64

cluster-db-data

central x11-thin

i386
x86_64

syslog-server

server-wan media-server

x11

i386

7

servers, an Ethernet network and an optional off-the-shelf performance interconnect (e.g.,

Gigabit Ethernet or Myrinet). The Rocks cluster architecture favors high-volume

components that lend themselves to reliable systems by making failed hardware easy and

inexpensive to replace.

Figure 3: Rocks Cluster Hardware architecture. The Frontend node

acts as a firewall and gateway between the private internal networks
and the public Internet.

Rocks Frontend nodes are installed with the base distribution and any desired rolls.

Frontend nodes serve as login and compile hosts for users. Compute nodes typically

comprise the rest of the cluster and function as execution nodes. Compute nodes and

other cluster appliances receive their software footprint from the frontend. Installation is

a strong suit of Rocks; a single frontend on modern hardware can install over 100

compute nodes in parallel, a process taking only several minutes. Typically cluster nodes

install automatically, using PXE to obtain a boot kernel from the frontend.

One of the key ingredients of Rocks is a robust mechanism to produce customized Linux

distributions for a particular domain. When we build a cluster frontend with the GEON

roll, all compute nodes will install a set of Geo specific software. This mechanism allows

Ethernet Network

Application
Message Passing

Network

Front-end
Node(s)

eth1 Public Ethernet

eth0

eth0 eth0 eth0 eth0

NodeNodeNodeNode

8

us to easily inject domain-specific software into the Rocks integration system, enabling a

Geo-specific grid of clusters. Specialized CDs can be generated from this custom

distribution, which behave identically to those from RedHat. More importantly to this

paper, the custom distribution may be transmitted to other cluster frontends over a

standard wide-area network such as the Internet.

By leveraging the standard RedHat Anaconda installation technology, Rocks abstracts

many hardware differences and automatically detects the correct configuration and

hardware modules to load for each node (e.g., disk subsystem type: SCSI, IDE, integrated

RAID adapter; Ethernet interfaces, etc). Although its focus is flexible and rapid system

configuration (and re-configuration), the steady-state behavior of Rocks has a look and

feel much like any other commodity cluster containing de-facto cluster standard services.

2.2. Related Work

We chose the Rocks cluster distribution to power the GEON scientific grid based on its

fitness to our requirements. However several attractive clustering solutions exist, both in

open source and commercial form.

2.2.1 SystemImager

SystemImager [12] performs automated installs, updates, and software and data

distribution, to a network of Linux machines. It supports each hardware platform by

storing a unique image of the directory structure for each hardware type. Cluster node

configuration for a specific hardware configuration is managed by first installing one

node in the cluster, configuring the software by hand, then taking a snapshot of the node

(i.e., creating a master node). It is useful in environments with large numbers of identical

9

machines; any new hardware type in the cluster, however, requires its own full snapshot.

Since there is no mechanism for sharing portions of the snapshots, SystemImager can

degenerate into a collection of images, each with a large set of duplicated files. The

concept of data normalization from database theory tells us this situation is particularly

difficult to maintain: any change to the system must be repeated for each image copy, and

great care must be exercised to avoid inconsistencies between images.

2.2.2 Local Configuration System (LCFG)

The LCFG project [2] has a similar installation philosophy to Rocks. It provides a

configuration language and a central repository of configuration specifications, which are

analogous to the Rocks kickstart nodes. The specifications can be combined to install and

configure individual Unix machines over a network. Changes to the central specifications

automatically trigger corresponding changes in the configuration of managed nodes. This

incremental update is a feature missing from Rocks, but the lack of a packaged solution

and the use of a homegrown installer and hardware detector make LCFG unsuitable for

our purposes. The LCFG system is used in diverse configurations where even the Unix

flavor is heterogeneous.

2.2.3 Scyld Beowulf

Scyld Beowulf [13] is a commercial, single-system-image cluster operating system. In

contrast to SystemImager, LCFG, and Rocks, processes on a scyld cluster see a single

PID space for all running processes. While this feature simplifies cluster operations, it

relies on a heavily modified Linux kernel and GNU C library. On Scyld clusters,

configuration is pushed to compute nodes by a Scyld-developed program run on the

10

frontend node. Scyld system has limited support for heterogeneous nodes, and does not

support new hardware as readily as a distribution-only effort such as RedHat. Because of

the deep changes required by the system, the Scyld company sits in the critical path of

many bug and security fixes. These fundamental changes require Scyld to take on many

(but not all) duties of the distribution provider.

2.2.4 YUM

The Yellow dog Updater, Modified (Yum) [14] is an automatic updater and package

installer/remover for RPM-based distributions such as RedHat. While not a clustering

solution, YUM can be used to keep a set of machines up to date with a central server.

YUM automatically computes package dependencies, and essentially serves as an rsync

facility at a package level.

YUM does not address the initial software installation, however, nor does it probe cluster

hardware. In addition, it does not guarantee that updated packages will not disrupt

currently running jobs, a matter of some significance for long-running scientific tasks.

The updater is most suitable for users to keep their existing RPM-based systems up to

date in an interactive fashion.

3. System Management Requirements

The GEON project is tasked with building the next generation cyberInfrastructure for the

geosciences community. The GEON grid infrastructure is a services-based infrastructure

providing decentralized data federation capabilities across heterogeneous databases. At

the physical resource layer, the GEON project a wide-area grid, called the GEONgrid,

with resources situated at each of the 16 partner sites (see Figure 1). At minimum, each

11

partner site runs a GEON pop node that acts as a point-of-presence and, optionally,

coordinates additional machines used for providing large data capability or small-scale

computation capability. The pop node at a particular partner site provides a standard set

of services for its users. The set of services includes core system management services

for determining resource availability and use, data management services for replication

and caching of data across the grid, and high-level application services for users

conducting data exploration, visualization and simulation. In order to ensure

interoperability between nodes at different sites, SDSC provides a comprehensive

standardized software stack definition that includes the core operating system, currently

Linux, higher-level development environments such as Web and Grid Service libraries,

and end user environments (portals). The software stack definition includes the necessary

security information to link nodes to the GEON grid security infrastructure.

3.1. Consistency

The first major challenge for systems management of the GEON grid is to maintain a

consistent software stack on all machines, currently 40 in total. These hosts are physically

distributed among various administrative domains at different sites and connected

through the commodity Internet1. Uniformity of the software stack is required to ensure

interoperability between services running on different sites in the grid. The GEONgrid

uses the NMI grid software release [15] as the base of its grid software stack. In addition,

we provide higher-level software such as the portal environments, various web services

libraries, an OGSI grid service container and libraries, and GEON-specific services. In

order to deal with the complexity of so many interoperating components, we have chosen

1 Few sites are connected using the higher bandwidth Internet2 backbone

12

to integrate and test the system as a whole unit, which when verified is pushed out to all

nodes in the GEON grid.

3.2. Controlled Customization

The second major challenge of the project is to manage the constituent machines to allow

controlled customization of the machines at each of the partner sites. There are three

reasons for local customization: First, each site may have specific system requirements

for its configuration. For example, software and security patches, firewall integrity, and

other management tools specific to the site must be accommodated. Each partner site may

also configure the GEON machines in such a way to leverage additional resources it may

have. SDSC, for example, will provide gateways to large compute clusters (TeraGrid [16]

and Datastar) and data archives (HPSS). Second, the partner sites may deploy additional

grid or web services applications on the GEON machines beyond those built into the

software stack. These services must be persistent across reinstallations and system

updates. Third, partner sites may deploy datasets into the GEON network by hosting

them on GEON machines. These datasets must also be preserved across software stack

updates.

Unconstrained customization, however, leads to software incompatibilities that require

significant administration overhead. Therefore the needs of customization must be

balanced with the need for efficient system management.

3.3. Requirements

The following are specific requirements we have determined for the GEON deployment,

which we believe are similar to other grid systems:

13

1. Centralized software stack definition. GEON central node will define the base

software stack used to instantiate all other nodes.

2. The ability to push the software stack to GEON pop nodes over the Internet with

little or no administration.

3. Enable local site autonomy by defining acceptable node types for compute, data,

and site-specific customized nodes.

4. Ability to add site-specific constraints. Allow customized software with durable

site-specific environment and settings. These software components should survive

the process of upgrading or reinstalling the base distribution.

5. Update software and security patches. Use INCA framework [17] to monitor

software versions of important middleware components. The ability to identify

and incorporate changes to the base software stack.

6. Incremental and hierarchical base distribution updates. Updates to the pop

frontend nodes must be automatically pushed to the compute and data nodes at the

site.

7. Remotely update critical patches and the software stack. At the same time sites

with varying administrative requirements and policies should be able to add

additional rules to the basic update mechanism.

8. Nodes or clusters that join the grid should integrate easily and be immediately

consistent with the base grid software stack.

14

While keeping in mind that the sites own their local resources and have full control of

them, the GEON system must provide a robust, basic level of systems management that

can be extended.

4. Wide Area Kickstart

To address the primary requirement of the GEON grid, a low management cost for grid-

wide software installation and updates, we extended the Rocks distribution to perform

full cluster installations over wide area networks. While compute nodes in Rocks always

employed the LAN to install software from the frontend machine, the frontend itself had

to be integrated with CD or DVD media. This strategy, while appropriate for cluster

instantiations of basic Rocks software, is insufficiently flexible for the dynamic needs of

the GEON grid. Specifically, we considered affecting grid-wide software with mailed

disk media unacceptable.

4.1. Central

The wide area cluster integration involves a Central server that holds the software stack.

Frontend pop nodes of the grid obtain a full Rocks cluster distribution from the central,

this distribution is suitable to install local compute, data, and customized nodes. Since the

software stack defines the whole of the base system, and because security patches and

feature enhancements are common during updates, any part of the stack may be changed.

The challenge is to retrieve all components necessary for integration from central over

the network, including the installation environment itself. We require a small static

bootstrap environment for the first pop initialization, which contains only network drivers

15

and hardware-probing features and fits onto a business card CD. This bootstrap

environment is stored on the node for use in the upgrade process.

Figure 4 shows the wide-area kickstart architecture. A central server holds the base Rocks

distribution, including the Linux kernel and installation environment, along with standard

rolls such as the HPC (high performance computing), and the domain-specific GEON

roll. We initialize GEON frontend pops over the wide-area Internet from this central. The

software disbursement methodology is optimized for unreliable networks, and possesses

greater awareness and tolerance for failure than the local-area Rocks install process for

between frontend and compute nodes. The frontend pop locally integrates the Rocks base

and the various Rolls selected from the central server, and the combined software stack is

rebound into a new Linux distribution. The pop then initializes cluster nodes with its

combined distribution. If the pop is current it is easy to see any new compute, data, or

Figure 4: Wide Area Cluster Integration. Central server provides Rocks base and the
GEON Roll to frontend cluster nodes in the Geongrid. Frontends then update the
software on their respective compute nodes. Frontends obtain their software over wide

area networks such as the Internet, while compute nodes install over a local LAN.

Central Server
Base, HPC, GEON

Cluster 1

Frontend

Compute
Node

Compute
Node

Cluster 2

Frontend

Compute
Node

Internet

Cluster N

Frontend

16

specialized nodes joining the grid immediately posses a consistent version of the base

grid stack.

4.2. Controlled Customization

With the ability to bind the base and third party rolls into a distribution for local

consumption comes the possibility of obtaining components from many sources. Figure 5

shows integration from several central servers. This feature allows a type of multiple

inheritance, where a frontend’s identity is composed from several sources. This

inheritance model allows GEON’s goal of controlled local customization. A site can

maintain a central server with locally developed rolls for its use. However, rolls are

highly structured combinations of software and configuration. Their framework allows

quality control and verification of their constituent packages, to a level not available to

traditional software-testing techniques [18]. With rolls, GEON supports controlled site

customization suitable for complete software components, and allow these components to

be easily incorporated into the base software stack.

However by the requirements, sites must be capable of affecting local configuration

changes as well. The Rocks method of distributing updates reinstalls the root partition of

the system. While this provides security assurances and software verification advantages,

it requires all service configuration be relegated to other partitions. The GEON system

places all local configuration and user environments on non-root partitions, which are

durable across updates. No facility exists in the Rocks system to distribute incremental

package updates, a shortcoming which is left to future work.

17

4.3. Multiple Architectures

Figure 5 illustrates the multiple-architecture aspects of the Rocks system as well, which

extend to the wide-area kickstart facility. Contained within the bootstrap environment is a

local architecture probe, which alerts the central or cluster frontend what architecture it

is. This classification allows heterogeneous clusters to ensure each node runs most native

software stack. It also requires frontend nodes to posses a distribution for each

architecture they expect to encounter in their local cluster. For this reason, the GEON

central provides the base distribution and rolls for several hardware types, notably x86

(Pentium, Athlon), ia64 (Itaniaum), and x86_64 (Opteron). The GEON central forms the

repository of the base Grid DNA, with local central servers providing additional software

resources.

Central Server
Base, HPC, GEON

Cluster
Frontend
(x86_64)

Compute
Node

Compute
Node

Compute
Node

. . .

Internet

x86 x86_64

Central Server 2
Java, Custom

Internet

Figure 5: Multiple Central servers. A frontend may be composed of rolls from several sources,
allowing course-grained local site customization suitable for large software components. Clusters
can have heterogeneous hardware; base distribution and rolls are available for x86, ia64, and

x86_64. Nodes automatically negotiate for the most native software available.

18

The Rocks wide-area cluster integration facility enables GEON to push its software stack

to pop nodes over the Internet in an efficient manner with low administration overhead.

Site-specific additions and customizations of software components are standardized with

the roll structure, and are implemented with site-local central servers. Finally,

customizations are maintained across software stack updates by the GEON system

structure. The proceeding section provides an evaluation of the process and function of

this wide-area integration capability.

5. Experience

To verify the effectiveness of the Rocks wide area kickstart technique we performed

experiments in various relevant settings. In this section we show the wide-area cluster

integration facility of Rocks satisfies our major management goals of a common software

stack that is centrally disbursed to sites, a low-administration method of updates and

patches, and the ability for local site customization. We present three experiments, each

which model an important use case of our grid.

The objective of these trials is to measure the time needed to retrieve the base and Roll

distributions over the public Internet, and to observe any failures and recovery during the

process. In addition we wish to characterize the amount of administrative labor involved

in the configuration before the installation process begins, and how much configuration is

necessary for a local site to add their customized software Roll at the time of installation.

Finally, we verify the consistency of the configuration between the base distribution and

software stack installation on the remote site. The time taken to setup the node once it

19

retrieved the distribution is dependent on the hardware configuration of the node (e.g.

processing speed, etc) and is not of great significance to the experiment.

5.1. Experimental Setup

All experiments involve a central server node and a frontend pop machine. The central

node is a dual Pentium 4 server running Rocks 3.2.0 beta software with Linux kernel

2.4.21. Since all frontend nodes can function as central servers, we setup the as a Rocks

frontend with modified access control. Software disbursement occurs using standard

HTTP on port 80, access to which has been opened to our frontend pop node using

Apache access control lists. The central server is connected to the network via copper-

based Gigabit Ethernet capable of 1000mbps.

For the first experiment we kickstart a cluster frontend node from the central server

located on the same local area network (LAN). A Gigabit Ethernet link connects the two

machines. The purpose of this experiment is to verify operational correctness and

ascertain the typical management overhead necessary for a cluster install. Note that once

the frontend node has been initialized, standard and proven Rocks techniques can be used

to install local compute nodes. Therefore we bias our report towards the integration of the

cluster frontend nodes, which serve as pop nodes of the GEON grid.

In the second experiment we stress the system slightly by kickstarting a cluster frontend

over the wide area network (WAN) in the same organizational domain. We define wide

area in this case as a two network endpoints connected with one more IP routers between

them. This scenario corresponds to obtaining a roll from a local site central server for the

purposes of customization.

20

Finally, we initialize a frontend pop over the WAN from a central server in a different

organizational domain. This experiment simulates the process of distributing the common

Geon software stack to pop nodes on the grid. We expect to see the effects of increased

packet loss and TCP congestion control when operating over this longer haul network.

The LAN testing was performed at SDSC between nodes on the same level 2 (switching)

network segment. The WAN experiment within the same organizational domain was

performed at SDSC using the central server from the first experiment. The frontend has a

100 mbps network link and therefore limits the bandwidth of this test. The third

experiment we conduct using the central server at SDSC and a frontend node at Virginia

Tech, roughly 4000 kilometers away. The maximum bandwidth between the sites is

~100mbps over the standard Internet link. The Rocks distribution is close to 660 MB, the

HPC roll is 338 MB and the GEON roll is close to 98 MB. A series of 10 runs were

conducted in each of these experiments and the results in Table 1 indicate the average

time in each case.

Kickstart Type Rocks Base Rolls (HPC+GEON)

Local Area Network

(Single level 2 segment)
65s 8s

Wide Area Network

(Same Organization)
390s (6.5min) 25s

Wide Area Network

(Different Organization)
2700s (45 min) 360s (6 min)

Table 1: Time (in seconds) to retrieve the Rocks base and Roll distributions
over different types of network environments. Values represent average of
several trials.

21

5.2. Discussion

Our observations show that we were successfully able to satisfy our most important

requirements. When creating a node within the local area network, the distribution was

retrieved in the shortest time as a result of the high bandwidth, and the node was

consistent in software and configuration with the central server. The amount of personnel

involvement was minimum as we would expect from the Rocks toolkit. Our experience

with the wide area kickstart were the same, all the metrics were similar except the time

taken to retrieve the distribution over the public Internet, a result dominated by the

performance of the network over the geographic distance involved. The remote site was

also able to successfully add their site specific Roll and it was consistent with the overall

software installation. Our initial assessment is that the Rocks wide area kickstart

extension successfully satisfies many of the GEON requirements and we believe similar

principles can be applied to a grid consisting of many nodes. Limitations of the system

are detailed in future work.

5.3. Future Work

Not all the requirements of GEON were met by the Rocks cluster distributions current

release. We require a frontend node to be able to initiate an upgrade automatically.

Another specification sought is the fine-grained incremental upgrade of critical RPMS.

This feature is also absent from the Rocks system. In addition, nodes in wide area grid

systems like GEON have the concept of user space and OS distribution space. Our ideal

solution would posses the functionality to update or reinstall the OS distribution

22

completely without affecting the user environment in any way. We expect to address

these requirements in future iterations of the Geon grid design.

6. Conclusion

This paper discusses the requirements, architecture and applicability of Rocks wide area

grid systems deployment and management. We discussed some of the requirements of

GEON grid deployment and management and how Rocks wide area functionality

addresses those requirements. We also discussed some initial results and talk about

possible extensions to the Rocks toolkit that would benefit GEON and similar grid

systems.

We believe in GEON and other grid architectures the key is to manage an extremely

heterogeneous hardware, computing, storage, and networking environment, rather than an

“ultra-scale” environment. The complexity of management (e.g., determining if all nodes

have a consistent set of software and configuration, incrementally updating patches, etc)

of such grid systems is challenging. Rocks wide area kickstart and management toolkit

establishes a rational software distribution and management plan so that the GEON

network can easily expand with new clients, computational resources, services,

middleware components, and other resources with minimal effort.

23

Acknowledgements

This work is funded by the NSF (GEON, Grant Number: 225673) and NPACI. We would

like to thank Satish Tadepalli from Virginia Tech University for assisting us with some of

the experiments.

24

References

 1. NPACI Rocks: Tools and Techniques for Easily Deploying Manageable Linux Clusters,
Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno, October 2001, Cluster 2001

 2. P. Anderson and A. Scobie. LCFG: The next generation. In UKUUG Winter Conference,
2002.

 3. GEON, CyberInfrastructure for the Geosciences, http://www.geongrid.org/

 4. BIRN, Biomedical Informatics Research Network, http://www.nbirn.net/

 5. GriPhyn, Grid Physics Network, http://www.griphyn.org/index.php

 6. An open platform for developing, deploying and accessing planetary-scale services.
http://www.planet-lab.org/

 7. Building the National Virtual Collaboratory for Earthquake Engineering
http://www.neesgrid.org/index.php

 8. Southern California Earthquake Center. http://www.scec.org/

 9. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Performance Computing Applications,
2001.

 10. Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for NOW (networks
of workstations). IEEE Micro, 15(1):54–64, February 1995.

 11. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, volume I, pages 11–14, Oconomowoc,
WI, 1995.

 12. B. E. Finley. VA SystemImager. In Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, Oct. 2000.

 13. Scyld Software. Scyld Beowulf Clustering for High Performance Computing. Scyld
Software Whitepaper, www.scyld.com.

 14. Yellow dog Updater, Modifies http://linux.duke.edu/projects/yum/

 15. NSF Middleware Initiative http://www.nsf-middleware.org/

 16. Distributed Terascale Facility to Commence with $53 Million NSF Award.
http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm

 17. The Inca Test Harness and Reporting Framework, Shava Smallen, Catherine
Olschanowsky, Kate Ericson, Pete Beckman, Jennifer Schopf. Submitted to
Supercomputing 2004

 18. Rocks Rolls: A First-Class Method to Interact with Standard System Installer. Mason J.
Katz, Greg Bruno. Submitted to Cluster2004.

